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JAK-STAT is a generic name for intracellular signaling pathways 
involving the activation of two families of proteins discovered 
and cloned in the early 1990s: the Janus kinase (JAK), which 
comprise four tyrosine kinases (JAK1, JAK2, JAK3 and TYK2), 
and the signal transducer and activator of transcription (STAT) 
containing seven transcription factors (STAT1, STAT2, STAT3, 
STAT4, STAT5A, STAT5B and STAT6). The JAK-STAT path-
way is an efficient and highly regulated system mainly dedicated 
to the regulation of gene expression. This pathway involves 
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JAK-STAT is an efficient and highly regulated system mainly 
dedicated to the regulation of gene expression. Primarily 
identified as functioning in hematopoietic cells, its role 
has been found critical in all cell types, including neurons. 
This review will focus on JAK-STAT functions in the mature 
central nervous system. Our recent research suggests the 
intriguing possibility of a non-nuclear role of STAT3 during 
synaptic plasticity. Dysregulation of the JAK-STAT pathway 
in inflammation, cancer and neurodegenerative diseases 
positions it at the heart of most brain disorders, highlighting 
the importance to understand how it can influence the fate 
and functions of brain cells.
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the activation of a receptor by polypeptides such as hormones, 
growth factors or cytokines which leads to the activation of JAK. 
JAK phosphorylates STATs which then dimerize. The STAT 
dimer is translocated to the nucleus where it binds to the DNA 
and regulates transcription (Fig. 1). The control of activity of 
this pathway involves different mechanisms including regulation 
of the phosphorylation state of JAK and STAT by phosphatases, 
or of the JAK kinase activity by SOCS (suppressor of cytokine 
signaling) for example.

JAK-STAT signaling pathway is evolutionarily conserved in 
eukaryotes and is involved in cell growth, survival, development 
and differentiation. Initially described in hematopoietic cells, its 
role has been found critical in many cell types. Its deregulation 
can be associated with pathologies such as cancers, immune dis-
orders and cardiovascular diseases. Our review will focus on the 
functions of JAK-STAT signaling pathways in the mature central 
nervous system (CNS).

In the CNS, the JAK-STAT signaling pathway is mainly 
associated with gene regulation during development, hormone 
release, inflammation or tumorigenesis. Although JAK and 
STAT expression in the CNS is weaker than in other systems, 
different studies have nonetheless shown that these proteins 
could be expressed in several areas of the brain, for example in the 
cerebral cortex, hippocampus, hypothalamus and cerebellum. 
The expression of these proteins also varies during development; 
they are expressed at high levels during embryonic stages (par-
ticularly JAK2, JAK1, STAT3, STAT6 and STAT1) and expres-
sion gradually decreases during growth and into adulthood.1 We 
recently discovered the involvement of both JAK2 and STAT3 in 
hippocampal synaptic plasticity (a phenomenon associated with 
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astrocytes or oligodendrocytes. Some populations of NSC can also 
be found in the adult brain.5 The subventricular zone (SVZ) of the 
olfactory bulbs and the dentate gyrus (DG) of the hippocampus 
are the two main neurogenic regions in the adult brain. The newly 
differentiated cells from these populations can migrate to the 
olfactory bulb or the granule cell layer of the DG, respectively.6

The proliferation of NSC is regulated by the JAK-STAT path-
way. Cytokines like interleukin-15 (IL-15) which is expressed 
by the adult NSC of the SVZ, induces an activation of STAT1, 
STAT3 and STAT5 and proliferation is blocked by JAK inhibi-
tors.7,8 Leptin can also regulate neuroproliferation in the DG of 
adult mice via activation of STAT3 and Akt, both in vitro and 
in vivo.9 The action of interferon β (IFN-β, the primary treat-
ment for multiple sclerosis), in proliferation and differentiation 
is controversial in murine NPC.10,11 It can either inhibit,11 have 
no effect10 or enhance proliferation of NPC12 but in all cases can 
activate STATs.

One of the first studies to show the role of JAK-STAT in glial 
differentiation was performed by Bonni et al. in 1997.13 They 

learning and memory), independently of their ability to regulate 
gene expression. Together with other recent publications, this 
observation presented an intriguing question on to their non-
transcriptional role.2-4

CNS dysregulation of the JAK-STAT pathway is mainly 
related to brain inflammation processes and neuronal/glial sur-
vival. It has consequently been involved in most brain disorders 
including epilepsies, brain cancer, lesions, ischemia and neuro-
degenerative disorders like Alzheimer disease (AD) highlighting 
the importance to decipher how this pathway can influence the 
fate and functions of brain cells (Fig. 2).

