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Abstract

Fibroblasts as key components of tumor microenvironment show different features in the

interaction with cancer cells. Although, Normal fibroblasts demonstrate anti-tumor effects,

cancer associated fibroblasts are principal participant in tumor growth and invasion. The

ambiguity of fibroblasts function can be regarded as two heads of its behavioral spectrum

and can be subjected for mathematical modeling to identify their switching behavior. In this

research, an agent-based model of mutual interactions between fibroblast and cancer cell

was created. The proposed model is based on nonlinear differential equations which

describes biochemical reactions of the main factors involved in fibroblasts and cancer cells

communication. Also, most of the model parameters are estimated using hybrid unscented

Kalman filter. The interactions between two cell types are illustrated by the dynamic model-

ing of TGFβ and LIF pathways as well as their crosstalk. Using analytical and computational

approaches, reciprocal effects of cancer cells and fibroblasts are constructed and the role of

signaling molecules in tumor progression or prevention are determined. Finally, the model is

validated using a set of experimental data. The proposed dynamic modeling might be useful

for designing more efficient therapies in cancer metastasis treatment and prevention.

Introduction

The tumor microenvironment (TME) as the surrounding milieu of tumor cells is consisted of

different types of components such as extracellular matrix (ECM), blood vessels, immune cells,

adipose cells, and fibroblasts [1, 2]. Interactions among tumor stromal cells and cancer cells

lead to maintenance and growth of the tumor tissue [3, 4]. Fibroblasts are one of the abundant

factors in TME which have a major impact on tumor behavior [5, 6]. Fibroblasts have been

overlooked despite their essential role in tumorigenesis in a context-dependent manner.

Indeed they have been seen in two fundamental forms inside the TME, Normal Associated

Fibroblasts (NAF) and Cancer Associated Fibroblasts (CAF) [7–9]. Although, the original

sources of CAFs in different cancer types remain elusive, there is also some evidence that in
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specific type of cancers, CAFs exist in different subtypes based on their spatial niche within

TME [10, 11]. Considering original and functional heterogeneity of CAFs, they are supposed

to support growth and invasiveness of cancer cells, whereas NAFs inhibit these features [12,

13]. So, fibroblasts can be regarded as Janus-faced components of the TME and understanding

the kinetics of their interactions with cancer cells is crucial for cancer treatment.

Over the last decade, systems biology has revolutionized our understanding from kinetics

of complex biological behaviors by application of mathematical approaches. In this regard,

agent-based modeling as a methodology that focuses on interactions among the elements of

the system is an appropriate mathematical tool to study biological systems. Furthermore, this

approach gives the opportunity to understand the behavioral kinetics of a tissue as a well-

defined population [14–16]. Agent-based modeling has been used as a valuable tool in tumor

computational biology [17]. Many aspects of tumor biology such as adaptation to microenvi-

ronment, the process of angiogenesis, the tumor cell ECM interaction, response to chemother-

apy, the effects of hypoxia, and metastasis and invasion have been incorporated and

investigated in agent-based models [15]. Gay et al have introduced agent-based modeling and

its possible uses in the dynamics of innate immune response and systemic inflammatory

response syndrome [18].

Agent-based modeling has been applied for determining the role of gene-protein interac-

tions, cell phenotypes and molecular signatures [19–21]. Also, a number of mathematical

models based on this method have been proposed for determining the role of cancer stem

cells, platelet and tumor cell interactions in cancer metastasis [22, 23]. Furthermore, tumor

immune response including immunotherapy has been modeled using hybrid and agent-based

modeling approaches recently [24, 25]. Stochastic agent-based model using cellular automata

formalism has been used for modeling immune-tumor interaction and suggest its significance

to control tumor development [26]. In a recent study, we integrated bifurcation analysis with

agent-based modeling to elucidate macrophage fate-determination and population patterns

[27]. In the case of tumor and its milieu interactions there are a limited number of studies for

example in [28] the interaction between a tumor and its surrounding stroma subpopulations

investigated to recognize their role on the emergence of drug resistance and tumor growth by

using a minimal ordinary differential equation (ODE) model based on exponential growth

dynamics. Also, molecular rules that control the cancer cells and adjacent fibroblasts interac-

tions were defined using a mathematical model based on singular value decomposition

approach in [29]. Nevertheless, the mutual conversation among fibroblasts and cancer cells

and the switching behavior of fibroblasts in cancer metastasis due to the intracellular regula-

tory signaling and intercellular communication have never been investigated from the agent-

based modeling point of view.

