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This paper presents a comprehensive agent-based model for the spread of an infection in a
network of cities. Directional mobility is defined between each two cities and can take
different values. The work examines the role that such mobility levels play in containing
the infection with various vaccination coverage and age distributions. The results indicate
that mobility reduction is sufficient to control the disease under all circumstances and full
lockdowns are not a necessity. It has to be reduced to different ratios depending on the
vaccination level and age distribution. A key finding is that increasing vaccination coverage
above a certain level does not affect the mobility suppression level required to control the
infection anymore for the cases of young population and heterogeneous age distributions.
By investigating several migration and commuting patterns, it is found that shutting
mobility in a few local places is favored against reducing mobility over the entire country
network. In addition, commuting -and not migration-influences the spread level of the
infection. The work offers an exclusive combined network-based and agent-based model
that makes use of randomly generated mobility matrices.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The primary response made towards disease outbreaks is to imply full lockdowns to restrict the transmission of the
disease (Bhadoria, Gupta, & Agarwal, 2021). Although preventing contact between people can suppress the disease, it has
serious psychological and economical drawbacks that may last for decades. As a recent example, the coronavirus pandemic
(Covid-19) resulted in serious socio-economic implications (Nicola et al., 2020). Therefore, more flexible and effective stra-
tegies to control infections and prevent disease outbreaks are needed. Furthermore, the spread of infections often relates to a
person's age and health status (El-Gendy et al., 2020; Fox, Cooney, Hall, & Foy, 1982; Hutchins et al., 2020; Kada, Kouidere,
Balatif, Rachik, & Labriji, 2020). Hence models that account for differences in population demographics are necessary to
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provide an adequate representation of disease transmission. In addition tomobility control, nonpharmaceutical interventions
include vaccinating the population against the infection. Vaccinations can also vary in their efficiency and coverage between
populations and a combined effect of mobility suppression and vaccines has to be examined.

Numerous studies have shown the correlation between humanmobility and the evolution of epidemics (Guo, Deng,& Gu,
2022; Jewell et al., 2021; Kissler et al., 2020; Nouvellet et al., 2021). A previous study shows that directional mobility between
two cities affects the global and local epidemic sizes in different ways (Espinoza, Castillo-Chavez, & Perrings, 2020). Another
recent study (Pardo-Araujo, García-García, Alonso, & Bartumeus, 2023) uses random matrix theory to examine two types of
human mobility patterns and derive analytical thresholds. The work (Jewell et al., 2021) concludes that mobility is not a
reliable indicator of infection rates. In addition, population age distributions and vaccination levels tend to play a crucial role
in deciding the best control strategies (Guo et al., 2022; Patel et al., 2021; Zhang et al., 2022). Vaccination coverage was
particularly found impactful in reducing infection risks. In (Patel et al., 2021), the authors showed that high coveragewith low
vaccination efficacy is more powerful than low coverage with high efficacy. The study also clearly shows the significance of
maintaining control strategies while vaccinating the population. Mobility between regions is frequently generated using
mobility networks with weighted directed graphs where nodes represent geographical locations and edges represent
mobility flows between locations (Ganciu, Balestrieri, Imbroglini, & Toppetti, 2018; Martin, Wiedemann, Reck, & Raubal,
2023; Mauro, Luca, Longa, Lepri, & Pappalardo, 2022). The topology of such networks has a significant impact on the epi-
demic's spread (Moreno, Pastor-Satorras,& Vespignani, 2002). Data-driven network-basedmodels were frequently combined
with machine learning and deep learning techniques to uncover important patterns and conclusions in specific geographical
districts (Anno, Hirakawa, Sugita, & Yasumoto, 2022; Ojugo & Nwankwo, 2021; Pinheiro, Galati, Summerville, & Lambrecht,
2021; Roy, Biswas, & Ghosh, 2021). Another common modeling method that has been used in epidemiological studies is
agent-based modeling (Chen et al., 2022; Patel et al., 2021; Vedam & Ghose, 2022). It represents a detailed description of
contagions spread by tracing agents (individuals) and can be highly adjustable to include different nonpharmaticual in-
terventions and assess their relative effects. A former study (Chen et al., 2022) proposed a multi-layer network that considers
both social contact (using an agent-based approach) and urban commuting (using a time-varying network). Employing
available vaccine cases, the study examined several control strategies individually and reported their effectiveness. As an
example, the results show that preventing disease outbreak requires more than a 50% reduction in public transport systems.

