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Staphylococcus aureus has been recognized as an important human pathogen and
poses a serious health threat worldwide. With the advent of antibiotic resistance, such as
the increased number of methicillin-resistant Staphylococcus aureus (MRSA), there is an
urgent need to develop new therapeutical agents. In this study, Chinese traditional
medicine Tanreqing (TRQ) has been used as an alternative treating agent against
MRSA and we aim to unravel the mode of action of TRQ underlying MRSA inhibition.
TRQ treatment affected numerous gene expression as revealed by RNA-seq analysis.
Meanwhile, TRQ targeted cell division to inhibit cell growth as shown by illumination
microscopy. Besides, we confirmed that TRQ downregulates the expression of virulence
factors such as hemolysin and autolysin. Finally, we used a murine model to demonstrate
that TRQ efficiently reduces bacterial virulence. Altogether, we have proved TRQ formula
to be an effective agent against S. aureus infections.

Keywords: Tanreqing, cell division, virulence, inhibition, Staphylococcus aureus
IMPORTANCE

Staphylococcus aureus is an important human pathogen that poses a serious health threat
worldwide. To achieve a successful colonization, this bacterium produces a large number of
virulence determinants that interfere with the host immune system. At the same time, the advent of
multiple antibiotic resistance of S. aureus has urged the development of novel antimicrobial agents.
We aimed to use Chinese traditional medicine Tanreqing (TRQ) as an alternative antimicrobial
agent against S. aureus. Using RNA-seq analysis in combination with super-resolution microscopy,
we found that TRQ not only affects expression of virulence genes, but also targets cell division to
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inhibit cell growth, which finally leads to cell death. We
demonstrated in vivo that TRQ efficiently reduces bacterial
virulence in a murine model. Altogether, we have proved TRQ
to be an effective and specific agent to combat S.
aureus infections.
INTRODUCTION

Staphylococcus aureus is one of the important community-based
human pathogens that causes worldwide life-threating infections
(Lowy, 1998; Knox et al., 2015). The basis for this is
multifactorial and attributed to the emergence of multidrug
resistance, enhanced virulence and versatile adaptability (Deleo
and Chambers, 2009). Since the 1980s, the increased number of
methicillin-resistant Staphylococcus aureus (MRSA) infections
has caused a serious public health threat (Fridkin et al., 2005;
Knox et al., 2015). In view of these facts, there is urgent need for
the development and search for novel agents that target this
pathogen (Arias and Murray, 2009).

Successful S. aureus infection depends on the production of a
large number of virulence determinants that interfere with the
host immune system (Bronner et al., 2004). For instance, S.
aureus produces several other virulence factors such as
hemolysins, leukocidins, proteases, enterotoxins, and immune-
modulatory factors (Kuroda et al., 2001; Foster, 2004; Foster,
2005). To initiate infections, S. aureus has acquired coordinated
expression of virulence genes through signal transduction,
mainly via two-component systems (TCS), such as the Agr,
SaeRS, SrrAB, WalKR and LytRS systems (Bronner et al., 2004;
Delaune et al., 2012). These systems respond to environmental
clues and consist of a sensor kinase and a response regulator
(Bronner et al., 2004). In addition, multiple global regulators,
such as SarA, MgrA, and SarZ, have also been characterized to
allow S. aureus to efficiently adapt to environmental niches and
specifically develop infections (Bronner et al., 2004; Chen et al.,
2006; Chen et al., 2009).

To survive and proliferate, S. aureus has developed exquisite
mechanisms for cell division. This process is coordinated by a
protein complex called the divisome, the assembly of which is
mediated by the conserved tubulin homologue FtsZ (Haeusser
and Margolin, 2016). FtsZ is a GTPase and undergoes a GTP-
dependent polymerization into filaments to form a ring-like
structure known as Z-ring that initiates the separation process
(Erickson et al., 2010; Haeusser and Margolin, 2016; Yang et al.,
2017). The polymerized FtsZ recruits other cell wall division
proteins, such as FtsA, ZipA (Haeusser and Margolin, 2016),
FtsK (Yu et al., 1998), FtsL (Robichon et al., 2011; Park et al.,
2020), FtsW (Wang et al., 1998), and MurJ (Monteiro et al.,
2018), either by direct or secondary physical interactions. All of
these cell division proteins are localized at mid-cell and constrict
the cell to partition into two (Xiao and Goley, 2016).