In the current study, we present an agent-based model of the contradictory effect of fibro-

blasts on tumor suppression and progression as a switching behavior. At first, a modeling

framework have been made to mathematically represent the dynamic biological system. In

order to unravel the unknown parameters of the model a computational parameter estimation

approach was applied based on model outputs best fitting with experimental data [30]. Finally,

after simulation of the model with an appropriate software, validity of the outputs is evaluated

by comparing them with a different measured dataset obtained from experiments.

To analyze how fibroblast switching behavior serves the tumor development, a mathemati-

cal model has been built. The model is composed of two agents; a fibroblast cell and a cancer

cell. The agents have different dynamics modeled by nonlinear ODEs and they communicate

with each other through intercellular signaling. The underlying mechanisms which are

described by systems of differential equations are based on transforming growth factor β
(TGFβ) and leukemia inhibitory factor (LIF) pathways as well as their crosstalk. These factors
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regulate growth, differentiation, migration and apoptosis in many cell types. They are also

responsible for switching behavior in different stages of cancer development. Despite presence

of other fibroblast activator molecules in the TME, considering TGFβ and LIF signaling path-

ways seems to be sufficient to model the interactions among fibroblasts and cancer cells due to

their consecutive roles in the promotion of fibroblasts activation. Because of limited number

of time points and noisy measurements, we benefited from advantages of Hybrid Unscented

Kalman Filtering (HUKF) approach to estimate the unknown parameters. For this purpose, a

gene expression profiling results of a microarray dataset (GSE6653) from Gene Expression

Omnibus (GEO) database has been applied as observations [30–33]. Finally, the model repre-

sents outputs such that they are in accordance with experimental data. In our knowledge, this

is the first study which uses agent-based modeling framework to describe switching behavior

of the fibroblasts in the TME. In addition, this model can be used for solid tumors that have

invasive characteristics due to the role of fibroblasts in the development of metastasis.

Materials and methods

Agent-based model for dual effect of fibroblast on cancer cell

Fibroblasts in NAF and CAF forms play different roles in the interaction with cancer cells. To

describe the fibroblast switching behavior, a nonlinear dynamic model of the intracellular

reactions in cancer cell and fibroblast as well as intercellular interactions between two cell

types was built simultaneously. Activation of resident fibroblasts is induced by numerous cyto-

kines released by cancer cells such as TGFβ and LIF [34–38]. TGFβ is one of the main factors

secreted by cancer cell and fibroblast which involves in tumor growth, progression and metas-

tasis [39]. When this factor releases in the TME, it binds to its receptor on the cell surface and

activates intracellular signaling pathway through phosphorylation of SMAD2/3. Then, collabo-

ration of phosphorylated SMAD2/3 and SMAD4 finally leads to expression of downstream

genes [38]. Target genes of this pathway such as LIF and C-X-C motif chemokine 12

(CXCL12) play principle functions in cancer cell proliferation and migration [40, 41]. Further-

more, it is proposed that upon activation of TGFβ pathway, transcription factors such as

SNAIL are activated which promote epithelial to mesenchymal transition (EMT) [31]. There is

also an inhibitory SMAD (SMAD7) that inhibits SMAD2/3 phosphorylation which upregu-

lates in TGFβ pathway and makes a negative feedback loop [31]. LIF cytokine also contributes

in normal fibroblast reprogramming into CAF and reinforces invasive phenotype [34, 35]. It

initiates Janus Kinase/ signal transducer and activator of transcription proteins (JAK/STAT)

signaling pathway. It has been demonstrated that JAK/STAT pathway leads to pro-invasive

phenotype in fibroblasts in the interaction with cancer cells [35]. Furthermore, crosstalk

between TGFβ and LIF signaling pathway is a remarkable phenomenon which we have consid-

ered in the model. The effect of crosstalk between the two signaling cascade is both positive

and negative. In other words, JAK/STAT in the LIF pathway upregulates target genes of