The present model proposes a network of cities where weighted matrices connect local populations. The model was not
designed to match a certain location but rather offers a platform to draw general conclusions and can be easily adjusted to
match specific regions. Twomatrices are considered analogous to thework of Garcia et al. (Pardo-Araujo et al., 2023) to reflect
two kinds of human movement: commuting where people move to another city temporarily and return to their home city
afterward, and migration where people move permanently from one place to another. The movement patterns comprise a
Movement-Interaction-Return (MIR) model (Ojugo & Nwankwo, 2021). The model also considers different vaccination cases
and age distributions and investigates their combined contribution to the infection outspread. The different cities are pre-
sented as different simulations (separate code runs) that can run and interact simultaneously to allowmovement. The novelty
of this approach allows high flexibility in choosing the size of the network and properties of the sub-populations. The network
weighted matrices are generated randomly to model variability in human mobility. To enhance the complexity of the model,
the random network is combined with a stochastic disease transmission model using agent-based modeling.

The model provides a valid predictive and assessing tool for policymakers to control epidemics under various circum-
stances. In the present work, we study the mobility levels required to control the infection in several vaccination and age
cases. Moreover, we investigate how different commuting and migration patterns affect the infection level.

The paper is sectioned as follows: first, we define the model methodologies and parameters by providing a description of
the model. Then, we describe the methods applied in the sensitivity analysis, the optimization, and the analysis of different
commuting and migration scenarios respectively. In the Results section, we present the outcomes. Finally, the conclusion
provides a summary of the results.
2. Materials and methods

2.1. Model description

This study simulates a country with a number of patches, each representing a city. The cities are constructed separately,
with one city being one simulation. This method of defining the different regions allows dealing with thousands of agents
with ease and prevents errors that can happen in calculations due to a low number of agents making the model more robust.
The simulations were coded and run in GAMA Platform 1.9 - Windows 10 64-bit operating systems - Processor: Intel(R)
Core(TM) i7-8550U CPU @ 1.80 GHz.These simulations interact with each other to allow mobility between patches. The sizes
of the cities, the population (size and age), and the disease parameters can all be defined differently for each city. The model
also allows the user to specify the number of cities. We assume patches with a square shape of side length 1000 m. The
population is assumed to be the same: 1000 susceptible in each patch and a random choice of 3,4, or 5 infected agents in each
patch. The age distribution can be different in each patch. By default, we assume a normal age distribution for all patches with
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Table 1
The population age groups.

Age Group Age Range

1 [0, 5]
2 ð5;15 �
3 ð15;55 �
4 ð55;70 �
5 þ70
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a mean age of 40 and a standard deviation of 15. To avoid negative age, an age of 0 is assigned for each negative value chosen
by the random generator. Furthermore, the population is divided into five age groups (Table 1).

Susceptible agents can get exposed to the disease if they get close to an infected agent, or they can get vaccinated. Exposed
agents will eventually be infected then they recover from the disease. Vaccinated agents can either become immune or
exposed to the infection due to imperfect vaccinations when they get close to infected agents. The flowchart of the model is
demonstrated in Fig. 1. To match the model with COVID-19 characteristics, it was found neighbors should be defined at a
distance <20 m from the agent. The probabilities of changing the agent's state are shown in Table 2. In Tables 2 and IN is the
number of infected neighbors, and CAI is the difference between the age group index of the agent and that of a neighbor
infected agent of the closest age. Getting exposed depends on age since agents of the same age group tended to infect each
other (Monod et al., 2021). Taking COVID-19 as an example, it was found that exposure tends to be age-dependent (Jing et al.,
2020). The values reported in the study are considered as a guide for the age risk. Considering the population aged >60 years
as a reference (probability is 1), people aged between 20 and 59 years have a 0.64 probability of being exposed, and younger
populations aged <20 years have a 0.23 probability of being exposed.The efficacy of vaccination is represented by the
parameter l in the flowchart 1. It takes a random value between 0.65 and 0.95 as the vaccination effect varies between agents
based on several factors including age and health status.
2.2. Mobility of agents

Mobility is themain cause of the spread of infection between agents. A susceptible agent can get exposed to the disease if it
gets close to an infected agent. All agents are allowed to move locally in their current patches. Local mobility can be controlled
by changing the value of the parameter local-mobility that represents the ratio of moving agents in a patch. This value is
assumed to be uniform over all patches and the default value is 1.