In recent years, both virulence and cell division have received
extensive studies to develop strategies against S. aureus infections
(Lampson and Kapoor, 2006; Lock and Harry, 2008; Anderson
et al., 2012; Gordon et al., 2013). Such approaches would
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
attenuate infection via non-bactericidal pathways and exert less
selective pressure to form resistance to the developed
antibacterial agents (Clatworthy et al., 2007; Gordon et al.,
2013). Among these agents, traditional Chinese medicine
(TCM) has gained attractive consideration due to the broad
spectrum of secondary metabolites and low potential to develop
resistance (Koh et al., 2013; Asfour, 2018; Chong et al., 2018).
Previously, we have shown that Tanreqing (TRQ) injection could
efficiently inhibit quorum sensing systems in Pseudomonas
aeruginosa (Yang et al., 2020) and suppress the biofilm
formation of S. aureus in a mechanism different from that of
penicillin (Wang et al., 2011). TRQ injection is a classical
formulation prepared from five TCMs including Scutellariae
radix (Huang Qin), Lonicerae flos (Jin Yin Hua), Forsythiae
fructus (Lian Qiao), Ursi fel (Xiong Dan) and Naemorhedi cornu
(Shan Yang Jiao) (Li et al., 2019). According to TCM theory,
TRQ has several activities such as antibacterial, antiviral and
anti-inflammation and is widely used in China as a treatment for
respiratory tract infection, pneumonia and chronic obstructive
pulmonary disease (COPD) (Liu et al., 2016).

In this study, we asked whether TRQ could have an effect
against planktonic S. aureus strains. Using transcriptome
analysis, we found that TRQ reduced the expression of genes
encoding virulence factors, transcriptional regulators, and cell
division proteins in S. aureus at sub-minimum inhibitory
concentrations (sub-MIC) in vitro and in vivo. We have
further confirmed that TRQ targets cell division and
pathogenesis to attenuate S. aureus infection in vitro and in vivo.
RESULTS

RNA-Seq Analysis of TRQ in S. aureus
Uncovered Comprehensive Changes
in Transcription
To gain insight into the effect of TRQ on S. aureus, we carried out
a global analysis of the transcriptional response upon TRQ
treatment under planktonic condition. S. aureus cells were
harvested at late exponential phase (1.0 of OD600) and RNA
was extracted and processed according to the recommendations
of the Illumina system for RNA-seq analyses. After data
qualification control and processing, a comprehensive data set
was obtained (Table S1). TRQ treatment affects the expression of
794 genes (30.5% of the S. aureus genome), whereby 418 genes
were upregulated and 376 downregulated (P value < 0.01)
(Figure 1A). Functional classification of the affected genes
indicates that genes involved in cell structure, metabolism,
signal transduction and virulence showed drastic changes at
transcriptional level in the TRQ-treated group compared to the
untreated control group (Figure 1B). To verify the RNA-seq
data, qRT-PCR was performed to analyzed nine selected genes
and the results demonstrated excellent correlation with the
RNA-seq results (Figure 1C). Altogether, our data have
provided a reliable and reproducible gene expression analysis
that would generate insights into the mode of action of TRQ on
S. aureus planktonic cells.
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TRQ Targeted Cell Division in S. aureus
The most remarkable finding of our global transcriptional
analysis was the reduction of the expression of genes involved
in cell division (Table S1 and Figure 1C). It showed that genes
encoding cell division proteins FtsZ, FtsL, FtsW and its
homologue RodA were all downregulated. As we have
mentioned earlier, FtsZ has received extensive attention for the
generation of antibacterial agents against pathogens since it is
highly conserved across nearly all prokaryotes (Lampson and
Kapoor, 2006; Lock and Harry, 2008; Anderson et al., 2012; Ruiz-
Avila et al., 2013). Therefore, we envision that TRQ would inhibit
the cell division process of S. aureus prompting to examine the
cellular architecture of S. aureus cells after exposure to TRQ.
Thus, transmission electron microscopy (TEM) and structured
illumination microscopy (SIM) were used to examine S. aureus
cellular architecture after exposure TRQ. Wheat germ agglutinin
conjugate was used to label Z-ring due to its interaction with
peptidoglycan, and Nile red was used for membrane labeling. As
can be seen from Figure 2A, TRQ treatment did not lead to the
disruption of the cell membrane but resulted in disappearance of
typical Z-ring in the mid-cell of 98.1% of cells (n = 500), probably
due to disassembly of FtsZ filaments in the exposed cells. By
contrast, the mock cells showed typical mid-cell septum (Z-ring)
(80.5%, n = 300) as well as non-typical mid-cell septum (19.5%,
n = 300). However, very few disassembly of Z-ring was observed
in mock cells. TEM was then used to compare the morphology of
S. aureus cells after exposure to TRQ. Consistent with SIM
results, TRQ treatment caused cell division defects by blocking
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
the assembly of Z-ring compared to that of mock cells and
another cell wall-targeting antibiotic, vancomycin (Wang and
Sun, 2021), both of which showed typical mid-cell septum
(Z-ring) (Figure 2B).