SMAD2/3 in TGFβ pathway [42] including SMAD7 as well as CXCL12 which have different

influences in the process of fibroblast behavior in the interaction with cancer cell. Although

CAFs play a significant role in tumor growth, metastasis and invasion, NAFs prevent tumor

progression by SLIT2 generation which inhibits some tumor promoting factors activity such

as CXCL12 [43–45].

As shown in Fig 1, the model consists of two agents corresponding to two different cell

types. The first agent is cancer cell and the second is fibroblast. Dynamics of two agents are dif-

ferent but they interact with each other by their input and output signals. Although there are

potentially hundreds of signaling molecules that are influencing these two cell types as well as

the other cell types within the TME, we have considered two output signals for each agent
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which are the input signals of the other agent in the model. V1, V2 and U1, U2, are output sig-

nals of cancer cell and fibroblast which are the input signals of fibroblast and cancer cell,

respectively.

The dynamic model is based on ordinary differential equations. Ordinary differential equa-

tions are used for quantitative modeling of biochemical reactions [46]. They represent how

concentration of the reactants change with time. To analyze the reactions in which two or

more reactants are involved in, the law of mass action is used. If the reaction is A+B!C, the

law of mass action is as (1):

d½C�
dt
¼ k A½ � B½ � ð1Þ

Where [A], [B], and [C] are the concentrations of the A, B, and C and k is a constant which

is called the reaction rate [47].

Dynamic equations of the model

The cancer cell dynamic is a state space model of five differential equations which describe the

important reactions in the TGFβ and LIF pathway as (2).

R1;1 : _X1 ¼ k21X1X2 � k1X1

R1;2 : _X2 ¼ k2X2 � k21X1X2 � k24X2X4 � k32X2X3 � k42X4 � k52X2X5

R1;3 : _X3 ¼ U2 � U1 þ k32X2X3 � k3X3

R1;4 : _X4 ¼ k24X2X4 � k4X4

R1;5 : _X5 ¼ k52X2X5 � k5X5

V1 ¼ X1

V2 ¼ X3

ð2Þ

The reactions in (2) are involved in activation of fibroblast, so cancer cell transmits TGFβ
and LIF as signaling molecules to fibroblast. The states of cancer cell dynamic are shown in

Table 1. LIF and TGFβ are depicted as output signals of cancer cell agent and as input signals

for fibroblast agent in Fig 1 (V1 and V2 respectively).

Fig 1. Molecular interactions between fibroblast and cancer cell. Mutual interactions between two cell types include

basic reactions of TGFβ and LIF pathways as well as their crosstalk. Communications between two cell types are

mediated through LIF, TGFβ, SLIT2 and CXCL12 as transmission signals V1, V2, U1 and U2 respectively.

https://doi.org/10.1371/journal.pone.0232965.g001
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Similarly, the dynamic of the fibroblast is a five equations state space model as shown in (3).

R2;1 : _Z1 ¼ h11Z1 � h1Z1

R2;2 : _Z2 ¼ h32Z2Z3 � h12Z2Z1

R2;3 : _Z3 ¼ � h32Z2Z3 � h34Z3Z4 � h42Z4 þ h35Z3Z5 þ V2

R2;4 : _Z4 ¼ h54Z4Z5 þ h34Z3Z4 � h4Z4

R2;5 : _Z5 ¼ � h54Z4Z5 � h35Z3Z5 þ V1

U1 ¼ Z1

U2 ¼ Z2

ð3Þ

This model describes how CXCL12 and SLIT2 are expressed in fibroblast. The states of

fibroblast dynamic are shown in Table 2. In our model, CXCL12 and SLIT2 are considered as

sign of progression and prevention of cancer cell metastasis, respectively. So, they are regarded

as signaling molecules which are transmitted from fibroblast to cancer cell. As depicted in Fig

1, CXCL12 and SLIT2 are the output signals of fibroblast agent and the input signals of cancer

cell agent (U1 and U2 respectively).