There are two other types of mobility that occur between different patches: commuting andmigration. Infected agents are
not allowed to leave their patches while they are still infected. However, mobility between patches can still spread the disease
because the exposed agents can travel and transmit the disease later when they get infected. This means the exposed agents
also include agents who are asymptomatic. All patches are assumed to be connected to one another within a network with a
Fig. 1. The model flowchart.

Table 2
The probabilities of changing the agent's disease state.

Probability

Susceptible to Exposed ð1 � ð1� bsÞINÞ� ð1 � CAI
5

Þ� age� risk

Vaccinated to Exposed ð1 � ð1� bvÞINÞ� ð1 � CAI
5

Þ� age� risk

Exposed to Infected q

Infected to Immune g

Susceptible to Vaccinated a

Vaccinated to Immune l
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weighted graph. We quantify two matrices for the network to represent commuting (Pij matrix) and migration (Mij matrix)
that have the following format, assuming we have N patches:

P ¼

2
664
P11 P12 :: P1N
P21 P22 :: P2N
: : : :

PN1 PN2 :: PNN

3
775 (1)

2
M11 M12 :: M1N

3

M ¼ 664
M21 M22 :: M2N
: : : :

MN1 MN2 :: MNN

775 (2)
In the commutingmatrix P, each entry Pij represents the proportion of people in patch i who are allowed tomove to patch j
per unit time (taken to be one day). The entries Pij's are a reflection of the probability per day that an agent in patch i moves to
patch j relatively to other patches and the values are independent (they do not represent a real probability as explained in (3)
and hence they don't need to sum to 1 for each patch). The diagonal entries denote the proportion of agents who stay in their
patch. A sample illustrative network graph with four patches is demonstrated in Fig. 2. Commuting means that agents return
to their original patch after some time. We assume a probability of 0.01 (per day) for returning homewhen an agent travels to
another patch. Furthermore, to reflect a realistic situation, we assume that the probability of an agent moving to one random
patch per day should not exceed 0.25 at all times. That is, no more than 1/4 of the patch population is allowed to move out at
once. Therefore, we add a condition on matrix entries to be less than or equal to 0.25 (excluding the diagonal entries).

probability of leaving a patch per day � 0:25 (3)

This value can be changed depending on the case to be studied. This condition is always satisfied regardless of the row sums of
Pij values in the commuting matrix.

For agents who have already moved to another patch using the matrix P there is a Mij probability that this travel was
migration and that the agent does not return home after. If true, the state of the agent is changed tomigrated. Once an agent is
marked as migrated, their original patch changes to the one they are currently in and they do not have to return to their
previous patch as described in the section above. The probability that an agent in patch i migrates to patch j (per day) is hence
Pij � Mij, given that no more than 1/4 of the patch population leaves the patch (3).

Moving agents between patches is not done directly since the patches are defined as separate simulations. Instead, to
move an agent we remove the agent from its current simulation, then we create an identical agent in the new simulation
Fig. 2. A network of four cities with directed edges representing commuting mobility between cities with values from matrix (1).
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while preserving all of its properties. In spatial models where the regions are defined in one simulation, the mobility of agents
also requires that the agent is existent close to an exit path. In the present model, this requirement is eliminated making the
model more well-defined.

The entries of the commuting and mobility matrices are generated randomly in an external software when the model is
initialized. The matrices are then uploaded to the simulation and assumed to remain constant during the simulation run.
Different conditions are applied to the random generation to describe certain scenarios where needed.

Mobility between patches is restricted based on age: agents from age 0 to 5 and with ages higher than 70 can't leave their
patches, people aged between 15 and 55 (inclusive of 55) have the highest probability of traveling between patches (80
percent), and the rest of the population has a probability of 40 percent of traveling.
2.3. Infection metrics

We use the five metrics to quantify the severity of the infection spread: the basic reproduction number R0, the prevalence,
the time of the peak, the size of the peak, and the effective time-dependent reproduction number (Thompson et al., 2019). the
basic reproduction number is a well-known epidemiological parameter that denotes the expected number of new infections
produced by a single infectious agent. In the model, R0 is defined per patch as follows (Al-Shaery, Hejase, Tridane, Farooqi, &
Jassmi, 2021):

R0 ¼ number of infected agents
number of active infected agents

(4)

where active denotes the cumulative number of infected agents who have infected healthy agents, and the number of infected
agents is the cumulative number of newly infected agents.