To further assess the effect of TRQ on FtsZ filament assembly,
we examined its GTPase activity in vitro and determined whether
TRQ could influence its activity. As can be seen from Figure 2C,
we found that TRQ treatment led to enhanced activity of GTPase
activity of FtsZ compared to the mock group. This could result in
the reduced stability of FtsZ filaments and finally lead to the
disassembly of Z-ring after TRQ exposure. Our result was in
agreement with previous conclusions that enhanced GTPase
activity of FtsZ led to failure of Z-ring assembly (Rai et al.,
2008; Kumar et al., 2011; Groundwater et al., 2017). Curcumin
was used as a positive control (Groundwater et al., 2017), and
showed elevated levels of GTPase activity as compared to
untreated control (Figure 2C).

Altogether, we have demonstrated that TRQ exposure led to
limit or inhibit the formation of Z-ring in S. aureus to interrupt
cell division by elevating GTPase activity.

TRQ Downregulated Expression of Genes
Involved in Virulence of S. aureus
Another interesting finding of the transcriptional analysis was
the reduction of virulence gene expression. We found that
multiple genes involved in virulence factor production showed
a drastic decrease at transcriptional level upon TRQ treatment
compared to that of mock control (Table S1). Particularly, genes
A B

C

FIGURE 1 | TRQ-treated S. aureus regulon analysis. (A) Volcano plot of differentially expressed genes in TRQ-treated S. aureus cells. NS, not significant. (B) Functional
classification of differentially expressed genes in TRQ-treated S. aureus. Several major classifications were shown including metabolism and virulence, etc. (C) Relative gene
expression analysis of RNA-seq data using qRT-PCR. Statistical analysis was based on pairwise comparisons (Student’s t-test). Error bars represent the mean ± SD.
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encoding hemolysin (hla), autolysin (atl), and immunoglobulin-
binding protein (sbi) were downregulated after TRQ treatment
(Figure 1C). Therefore, we aimed to determine the biological
processes related to these genes by phenotypic analysis.

As can be seen from Figure 3A, autolysis was determined in
two different conditions, one with Triton X-100 induction and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the other with PBS buffer, similar to natural condition. We found
that TRQ treatment leads to inhibition of autolysis as compared
to that of mock under both conditions. Triton X-100 induction
gave rise to higher autolysis rate compared to PBS treatment.
Furthermore, we have examined the effect of TRQ treatment
on the hemolysin activity by using sheep blood agar plate assay.
A

B

C

FIGURE 2 | TRQ inhibits cell division in S. aureus. (A) Z-ring localization in S. aureus upon TRQ treatment (1/16 dilution) compared to mock using structured illumination
microscopy (SIM). First column: membranes visualized by Nile Red; second column: Z-ring formation visualized by WGA-488; third column: overlay, membrane and Z-ring
visualization. Depictions of Z-ring localization patterns are to the right of the panels (B) TEM analysis of TRQ-treated (1/16 dilution) S. aureus cells. A negative control
(mock) and an antibiotics (Vancomycin, van) were used as controls. Results showed that TRQ could target cell division compared to vancomycin. Scale bar, 100 nm.
(C) GTPase activity assay of S. aureus FtsZ. Both curcumin and TRQ (1/16 dilution) were shown to increase GTPase activity. The experiment was performed three times.
Error bar represents the mean ± SD.
A B

FIGURE 3 | TRQ attenuates autolysis and hemolysis in S. aureus. (A) Effect of the TRQ (1/16 dilution) on Triton X-100 induced autolysis. The autolysis activity with
and without 0.05% Triton X-100 was monitored by measuring OD600 over time. PBS control group also showed a similar trend compared to that of Triton X-100
treatment. The experiment was performed three times. Error bar represents the mean ± SD. *P < 0.05; **P < 0.01. (B) Hemolysis on sheep blood agar. S. aureus
strains tested with TRQ (1/16 dilution) were spotted on a 5% (v/v) sheep blood agar plate. Clearance zones indicate hemolysis and were measured. The experiment
was performed three times. Error bar represents the mean ± SD. **P < 0.01.
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We observed a clear hemolytic halo around bacterial colonies
and TRQ-treated cells showed significantly reduced activity of
hemolysin, indicating that TRQ could inhibit hemolysin activity
in vitro (Figure 3B). Both phenotypic analyses showed good
correlation with RNA-seq analysis and demonstrated that TRQ
affected S. aureus pathogenesis in vitro.