The Role of the JAK-STAT Pathway  
in Cell Proliferation, Differentiation and Survival  

in Adult Brain

Proliferation and differentiation. Most brain cells are gener-
ated during development from neural stem cells (NSC), or neu-
ral progenitor cells (NPC), which can differentiate into neurons, 

Figure 1. JAK-STAT canonical signaling pathway in CNS. Hormones, growth factors and cytokines can induce JAK phosphorylation and activation. 
Activated JAKs phosphorylate STATs which in turn homo or heterodimerize. STAT dimers are then translocated to the nucleus where they bind to DNA.



www.landesbioscience.com JAK-STAT e22925-3

growth factor-1 (IGF-1).20,21 SOCS2 expression is found in NPC 
and neurons and can be stimulated by LIF receptor signaling. 
Overexpression of SOCS2 in NSC from SOCS2-/- mice inhibits 
GH-signaling and increases neuronal differentiation while neu-
rogenesis is impaired in SOCS2-/- mice.21 Interestingly, SOCS6 
is overexpressed after JAK2/STAT5 activation but also inhibits 
this pathway when associated with the IGF-1 receptor leading to 
a negative feedback loop.20

Concerning the JAK isoforms, it seems that JAK1 is more 
involved in astrocytic differentiation13 while JAK2, which can 
be activated by leptin receptor, seems essential for NSC prolifera-
tion.9,22 However, modulation of JAK3 signaling is involved in 
differentiation since knock-down of JAK3 in NPC induces dif-
ferentiation in neurons and oligodendrocytes.22

Survival/apoptosis and regeneration. Although the JAK-
STAT pathway is usually linked to cell proliferation and patholo-
gies such as cancers (see Yu et al.23 for a review), STAT activation 
could also lead to apoptosis. For example, IFN-β treatment of 
human SH-SY5Y neuroblastoma cells, which transiently activates 
STAT1 and STAT3, increases apoptosis via cytochrome C release 
and caspase activation.24 Similarly IFN-γ, which also activates 

showed, in embryonic cortical precursor cells, that activation of the 
ciliary neurotrophic factor (CNTF) receptor leads to the activa-
tion of JAK1, STAT1 and STAT3 and triggers the differentiation 
of these precursor cells into astrocytes. Such differentiation can 
also be induced by microglia-derived IL-6 and leukemia inhibi-
tory factor (LIF) cytokines.14 Prolactin also allows proliferation 
and differentiation of astrocytes during development partly via 
JAK2, STAT1 and STAT3 activation.15 Further studies have then 
emphasized the role of STAT3 in glial differentiation.14,16,17 One 
study in particular showed that STAT3 knock-down enhanced 
embryonic neurogenesis while inhibiting astrogliogenesis in con-
ditional knockout mice.16 This effect on NSC fate could be medi-
ated by the downregulation of genes such as notch1, notch2 and 
hes5. However, in adult dentate gyrus, neurogenesis is dependent 
on STAT3 activation,18 a divergence that could be explained by 
the differences in gene expression profile and signaling pathways 
observed between embryonic and adult NSCs.19

Neuronal differentiation and neurite outgrowth involve 
inhibitory proteins of the JAK-STAT pathway such as SOCS2, 
3 and 6, which can negatively regulate the signaling pathways 
induced by, for example, growth hormone (GH) and insulin-like 

Figure 2. JAK-STAT functions in CNS.
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A similar effect can be observed when IL-7 is injected in an ani-
mal model of obesity, therefore preventing obesity. STAT3 (but 
not STAT5) and c-fos were activated in the ventromedial part of 
the ARC after injection of IL-7 in this model and an increase of 
anorexygenic peptide production was observed.36

Activation of LepRb also leads to an increase in SOCS pro-
tein expression. This is mediated by STAT3, and/or activation 
of tyrosine phosphatases such as SHP2 or PTP1B and results in 
attenuation of this pathway and a desensitization of the LepRb, 
which can be responsible for obesity.34,37 A similar desensitizing 
effect can be observed with the Angiotensin II (AngII) recep-
tor AT1. AngII has a dypsogenic effect via activation of the AT1 
receptor in the hypothalamus. Repeated intra-cerebro-ventricu-
lar injection of AngII leads to a desensitization and a loss of the 
dypsogenic effect. Activation of the AT1R and JAK-STAT as a 
downstream signaling pathway would indeed lead to an increase 
in expression of SOCS3.38