To produce a compendious view of TGFβ and LIF pathway as well as their crosstalk, some

reactions were retrieved from the literature to construct (2) and (3) model and also depicted in

Fig 1. In dynamic (2) LIF is up-regulated downstream the pathway with rate k21 in the interac-

tion with SMAD as a transcription factor [41]. It is also degraded with rate k1 (R1,1). SMAD is

generated with rate k2 and then is get used in LIF, SMAD7, TGFβ and SNAIL expression with

rates k21, k24, k32 and k52 respectively, because as well as SMAD7 and LIF, TGFβ itself is a

downstream gene of its pathway, too [48]. The reaction is also composed of an equation with

rate k42 which shows the inhibitory effect of SMAD7 on the transcription activity of the SMAD

(R1,2) [49, 50]. In another reaction, the generation and degradation of TGFβ with rates k32 and

k3 is shown. It also contains two input signals from fibroblasts. The first signaling molecule is

U1 or SLIT2 which inhibits CXCL12 generation downstream of TGFβ pathway [43, 44]. The

other input signal is U2 or CXCL12 with positive influence on TGFβ function in fibroblast acti-

vation (R1,3) [40]. The next equation in cancer cell dynamic (R1,4) describes the SMAD7

Table 2. States of fibroblast agent.

States Corresponding Molecule

Z1 SLIT2

Z2 CXCL12

Z3 SMAD

Z4 SMAD7

Z5 JAK/STAT

https://doi.org/10.1371/journal.pone.0232965.t002

Table 1. States of cancer cell agent.

States Corresponding Molecule

X1 LIF

X2 SMAD

X3 TGFβ

X4 SMAD7

X5 SNAIL

https://doi.org/10.1371/journal.pone.0232965.t001
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expression and its degradation with rates k24 and k4 respectively. In the last equation (R1,5),

SNAIL is produced downstream the TGFβ/SMAD with rate k52 and degraded with rate k5.

Fibroblast dynamic contains reactions which are occurred in fibroblast cell. In the first

equation, expression and degradation of SLIT2 with rates h11 and h1 is shown (R2,1). In R2,2

CXCL12 is expressed with rate h32 downstream the pathway by SMAD as a transcription factor

[40] and SLIT2 inhibits its activity with rate h12 [43]. In the third reaction (R2,3), SMAD tran-

scription function is enhanced in the interaction with JAK/STAT [42, 51] (rate h35). Also, in

this reaction V2 or TGFβ which is the input signal from cancer cell is considered as the initiator

of pathway [31]. SMAD function in CXCL12 and SMAD7 expression is shown with rates h32

and h34. This reaction also contains the inhibitory effect of SMAD7 on SMAD activity which is

described by rate h42. The next equation in dynamic (3) illustrates the equations in which

SMAD7 is involved. SMAD7 is expressed downstream TGFβ and also LIF pathway which are

shown by rates h34 and h54 respectively [51]. In this reaction (R2,4), degradation of SMAD7

is also shown (h4). In the last reaction (R2,5), JAK/STAT activity in the SMAD7 expression

(h54) and enhancement of SMAD function (h35) are described [51]. It also contains V1 or LIF

signaling molecule from cancer cell, because JAK/STAT role in this pathway is started with

LIF [34].

Fibroblast can be CAF or NAF due to its dynamics and input signals from cancer cell. We

supposed that h11, h32 and h12 which are the expression rates of SLIT2, CXCL12 and inhibitory

effect of SLIT2 on CXCL12 respectively are dependent on the input signals of the fibroblast

(LIF and TGFβ). The relation is described as (4):

h ¼ m0 þm1x1 þm2x3 þm3x1x3 ð4Þ

in (4) m0 is a constant, m1, m2 and m3 are the impact factors of LIF, TGFβ and TGFβ and LIF

crosstalk on h value, respectively. So, we have three relationships for h11, h32 and h12 with dif-

ferent values for m1, m2 and m3. In the next section, unknown parameter values are obtained

using a parameter estimation approach.