In addition, we have noticed that several genes, including
several global virulence regulators such as mgrA, sarZ, and agrA,
which are involved in regulation of virulence factors were
downregulated following TRQ treatment (Table 1). In
addition, several TCSs such as SaeSR, KdpDE, and HptSR,
were significantly repressed after TRQ treatment. These
findings suggest that TRQ attenuated virulence through
inhibition of the expression of these global regulators.

TRQ Attenuated S. aureus Infection In Vivo
Previously, we have shown that TRQ formula efficiently
protected Caenorhabditis elegans from killing by P. aeruginosa
(Yang et al., 2020). In this study, we have observed several genes
showing altered changes in transcription upon TRQ treatment
(Figure 1 and Table S1 and 1), and we wondered whether these
changes may contribute to virulence in an established murine
intraperitoneal systemic model of infection (Figure 4). Bacteria
[untreated control/control, TRQ-treated group/TRQ, and an
antibiotics treatment control/Van; 106 colony forming units
(CFU)] were injected peritoneally into mice (n = 6) and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
murine short-term survival analysis were conducted. As shown
in Figure 4A, we found that S. aureus alone was virulent to the
animals since more than 50% of the population died after one
day treatment and 100% after two days. In contrast, TRQ-treated
S. aureus cells caused significant increase in animal survival. As a
control, vancomycin treatment similarly led to an increase in
animal survival comparable to that of TRQ treatment. Bacterial
loads in liver (Figure 4B) and kidney (Figure 4C) were
enumerated after establishment of bacterial infection. As
expected, TRQ treatment caused a significant reduction of
bacterial load in both liver (2 logs) and kidney organs (4 logs).
As a positive control, bacterial loads in livers and kidneys were
dramatically reduced following vancomycin treatment (4 and 5
logs, respectively). These results indicate that TRQ is a promising
anti-virulence agent against S. aureus in a murine model.
DISCUSSION

S. aureus is one of human life-threating pathogens that cause
significant mortality and morbidity (Knox et al., 2015). The
pathogenicity of S. aureus is largely dependent on the production
of virulence factors such as proteases, hemolysins, and immune-
modulatory factors (Kuroda et al., 2001; Foster, 2004; Foster,
2005). The expression of these factors is controlled by regulatory
systems including global regulators such as SarZ and MgrA,
TABLE 1 | Differential expression of genes encoding transduction systems in S. aureus.

Locus taga Genea Gene producta Log2FCb

SACOL_RS03830 mgrA MarR family transcriptional regulator -1.99
SACOL_RS07115 msrR regulatory protein MsrR -1.76
SACOL_RS03930 saeSc two-component sensor histidine kinase -1.73
SACOL_RS10830 kdpDc sensor histidine kinase -1.62
SACOL_RS01030 hptSc sensor histidine kinase -1.59
SACOL_RS12510 sarZ transcriptional regulator -1.48
SACOL_RS10835 kdpEc DNA-binding response regulator -1.42
SACOL_RS06765 glnR MerR family transcriptional regulator -1.37
SACOL_RS11185 czrA transcriptional regulator -1.32
SACOL_RS01585 nanR MurR/RpiR family transcriptional regulator -1.19
SACOL_RS10580 agrA DNA-binding response regulator -1.18
SACOL_RS03935 saeRc DNA-binding response regulator -1.15
SACOL_RS01025 hptRc DNA-binding response regulator -1.06
SACOL_RS01245 lytR DNA-binding response regulator -1.06
SACOL_RS05120 spxA regulatory protein Spx 1.05
SACOL_RS00125 walK cell wall metabolism sensor histidine kinase WalK 1.15
SACOL_RS03755 ccpE LysR family transcriptional regulator 1.26
SACOL_RS03475 sarA transcriptional regulator 1.27
SACOL_RS12225 hutR LysR family transcriptional regulator 1.38
SACOL_RS10030 perR transcriptional repressor 1.44
SACOL_RS07820 srrB two-component sensor histidine kinase 1.49
SACOL_RS01305 rbsR LacI family transcriptional regulator 1.49
SACOL_RS02035 mepR multidrug efflux MATE transporter transcriptional repressor MepR 1.52
SACOL_RS07230 phoUc phosphate transport system regulatory protein PhoU 1.54
SACOL_RS12360 tcaR transcriptional regulator 1.80
SACOL_RS08890 phoRc sensor histidine kinase 2.12
SACOL_RS08355 hrcA HrcA family transcriptional regulator 2.89
SACOL_RS13895 arcR transcriptional regulator 3.88
April 2022 | Volume 12 | Artic
aLocus tag, gene name, and gene product were extracted from AureoWiki (Fuchs et al., 2018).
bFC, fold change (log2 ratio).
cThe expression of these genes have been verified by RT-PCR.
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as well as TCSs, among which SaeRS, SrrAB, WalKR, and LytRS
systems (Bronner et al., 2004; Chen et al., 2006; Chen et al., 2009;
Delaune et al., 2012). Novel treatments have been developed
based on the understandings of these regulatory systems, since
there is growing evidences that virulence attenuation can lead to
significant inhibition of infections (Gordon et al., 2013). Several
compounds including benzobromarone against AgrA and 5,5-
methylenedisalicyclic acid against MgrA-DNA interaction, were
shown to reduce infections caused by S. aureus in animal models
(Gordon et al., 2013).