Regulation of reproduction, gestation and lactation. JAK2, 
STAT3 and STAT5 are expressed in gonadotropin-releasing 
hormone (GnRH) neurons and mediate the signaling of cyto-
kines such as LIF or CNTF.39 GnRH neurons are present in the 
hypothalamus and secretion of GnRH regulates the expression 
of Luteinizing hormone (LH) and follicule-stimulating hormone 
(FSH) by the anterior pituitary. These hormones regulate gonad 
function and reproductive behavior. In GnRH neuron-specific 
conditional JAK2 KO mice, the level of GnRH secreted was 
reduced and, as a consequence, reproductive development and 
fertility were impaired in female mice, suggesting an important 
role for JAK2 in the control of GnRH production.40

The secretion of prolactin by the anterior pituitary is nega-
tively regulated, in part, by hypothalamic neuroendocrine 
dopaminergic neurons, which are in turn regulated by prolac-
tin as a feed-back to modulate the secretion of dopamine. It has 
been shown that prolactin-induced regulation of these neurons 
requires STAT5B activation.41 During late pregnancy and lac-
tation, a decrease in STAT5B activation and an overexpression 
of SOCS can be observed in these neurons, contributing to the 
increase in prolactin synthesis at these stages.42

During pregnancy both prolactin and leptin secretion are 
increased. These hormones promote the synthesis of orexygenic 
and anorexygenic peptides, respectively. However, desensitization 
of leptin function is also observed, leading overall to an increase 
of food intake.43 As seen above, both leptin and prolactin can 
lead to overexpression of SOCS. Interestingly, the desensitization 
of the leptin effect seen during pregnancy does not seem to come 
from the overexpression of SOCS mediated by the prolactin 
receptor. First these receptors are not expressed in the same type 
of cells in ARC43 and second, when both receptors are expressed 
in the same cells, the pathways mediated by their respective acti-
vation do not inhibit each other.44 Instead, the desensitization of 
leptin could partly come from a downstream loss of responsive-
ness to α-melanocyte-stimulating hormone (α-MSH) in targeted 
neurons such as oxytocin neurons, which are also negatively reg-
ulated by prolactin.43,45

STAT1, reduces proliferation and induces apoptosis by upregu-
lating p21 and caspase-3 signaling in NPCs.25 On the other 
hand, IL-9, which also activates the JAK-STAT pathway, protects 
neonatal neurons (where IL-9R is predominantly expressed) from 
apoptosis. STAT1 and STAT3 are activated after IL-9 treatment 
in vitro and AG490, an inhibitor of the JAK-STAT pathway can 
prevent this anti-apoptotic effect in vivo.26

Differences in the model used for these studies and the dura-
tion of treatment may partly explain the different data obtained. 
A quick, non-transcriptional function of STATs should also be 
distinguished from their more prolonged effect on transcription. 
STAT activation can lead to a rapid caspase activation but also to 
the transcription of non-apoptotic proteins.27 The ratio of STAT1 
over STAT3 or STAT5 activation also seems to play a role in 
apoptosis, with STAT3 and STAT5 being more anti-apoptotic 
than STAT1.27 Furthermore, the other pathways that are acti-
vated or inhibited by these different cytokine treatments and may 
interfere with the JAK-STAT pathway also have to be taken into 
account. For example, the downregulation of the PI3K/Akt path-
way and downstream upregulation of GSK3β which can accom-
pany the JAK-STAT activation can also trigger cell apoptosis.24 
Leptin, however, has a neuroprotective effect via activation of the 
JAK-STAT pathway but also the PI3K/Akt and ERK pathways.28

Following CNS insults, the JAK-STAT pathway is directly 
involved in neuronal regeneration and glia scar formation around 
the lesion. After an axon injury, STAT3 is overexpressed and 
activated specifically in regenerating neurons.29 In adult mouse, 
deletion of SOCS3 promotes axon regeneration after optical 
nerve injury.30 Such a deletion would promote gp130-mediated 
signaling pathway (including JAK-STAT) as the one mediated 
by CNTF. Astrogliosis after CNS injury is dependent on STAT3 
activation, a necessary step for glia scar formation and reduction 
of the propagation of inflammation.31

The Role of the JAK-STAT Pathway  
in Hormonal Regulation

In endocrine cells, including neurons, the JAK-STAT pathway is 
involved in the control of hormone and peptide release from CNS 
structures such as the hypothalamus. It influences the regulation 
of different processes like energy homeostasis and reproduction 
in the CNS. Indeed, mice with a neural-specific disruption of 
STAT3 or STAT5 have neuroendocrine defects leading to obe-
sity, diabetes and infertility.32,33