Model parameter estimation

In computational biology, the procedures for determining unknown parameters are drawn to

the use of control theory and specifically Kalman filters recently [32]. These approaches were

primarily developed to estimate unobserved states of a dynamical system based on minimiza-

tion of estimation error covariance but, by appropriate expansion of dynamic system, they can

be used for parameter estimation, too [52, 53]. In this study, hybrid unscented Kalman filter

method has been applied for state and parameter estimation from a set of experimental data

(GSE6653) which is based on a gene expression profiling to model SMAD regulatory modules

in ovarian surface epithelium cells [33]. We selected gene expression data of four genes includ-

ing SMAD7, CXCL12, SLIT2 and SMAD3 at four time points from this dataset.

Although, Kalman filtering approaches are basically designed for linear systems, there are a

number of methods based on its principle which are applicable to nonlinear state estimation.

Amongst them, Extended Kalman filter (EKF) and unscented Kalman filter (UKF) are more

common for parameter estimation in biological contexts [54]. In order to nonlinear state esti-

mation, the system has been linearized in EKF algorithms but, UKF algorithm directly runs

on a nonlinear system. In this regard, UKF is a more accurate and robust method over EKF

[55] and we use this method in this study. Whereas the dynamic system model is continuous

in time and the experimental data is discrete-time so, the method is called hybrid UKF or

HUKF.
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Suppose that we seek to estimate unknown parameters of a nonlinear dynamic system in

the form (5):

_xðtÞ ¼ f ðxðtÞ; yÞ ð5Þ

Where x2Rn is state vectors, θ2Rq is unknown parameter vector. Since unknown parame-

ters are constant, we can expand the dynamic model to (6) in which they are considered as

additional states with zero rate of change [32]:

_xðtÞ ¼ f ðxðtÞ; yÞ
_y ¼ 0

ð6Þ

(

Now, the expanded nonlinear dynamic system is ready to employ HUKF algorithm for

state and parameter estimation simultaneously. HUKF relies on an unscented transformation

which is transformed statistics of variables such that they can propagate through estimation

steps [56]. Two main steps of estimation are prediction and correction. In the prediction step,

estimation is done using model data and in the correction step the priory estimate is improved

employing measurement information [32, 56]. We used ekf/ukf MATLAB toolbox and make

necessary changes to the related functions in order to perform HUKF algorithm to determine

unknown parameters of dynamics (2) and (3) [57]. The results are presented in Tables 3 and 4.

Comparison between outputs and estimations and additional model parameters are gathered

in supplementary files S1 Fig and S1 Table, respectively.

Table 3. Parameters of cancer cell dynamic.

Description of the reaction Parameter Value (houre−1)

Generation of LIF downstream the TGFβ Pathway k21 0.1

Degradation rate of LIF k1 0.0015

Expression rate of SMAD k2 0.0487

Generation of SMAD7 downstream the TGFβ Pathway k24 0.012

Generation of TGFβ downstream its Pathway k32 0.502

Degradation rate of TGFβ k3 0.122

Inhibitory effect of SMAD7 on the transcription of genes by SMAD k42 0.0115

Degradation rate of SMAD7 k4 0.0000805 [58]

Generation of SNAIL downstream the TGFβ Pathway k52 0.32

Degradation rate of SNAIL k5 0.00016

https://doi.org/10.1371/journal.pone.0232965.t003

Table 4. Parameters of fibroblast cell dynamics. Three of these parameters are calculated according to (4) which can be found in S1 Table.