Previously, we have used one of the Chinese traditional
medicines named TRQ injection to study its inhibition of
biofilm formation of S. aureus and found that it suppressed this
chronic infection phenotype in a mechanism different from
penicillin (Wang et al., 2011). More recently, we have shown
that TRQ treatment could efficiently inhibit quorum sensing
systems and this attenuation was partially dependent on the
suppression of upstream TCSs in P. aeruginosa (Yang et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
2020). To investigate further whether TRQ could have a similar
inhibition effect on S. aureus-mediated infection, we used
transcriptome analysis to uncover the underlying mechanisms
of action. Interestingly, TRQ was effectively shown to inhibit the
expression of genes encoding virulence factors, transcriptional
regulators, and cell division proteins in S. aureus at sub-minimum
inhibitory concentrations (sub-MIC) in vitro and in vivo (Wang
et al., 2011). Therefore, TRQ could repress the pathogenesis of
both Gram-negative and -positive bacteria. Most probably, this
would function through distinct QS systems in S. aureus and P.
aeruginosa. However, there are some difference between two
studies. For example, when we treated P. aeruginosa with TRQ,
we found that the most significant change was related to QS
systems since a wide array of QS genes were downregulated (Yang
et al., 2020). As for TRQ-treated S. aureus, we noticed that TRQ
targeted not only QS systems but cell division system. Therefore,
it would be interesting to search for more common or different
targets to further elucidate the mode of action of TRQ.
A

B C

FIGURE 4 | TRQ attenuates S. aureus virulence in a murine infection model. The control, TRQ-treated bacteria (TRQ, 1/16 dilution), and vancomycin-treated
bacteria (Van) were used to infect 6 mice via intravenous injection. (A) Effect of TRQ in protecting mice (n=6) from lethal S. aureus infection. ***P < 0.001; log-rank
test. After 7 d post-infection, S. aureus colonization in murine liver (B) or kidney (C) was enumerated. Each circle represents one mouse. The horizontal black line
represents the mean log10 CFU on the y axis. The statistical difference between control and TRQ-treated group or control and vancomycin-treated group was
determined using Student’s t-test. ***P < 0.001.
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The most striking finding in our study is the effect of TRQ on
cell division. Through combinatory methods, we have shown
that several genes involved in this process were downregulated,
including FtsZ, FtsL, FtsW, and its homologue RodA (Figures 1,
2), suggesting that the cell division machinery may be affected
following TRQ exposure. Using both SIM and TEM analyses, we
observed abnormal Z-ring formation and cell division during
TRQ treatment compared to control and vancomycin treatment.
We further explained this by examining FtsZ GTPase activity
and found that TRQ could enhance GTPase activity of FtsZ as
compared to curcumin, a compound that has been previously
shown to significantly enhance the GTPase activity of FtsZ and
destroy the Z-ring formation in Bacillus subtilis (Groundwater
et al., 2017). We therefore envisioned that similar to curcumin,
TRQ might inhibit the assembly of FtsZ most probably via
increasing the GTP hydrolysis rate and thus enhance the
GTPase activity (Groundwater et al., 2017). This finding has
extended our understanding of the mode of action of TRQ
against bacterial infections. FtsZ serves as an appealing target
for the development of antibiotics and plays important roles in
bacterial cell division (cytokinesis) (Ruiz-Avila et al., 2013; Sass
and Brotz-Oesterhelt, 2013). In the future, it would be necessary
to identify the effective components related to FtsZ inhibition.