The probability of an infected agent being active is 1� ð1� bsÞSN � ð1�CAS
5 Þ where SN is the number of susceptible

neighbors, and CAS is the difference between the age group index of the agent and that of a susceptible neighbor agent of the
closest age (close age susceptible). The global R0 is defined as the average of the local R0 values.

The effective reproduction number Reff changes with time and has the same definition as R0 except that in this case, we do
not take the maximum as in the case of R0. In other words, R0 is simply the maximum value of Reff reached throughout the
simulation.
Fig. 3. A complete network of ten cities with directed edges representing mobility between cities (commuting or migration).
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The prevalence represents the level of infection and is defined by:

Prevalence ¼ number of all infected agents
number of all agents

(5)

where the number of all infected agents denotes the total global infected agents since the beginning of the simulation.
Table 3
The range of parameter values investigated in the sensitivity analysis.

Parameter Value in Model Min Max Increment

А 0.3 0.1 0.5 0.05
bs 0.7 0.3 0.8 0.05
bv 0.1 0.02 0.2 0.02
Q 0.05 0.01 0.1 0.01
G 0.01 0.002 0.02 0.002
l (the vaccination efficacy) random 0.5 0.9 0.05
Age-mean 40 15 70 5
Age-SD 15 2 30 2

Fig. 4. The network matrices of different commuting (blue) and migration (purple) cases - case 0 is the base scenario.
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2.4. Sensitivity analysis

Using 10 patches each with 1000 susceptible agents and three to five infected agents (see Fig. 3), we perform the local
(point-based) sensitivity analysis. The values of the parameters are varied one by one on their reasonable range and the
output metrics are measured in each case. For visualization and comparison, we plot the parameter values scaled to an in-
terval of [0,1] on the x-axis and the output of interest on the y-axis (refer to the Appendix for full results). The analysis is done
twice: one without vaccination, and one with vaccination taking the vaccination coverage to be 50% in each patch. Table 3
shows the ranges of parameter values that were considered.

2.5. Optimization method

We aim to find the optimal mobility structure between cities that allows disease control. For that reason, we define
another metric to restrict mobility: the critical infection ratio (CIR). In a patch, we measure the level of the infection; the ratio
of infected people, if this value is less than CIR then agents are allowed to leave their patch, otherwise, they cannot leave their
patch. Using a constant CIR value, we canmeasure the number of trips made between patches throughout the simulation and
construct a mobility matrix similar to 1. Initially, we use a CIR value of 1 (maximum mobility) and we measure the initial
mobility matrix and the possible outputs. Then, we aim to find the value of CIR that permits the control of the infection
globally with the maximum possible mobility. This means we want to find the maximum level of mobility that results in
R0,global < 1. Since the control variable is the CIR, it is feasible to construct a table of possible values of CIR (from 0 to 1) with
their outcomes and find the maximum value of CIR that still gives R0,global < 1.

To represent a realistic situation, mobility reduction is aimed to control a country where the disease initially starts in
several cities. We assume 10 patches each with 1000 agents and we initiate the infection in three of them. Since the age of the
population plays a crucial role in the spread of the pandemic, we consider several scenarios for the optimization based on
different age distributions.

1. The mean age is uniform across cities and is taken to be 30.
2. Similar to the first case with a mean age of 50.
3. The initially infected patches have a mean age of 50, and the rest have a mean age of 30.
4. The initially infected patches have a mean age of 30, and the rest have a mean age of 50.
5. Random mean age for all cities.
2.6. Commuting and migration different scenarios

We investigate the response of the system to several commuting andmigration networks. In all scenarios, we compare the
spread of the infection to a base case using time series of the infected population and the effective reproduction number Reff.
The cases are implemented by changing the structures of the mobility matrices P (1) andM (2). The entries of the matrices are
generated randomly between 0 and a maximum value that is chosen depending on the desired case. The disease is initialized
in one city at the beginning of the simulation. We simulate 10,000 agents distributed in 10 cities.The following scenarios are
considered (Fig. 4).