Description of the reaction Parameter Value (houre−1)

Expression of SLIT2 h11 Ref to S1 Table

Degradation of SLIT2 h1 0.0514

Inhibitory effect of SLIT2 on CXCL12 expression h12 Ref to S1 Table

Generation of CXCL12 downstream the TGFβ Pathway h32 Ref to S1 Table

Generation of SMAD7downstream the TGFβ Pathway h34 0.00008

Generation of SMAD7 downstream the LIF Pathway h54 0.01 [59]

Inhibitory effect of SMAD7 on the transcription of genes h42 0.00015

Degradation of SMAD7 h4 0.109

Positive effect of JAK/STAT3 on the transcription of genes by SMAD h35 0.0013

https://doi.org/10.1371/journal.pone.0232965.t004
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Model validation

To verify the results of our model, the microarray dataset GSE17708 was retrieved from GEO

database (https://www.ncbi.nlm.nih.gov/geo/). This dataset encompasses samples of A549

lung adenocarcinoma cell line under TGF-beta treatment which was performed to investigate

gene expression changes essential for metastasis progression [60]. The quality of samples was

assessed by hierarchical clustering as well as Principle Component Analysis (PCA) using heat-

map and ggplot2 packages of R software (version 3.5.2). Finally, the dataset was reanalyzed by

GEO2R tool of GEO database to compare TGFβ treated samples in each-time point with

untreated control group.

Results

Based on the above knowledge, we built an agent-based model of the interactions between

fibroblast and cancer cell. Using MATLAB Simulink toolbox [61], the model is simulated. At

the beginning of the simulation, the initial concentration of LIF and TGFβ are relatively low so

fibroblast act as NAF which it means that SLIT2 concentration increases. SLIT2 increase is the

sign of anti-cancer Characteristics of NAF in the tumor microenvironment. Then expression

of LIF and TGFβ is increased by cancer cell and they are imported to the fibroblast as input sig-

nals V1 and V2. So, as shown in Fig 2 SLIT2 concentration decreases and CXCL12 concentra-

tion increases. Furthermore, expression of SNAIL as an EMT marker increased in cancer cell.

Increasing V1 or LIF and V2 or TGFβ are signs of fibroblast activation and transformation of

NAF to CAF, also overexpression of U2 or CXCL12 is sign of cancer promoting role of CAF and

invasiveness of cancer cells. For verification of model outputs, microarray dataset GSE17708 was

reanalyzed to determine the expression pattern of LIF, SLIT2, CXCL12 and SNAIL genes over the

time. Hierarchical clustering and PCA demonstrated appropriate separation of samples in differ-

ent time points (Fig 3), so these samples selected to compare with simulation results. The expres-

sion changes of selected genes indicate migratory and invasive phenotype of cancer cells.

As shown in Fig 2 Simulation results succeeded to reproduce the behavior of LIF, SLIT2,

CXCL12 and SNAIL genes over the time with an acceptable proximity. We also computed nor-

malized root mean square error (RMSE) for each of the above genes to estimate the difference

among data values and simulation results samples. The RMSE is used to aggregate amount of

errors for several times into a single measure of accuracy [62]. Normalized RMSE is the square

root of the averaged squared error as shown in (7):

Normalized RMSE ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼0
ðxi � yiÞ

2

q

ð7Þ

Fig 2. Model outputs of agent-based model compared with experimental data of GSE17708 dataset. The graphs

show the concentration change of CXCL12, SLIT2, LIF and SNAIL over the time by continuous black line and

experimental data in several time points by red dots.

https://doi.org/10.1371/journal.pone.0232965.g002
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In (7), xi is ith sample of simulation result, θi is ith sample of data and n is number of sam-

ples. Normalized RMSE values for CXCL12, LIF, SLIT2 and SNAIL genes are 0.05, 0.01, 0.01

and 0.1 respectively. These values indicate a relatively satisfactory validation for our model as

well as, it could be also realized from Fig 2.

Discussion

In the current study, we have generated a nonlinear mathematical model, in which internal

interactions of cancer cell and fibroblast, as well as their intercellular communications are

described. Modeling fibroblast and cancer cell interactions demonstrated fibroblast status

change from NAF to CAF by cancer cell regulatory signals and its switching behavior in the

TME. Fibroblasts switching behavior in the TME leads to dual effect on tumor progression.

The model was constructed based on LIF and TGFβ pathways and also their crosstalk which

are responsible for activation of normal fibroblasts and changing their status. Besides LIF and

TGFβ, there are some key regulatory molecules such as CXCL12 and SLIT2 in the model

which are cancer progression and prevention players, respectively. The model was successfully

validated against experimental data.