Another interesting finding from this study is that TRQ could
potentially affect the expression of a large repertoire of genes
involved in pathogenesis, such as genes encoding hemolysin
(hla) and autolysin (atl). In addition, several two-component
systems including SaeSR, KdpDE, and HptSR were also
downregulated by TRQ treatment. This finding has pointed
out that TRQ could be used as an effective anti-virulence
agent, and further murine model analysis has proved this
notion. It is coincident that TRQ also targets TCSs to mitigate
the expression of quorum sensing systems in P. aeruginosa,
suggesting that TRQ targets TCSs in both Gram-negative and
-positive bacteria to inhibit their virulence. We will further
unravel this mechanism and provide insights into the mode of
action of TRQ against TCSs in bacteria.

Overall, we have primarily uncovered the mode of action of
TRQ against S. aureus-associated infections. Our findings lead to
a novel notion that TRQ not only targets virulence factors but
also affects the cell division, thus leading to cell death.
MATERIALS AND METHODS

Bacterial Strains, Culture Conditions,
and Chemicals
Methicillin-resistant S. aureus ATCC 43300 (MRSA) strain was
grown in Lysogeny broth (LB) or tryptone soya both (TSB) with
aeration at 37°C. When required, LB agar plates were used to
streak bacterial colonies. TRQ injection is a second-class new
Traditional Chinese Medicine (Approval No. Z20030054,
Shanghai Kaibao Pharmaceutical Company, China).

Growth Curve
Overnight cultures of bacterial strains in LB were diluted (1:100)
in 3 mL LB medium and precultures were incubated aerobically
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
at 37оC in a shaker at 200 rpm to an OD600 of 0.5. The
precultures were further diluted (1:100) in 1 mL LB medium.
Growth was then analysed in 10x10-well microtitre plates
containing 294 µL LB medium to which 6 µL of diluted
precultures containing 105 cells were added to obtain a final
1:5000 dilution. Control wells contained only the growth
medium without bacteria. TRQ treatment was prepared in a
1:16, 1:32, 1:64 dilutions using LB medium. The microtitre plates
were incubated for 72 h at 37°C in a Bioscreen incubator (Life
Technologies, Finland) using the following settings: shaking for
20 s every 3 min and absorbance measured every 30 min at 600
nm. Each culture was prepared in triplicate.

RNA Extraction
Overnight cultures of S. aureus in LB were used to inoculate fresh
LB medium in a 1:1000 dilution in the absence and presence of
TRQ (1:16 dilution ratio). After 12 h of incubation, one mL of
culture was fixed immediately with 2 mL of RNA Protect Reagent
(Qiagen), following the manufacturer’s instructions, and the fixed
cell pellets were frozen at -80°C until further use. All experiments
were performed in triplicate. Total RNA was extracted using
TRIzol® Reagent according to the manufacturer’s instructions
(Invitrogen) and genomic DNA was removed using RNase-free
DNase I (TaKaRa). Then RNA quality was determined using
2100 Bioanalyzer (Agilent) and quantified using the ND-2000
(NanoDrop Technologies). High-quality RNA sample
(OD260/OD280 = 1.8~2.2, OD260/OD230≥2.0, RIN≥6.5,
28S:18S≥1.0, >10 mg) was used for qRT-PCR.

Library Preparation, and Illumina
HiSeq Sequencing
RNA-seq strand-specific libraries were prepared following
TruSeq RNA sample preparation Kit from Illumina (San
Diego, CA), using 5 mg of total RNA. Briefly, rRNA was
removed by RiboZero rRNA removal kit (Epicenter),
fragmented using fragmentation buffer. cDNA synthesis, end
repair, A-base addition, and ligation of the Illumina-indexed
adaptors were performed according to Illumina’s protocol.
Libraries were then size selected for cDNA target fragments of
200~300 bp on 2% Low Range Ultra Agarose followed by PCR
amplified using Phusion DNA polymerase (NEB) for 15 PCR
cycles. After quantification by TBS380 Mini-Fluorometer,
paired-end libraries were sequenced by BGI Biotechnology Co.,
Ltd (Shenzhen, China) with the BGISEQ-500 PE 2 × 50 bp
read length.