1. Shutting down inward commuting flows in four nodes.
2. Shutting down outward commuting flows in four nodes.
3. Shutting down both inward and outward commuting flows in two nodes.
4. Reducing commuting flows uniformly over the entire network.
5. Shutting down inward migration flows in four nodes.
6. Shutting down outward migration flows in four nodes.
7. Shutting down both inward and outward migration flows in two nodes.
8. Reducing migration flows uniformly over the entire network.

3. Results

3.1. Sensitivity analysis

The bar charts in Figs. 5e8 summarize the sensitivity analysis results for each of the chosen outputs where R2 is the
coefficient of determination. The coefficient of determination is determined by plotting the output of choice versus the
parameter over its range scaled from 0 to 1. Full results are available in the Appendix.The age distribution parameters (mean
403



Fig. 8. The coefficient of determination R2 for the relation between different parameter values and the global prevalence.

Fig. 7. The coefficient of determination R2 for the relation between different parameter values and the infection peak time.

Fig. 6. The coefficient of determination R2 for the relation between different parameter values and the peak of the disease.

Fig. 5. The coefficient of determination R2 for the relation between different parameter values and the basic reproduction number.

L. Alrawas, A. Tridane and G. Benrhmach Infectious Disease Modelling 9 (2024) 397e410
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and standard deviation) tend to have themost effect on R0. The peak size and time aremore sensitive to changes in parameter
values. The peak size is mostly sensitive to the infection rate bs and the recovery rate g. Finally, the prevalence is the most
robust and is mostly affected by the infection rates for susceptible bs and vaccinated agents bv in the case of having a
vaccinated population. Generally, the presence of the vaccination does not play a role in changing the level of sensitivity to
different parameter values.
3.2. Optimization outcomes

We measure the number of trips made between every two patches when mobility is fully relaxed and when mobility is
restricted to achieve a value of R0 less than one using the suitable CIR value (seeMethods). The number of trips made between
patches is not necessarily a good indicator of the mobility level as the pandemic may last longer in some cases allowing more
trips to be made even if the mobility level throughout the simulation is lower. To solve this, we represent the mobility level as
the number of trips made per unit time (dividing the number of trips by the simulation duration). The simulation ends when
the disease dies out, that is when the number of infected people decreases below 2. The mobility level is summarized in a
matrix where each matrix entry xij represents the number of trips made from patch i to patch j per unit time. The figures
demonstrate the results of sample runs and the values of R0 before and after mobility suppression are recorded in the bar
charts after taking the average over several runs.Various age and vaccination coverage cases are considered. The outcomes
show that a reduced mobility level can help contain the disease and keep the pandemic under control by having R0,global < 1.
The level of mobility depends on howmuch the infection has expanded in the simulation and the level of vaccination.When a
patch becomes highly infected, a much lower mobility level out of the patch is required. The results are recorded while
keeping the input matrices P (1) andM (2) constant. The assigned value is 0.01 for both matrices. We present the matrices for
the case of a uniform mean age of 30 (Fig. 9), other cases are available in the Appendix.

The results can be summarized as follows.

C Case 1 (uniformmean age of 30): When 75% of the population is vaccinated, mobility has to be reduced to about 40%
of the level of fully relaxed mobility. A similar pattern is observed for vaccination coverage of 50%, but the original
mobility level is a little less in this case. For 25% and 0% vaccination levels, mobility has to be reduced to approximately
30% and 25% of the original value respectively.

C Case 2 (uniform mean age of 50): For old populations, mobility has to be reduced more in all vaccination cases.
Depending on the vaccination coverage, its level should decrease to 20%e30% of the fully relaxed mobility.

C Case 3 (infected patches mean age is 30, the rest is 50): When the disease initially starts in younger populations, a
similar pattern is observed as in Case 1 where all populations are young. Mobility levels are all slightly lower in this
case.

C Case 4 (infected patches mean age is 50, the rest is 30): Mobility is also less in this case compared to Case 3 for both
situations: when fully relaxed and when suppressed. Again the ratio of suppressed mobility to relaxed mobility has
similar trends to Case 1 and Case 3.