SLIT is a family of secreted extracellular matrix proteins which act as tumor suppressors in

normal condition. The SLITs play an important role in the cell migration, tissue development

and establishment of the vascular network. Abnormalities or absences in the expression of

SLITs has been reported in a variety of cancers [63, 64]. According to the model outputs, when

a fibroblast is in normal status, SLIT2 increases and inhibits CXCL12 expression which leads

to prevention of tumor growth and metastasis. The increased level of CXCL12, in the TME

results in paracrine signaling via a feedback loop that promotes EMT and metastasis. It can

also inhibit apoptosis through its upregulated receptors on tumor cells [65]. Fibroblasts in can-

cer associated status diminish SLIT2 production and subsequently by upregulation of CXCL12

as an agitation signal, promote metastatic behavior of tumor cells. So, the duplicity of fibroblast

was considered as a two-faced spectrum and an agent-based model was built to describe the

underlying mechanism in the proposed model.

In our proposed model, the dynamic behavior of cancer cell and fibroblast is described with

nonlinear ordinary differential equations which are suitable tools to describe continuous bio-

chemical interactions over the time. Furthermore, this modeling approach provides a holistic

outlook into features and behavior of complex biological systems that leads to understanding

control mechanisms governing them. Accordingly, generation of two different sets of

Fig 3. Principle Component Analysis (a) and heatmap clustering (b) demonstrated acceptable separation of samples

in different time points.

https://doi.org/10.1371/journal.pone.0232965.g003
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nonlinear ODEs let us describe cancer cell and fibroblast dynamics and could determine the

critical time-points of switching in SLIT2 and CXCL12 genes which are essential for fibroblast

status change from normal to cancer associated type. Also, SNAIL as an EMT marker is con-

sidered in cancer cell agent and its expression downstream the TGFβ pathway shows the can-

cer cell invasion and metastasis.

Considering the fact that exact values of kinetic parameters for biochemical reactions are

rarely available, whenever possible we used parameter values from previous studies. Other

unknown parameters are estimated using HUKF algorithm. Furthermore, the model yielded

results that are very close to experimental data, taking into account the key impact of agent-

based structure and ODE modeling of significant reactions involved in fibroblast and cancer

cell interaction. It should be mentioned that the biochemical reactions in our model are not

limited to a particular context, so the model can be generalized for various types of cancer. For

more accurate information about a specific type of cancer, general form of the proposed

model can be used based on distinct tissue characteristics which may differ in some kinetic

parameters.

Despite various experimental studies performed on cancer associated fibroblasts, the mech-

anisms behind their behavioral shift in relation to cancer cells remained undetermined. Our

mathematical modeling could simulate the fibroblast and cancer cell communication and shed

more light on fibroblast switching behavior in the interaction with cancer cells which has not

been investigated quantitatively so far. Thus, from a mathematical point of view our suggested

model is a pioneer in the study of this challenging biological phenomenon. Furthermore, con-

sideration of different dynamics for agents is a notable strategy in agent-based modeling

approaches that was applied in our study. In addition, our model describes the kinetic parame-

ters of fibroblast signaling molecules (SLIT2 and CXCL12) with a polynomial which is depen-

dent on cancer cell signaling factors (LIF and TGFβ); an attitude which is an innovative

procedure in agent-based modeling structure. Accordingly, the model presented here can be

regarded as an initial step to exploit mathematical approaches for deep understanding of how

tumor microenvironment components influence cancer cells actions and therefore designing

more effective treatment strategies.

Supporting information

S1 Table. Parameter values of h11, h32 and h12 which are the reaction rates of SLIT2,

CXCL12 and inhibitory effect of SLIT2 on CXCL12 corresponding to h =

m0+m1x1+m2x3+m3x1x3. In this relation x1 = LIF and x3 = TGFβ. The parameter values were

determined using HUKF.

(PDF)

S1 Fig. Hybrid unscented Kalman filter parameter estimation results based on four gene

expression data. Black curves show real data and blue curves represent estimated values for

corresponding genes including, SMAD, SMAD7, SLIT2 and CXCL12. Total error estimation

for these four states is 0.06.
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