Reads Quality Control and Mapping
The raw paired end reads were trimmed and quality controlled
by Trimmomatic with default parameters (Bolger et al., 2014).
Then clean reads were separately aligned to the reference genome
(S. aureus COL, Accession number NC_002516) with orientation
mode using Rockhopper software (Mcclure et al., 2013; Tjaden,
2015), which was a comprehensive and user-friendly system for
computational analysis of bacterial RNA-seq data. As an input,
Rockhopper takes RNA sequencing reads generated by high-
throughput sequencing technology to calculate gene expression
levels with default parameters.
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Differential Expression Analysis and
Functional Enrichment
To identify DEGs (differential expression genes) between two
different samples, the expression level for each transcript was
calculated using the fragments per kilobase of reads per million
mapped reads (RPKM) method. The method edgeR was used for
differential expression analysis (Robinson et al., 2010). The DEGs
between two samples were selected using the following criteria:
the logarithmic of fold change was greater than 2 and the false
discovery rate (FDR) should be less than 0.05. To understand the
functions of those differential expressed genes, GO functional
enrichment and KEGG pathway analysis were carried out by
Goatools (Klopfenstein et al., 2018) and KOBAS (Xie et al.,
2011), respectively. DEGs were significantly enriched in GO
terms and metabolic pathways when their Bonferroni-
corrected P-value was less than 0.05. The RNA-seq datasets
have been deposited in National Center for Biotechnology
Information (NCBI) with an accession number GSE162107.

qRT-PCR
Bacterial cells were harvested in similar condition to RNA-seq
analysis and collected in RNA protect bacteria reagent (Qiagen).
Total RNA was isolated and residual DNA was removed by
treatment with DNase I (Takara). The purity and concentration
of the RNA was determined by gel electrophoresis and
spectrophotometry. Reverse transcription was performed using
1 µg of total RNA and the first-strand cDNA synthesis kit from
GE Healthcare as indicated by the manufacturer. Quantitative
real-time PCR was carried out with 50 ng offirst-strand cDNA in
a total volume of 25 µL to assess the effect of TRQ on expression
of the selected genes (Table S2). Optimal primer concentrations
were determined and standard curves for each PCR reaction
were performed prior to relative quantification analysis. qRT-
PCR was performed in a Bio-Rad (Hercules, CA, USA) iCycler
with Bio-Rad iQ SYBR Green Supermix. For all primer sets, the
following cycling parameters were used: 94°C for 3 min followed
by 40 cycles of 94°C for 30 s, 55°C for 45 s and 72°C for 30 s,
followed by 72°C for 7 min. Fold changes were determined using
the comparative threshold cycle method with the housekeeping
gene 16S rRNA (Schmittgen and Livak, 2008). All experiments
were carried out in triplicate.

Transmission Electron Microscopy (TEM)
S. aureus was grown in LB media containing TRQ (final
concentration: 1/8), or vancomycin (final concentration: 2 µg/
mL), and an untreated control was included. The cultures were
treated for 2.5 h at 37°C with shaking, after which the bacteria
were collected by centrifugation and washed twice with PBS.
Pellets were fixed overnight at room temperature in 2.5% (v/v)
glutaraldehyde and post-fixed with 1% OsO4 solution for 60
min. The samples were dehydrated using increasing
concentrations of ethanol (50, 70,95, and 100%) and then
embedded in epon TAAB-812. The samples were cut into
ultrathin sections using an ultra-microtome and collected on a
nickel grid. The sections were stained using 3% uranyl acetate for
14 min at 60°C followed by a wash using water and then stained
using lead citrate for 6 min at room temperature. Finally, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
samples were washed in 20 mMNaOH and water and then dried.
The sections were viewed under transmission electron
microscope (TEM) (H-7500, Hitachi, Japan). The experiment
was carried out using two biological replicates.

Structured Illumination Microscopy (SIM)
S. aureus cultures grown at 37°C in LB medium were diluted
1:1000 into fresh LB medium and grown until mid-logarithmic
phase for 5 h at 37°C. Subsequently, cells were grown in LB
media containing 1/8 TRQ or 2 µg/mLVan for 30 min at 37°C.
Then, cells were stained with 2 mg/L wheat germ agglutinin
Alexa Fluor 488 conjugate (WGA-488,Invitrogen) at 37°C with
agitation for 10 min. Unbound dye was removed from the media
by washing the cells with PBS and cells were then incubated with
Nile Red (10 mg/L) for 10 min at room temperature and placed
on an agarose pad containing 50% LB in PBS. For structured
illumination microscopy, cells were viewed using a DeltaVision
OMX (Applied Precision/GE Healthcare) comprising an OMX
optical microscope (version 3), using a 561 nm laser for Nile Red,
488 nm laser for WGA-488, and 100 ms exposure.