C Case 5 (randommean age): When each city has a different random age distribution, different vaccination levels do not
make a significant impact on the outcomes. Themobility has to be reduced to about 35% for a vaccination percentage of
75 and to about 30% for all other cases.
3.3. Commuting and migration scenarios outcomes

Eight scenarios for different commuting and migration levels are investigated (see Methods). The cases are demonstrated
in Fig. 4. The outcomes are summarized based on the global infection, the effective reproduction number Reff, and the local
distribution of the disease. Figs. 10, 11 and 12 show the results where case 0 represents the base scenario.

C Reff: Shutting down both inward and outwardmobility in two nodes helps reduce Reff below 2 (case 3) where in the base
case, Reff reaches about 2.3. Another way to reduce Reff is to shut down inward commuting flows in selected nodes (case
1). Shutting down outward commuting flows concentrates the disease in a few nodes which increases Reff (case 2). In
this case, Reff increases steadily over time. Reducing commuting overall reduces Reff slightly (only by 0.1). Different
migration patterns do not play a role in controlling the infection. The maximum reduction is when migration is uni-
formly reduced (case 8) and is about 0.2.

C The global infection: The maximum decline in the peak happens for case 3 where commuting is blocked in both
directions in selected nodes, followed by case 2 where only outward commuting flows are restricted. The rest of the
405



Fig. 9. Optimization results for the case of uniform mean age ¼ 30.
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commuting and migration cases do not change the global infection significantly; there is only a very small reduction in
the peak. Overall, there is no effect on the time of the peak.

C The local infection: The infection is least distributed among cities in case 2 where outward commuting flows are
blocked. Case 1 follows where inward commuting flows are blocked. Different migration scenarios result in slightly
different disease distribution. The infection distribution is mostly varied between patches in the case where migration
is uniformly reduced over the entire network (case 8).
4. Conclusion

We defined a new parameter: the critical infection ratio (CIR), which is used to conditionally suppress mobility based
on the infection level in cities. This method showed that partial lockdowns are effective in controlling the epidemic under
all circumstances and they should be concentrated in highly infected regions. A previous study (Roy et al., 2021) which
406



Fig. 9. (continued).

Fig. 10. The graphs of (a) Reff and (b) the global infection over time for several migration and commuting scenarios (Fig. 4).
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Fig. 11. The emphasized graphs around the peak of (a) Reff and (b) the global infection over time for several migration and commuting scenarios (Fig. 4).
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employed machine learning and a network-based approach to mitigate an infection in New York City counties has also
found that mobility restriction strategies that are based on infection cases outperform the ones using random sup-
pression patterns.

The extent of mobility reduction is related to both age and vaccination coverage and it ranges between 20% and 40% of the
original relaxed level. High vaccination coverage after a certain level (about 50%) does not impact anymore how much
mobility should be reduced in order to keep the disease contained in most cases, however, it still plays a role in reducing the
number of infections and the peak size as expected. In the situation of old populations, mobility should be drastically
decreased compared to other cases to control the disease spread.

The study also discussed the impact of a plethora of human movement patterns. It extends the work (Pardo-Araujo
et al., 2023) which investigated the same using random matrix theory. In the present work, stochasticity was added
to the system instead of a deterministic approach using an ABM. The present study shows similar general patterns even
with more complex local and global mobility behaviors which emphasizes the results. Migration does not affect the
infection level, it can only vary how the infection is distributed among cities. Reducing migration uniformly across the
country makes the infection more distributed compared to other scenarios. Stopping commuting from selected cities in
both directions was found to be more effective in reducing the infection than lowering commuting flows between all
cities. In other words, local lockdowns comprise a functional strategy to control epidemics and reduce the number of
infections in a network of cities.

The results of the study can be crucial for public health officials in making decisions related to epidemic control. The
proposed model comprises a platform that can be calibrated to match different population demographics and country
structures when data is available, in addition to its flexibility in considering various mobility and vaccination cases.

Despite the possibility of choosing any number of cities and any (possibly nonuniform) mobility level between them, the
cities’ geographical shape was omitted and a general shape was assumed and unified for all places. A future study may ac-
count for different geographical shapes. Moreover, the present study only investigated different mobility patterns between
cities. Another approach may be including different mobility patterns within cities as well.
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Fig. 12. The graph of the local infection over time for several migration and commuting scenarios (Fig. 4).
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