GTPase Assay
The effect of TRQ on the GTPase activity of FtsZ was determined
using malachite green ammonium molybdate as described
previously (Groundwater et al., 2017). Briefly, FtsZ (6 mM) was
incubated without and with 1/16 TRQ in buffer A (25 mM
PIPES, 5 mM MgCl2, 50 mM KCl, pH 7.2) on ice for 15 min.
Polymerization was triggered by adding 1 mM GTP to the
reaction mixtures that were further incubated at 37°C for 10
min. The reaction was quenched by using 7 M perchloric acid
(10%, v/v) and then 40 mL of the reaction mixture were incubated
with 900 mL of freshly prepared malachite green ammonium
molybdate solution (0.045% malachite green, 4.2% ammonium
molybdate, and 0.02% Triton X-100) at room temperature for 30
min. The molar number of inorganic phosphate released was
calculated by measuring the absorbance at 650 nm and
quantified from a standard phosphate curve. The experiment
was performed independently for three times.

Autolysis Assay
Triton X-100-induced autolysis assays were performed as
previously described with modifications (Manna et al., 2004;
Chen et al., 2009). Briefly, overnight cultures were diluted 1:100
with 5 mL of TSB containing 1 M NaCl and grown at 37°C with
shaking until OD600nm reached 1.0. Cells were pelleted by
centrifugation, washed twice with ice-cold distilled water, and
then resuspended in 50 mM phosphate buffered saline (PBS, pH
7.2) supplemented with and without 0.05% Triton X-100 (v/v).
Bacterial cells were then incubated at 37°C with shaking and the
autolysis activity was determined by measuring OD600 over
time. All assays were conducted in triplicate.

Hemolysin Analysis
The TRQ-treated and mock bacterial strains were spotted and
inoculated on a 5% (v/v) sheep blood agar plate at 37°C for 24 h.
Clearance of zones indicates hemolysis. All assays were
performed in triplicate.
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Animal Usage Declaration
6~8 week old male BALB/c mice were purchased from Beijing
Vital River Laboratory Animal Technology Co. Ltd (No. CNAS
LA0004). Mice were adapted to standardized environmental
conditions (Temperature=23 ± 2°C; humidity=55 ± 10%) for
one week prior to infection. Mice were maintained in strict
accordance with the regulations for the Administration of Affairs
Concerning Experimental Animals approved by the State
Council of People’s Republic of China (GB/T 35892-2018).
The animal study protocols were performed in accordance
with the relevant guidelines and regulations (SYXK(Beijing)
2021-0017, Experimental Research Center, China Academy of
Chinese Medical Sciences). The laboratory animal usage license
number is SCXK(Beijing)2016-0006 and certified by Beijing
Vital River Laboratory Animal Technology Co. Ltd.

Animal Infection Assay
S. aureus were grown at 37°C overnight in LB medium. The
cultures were diluted 1:100 with fresh LB and then incubated at
37°C for 2 h until OD600 reached 1.0. Bacteria were collected by
centrifugation, washed, and resuspended in PBS to an OD600 of 0.4.
Viable staphylococci were enumerated by colony formation on LB
plates to measure the infection dose (107 CFU). Male BALB/c mice
(6~8 weeks, 6 per group) were infected with a dose of 107 CFU
bacterial suspension via peritoneal injection. After 1 h post
infection, mice were treated with a single dose of Van (10 mg kg-
1), TRQ (5 mL kg-1) alone via tail intravenous injection. Mice were
killed by CO2 asphyxiation 7 d after injection, and kidneys and
livers were removed. The organs were homogenized in 1mL of PBS,
and 10 mL of dilution of the homogenates was plated on LB plates.

Statistical Analysis
The data of qRT-PCR, virulence factor production, and virulence
tests were analysed by one-way ANOVA. Student’s t-test was used
when one-way ANOVA revealed significant differences (P < 0.05).
Survival data were analysed via the Kaplan-Meier method and the
log-rank test was used to compare the significant differences
between subgroups (P < 0.01). All statistical analyses were
performed with GraphPad Prism statistical software (GraphPad
Software, La Jolla, USA) with the assistance of Excel (Microsoft).
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