Regulation of energy homeostasis. Leptin is known as a sati-
ety hormone, synthesized by adipocytes and regulating develop-
ment, growth, metabolism and reproduction. It acts mainly on 
the hypothalamus to regulate food intake, energy expenditure 
and reproduction. When leptin binds to the b isoform of the 
leptin receptor (LepRb or ObRb), JAK2 is activated and leads 
to the activation of STAT3, STAT5 and SHP2 (see Villanueva 
et al.34 for a review). In the hypothalamic arcuate nucleus (ARC), 
activation of the LepR results in an increase of anorexygenic pep-
tide synthesis and a decrease of orexygenic peptide synthesis.35 
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(IL-1β) and an anti-inflammatory cytokine (IL-4, known to use 
the JAK-STAT signaling pathway). In vivo electrophysiological 
recordings were made in aged animals at synapses between the 
perforant path and DG in the rat hippocampus. LTP was rou-
tinely observed following tetanic stimulation in all young rats. 
However it was only present in some of the aged rats. IL-1β levels 
were significantly elevated in aged rats and especially so in those 
where LTP could not be induced. Conversely, IL-4 was decreased 
in aged rats which failed to sustain LTP, and so was the phos-
phorylation of JAK1 and STAT6.

Involvement of JAK-STAT in NMDA receptor-dependent 
synaptic plasticity. All these data and the fact that AG490 can 
impair spatial memory53 suggested that JAK-STAT can play a 
role in synaptic plasticity. However, the requirement of this path-
way for NMDA receptor (NMDAR)-dependent plasticity, one of 
the most common forms of synaptic plasticity in the brain, had 
until recently not been investigated. We have recently found that, 
in rat hippocampal slices, induction of NMDAR-LTD, but not 
LTP or depotentiation of AMPA receptor (AMPAR)-mediated 
synaptic transmission, can be selectively blocked by differ-
ent JAK inhibitors.2,4 Knockdown of the JAK2 isoform, which 
is expressed at synapses, in organotypic slices also abolished 
NMDAR-LTD. The protocol used to induce NMDAR-LTD 
caused a transient increase in phosphorylated JAK2 (tyr1007–
1008) and this was dependent on NMDAR activation as well 
as calcium entry, two key features of this form of LTD at the 
CA1 synapses of pyramidal neurons. The requirement for JAK2 
activation is probably specific to NMDAR-LTD since it was not 
involved in either carbachol- or DHPG-induced LTD, agonists of 
muscarinic acetylcholine receptors (mAChR) and metabotropic 
glutamate receptors (group I), respectively. We also found an 
increase in STAT3 activation after NMDAR-LTD and, indeed, 
inhibiting STAT3 or knocking it down blocked NMDAR-LTD. 
Although we found that STAT3 translocates to the nucleus after 
LTD induction, we also found that its action within the nucleus 
was not required for the induction process. Different inhibitors of 
nuclear transport and inhibitors of STAT3 binding to DNA were 
all unable to block LTD. In addition, we performed extracellu-
lar recording in the dendritic area on slices where the CA1 cell 
bodies have been removed (and so the nuclei of all CA1 pyrami-
dal neurons were absent) and could still induce NMDAR-LTD. 
Thus, the JAK-STAT pathway is involved in LTD and cytoplas-
mic activity of STAT3 plays a major role in synaptic plasticity 
(Fig. 3).

Involvement of JAK-STAT in the modulation of receptor sig-
naling. Humanin is a short peptide known to abolish amyloid-β 
(Aβ) toxicity and its derivative colivelin (CLN) acts via the JAK-
STAT pathway. CLN can increase ERK phosphorylation induced 
by carbachol, a mAChR agonist, and this effect is mediated by 
JAK2 and STAT3. Indeed, intra-cerebro-ventricular injection 
of AG490, which induces spatial working memory impairment, 
reduced the number of ACh-producing enzyme (ChAT) positive 
neurons. It also prevented the CLN-induced increase in ERK 
phosphorylation induced by carbachol, therefore desensitizing 
the mAChRs. Expression of a dominant negative STAT3 also 
prevented the CLN effect on ERK phosphorylation.53

The Role of the JAK-STAT Pathway in Synaptic 
Plasticity and Modulation of Receptor Function

Many upstream regulators of the JAK-STAT pathway (cytokines, 
hormones and growth factors) have been shown to modulate and/
or alter synaptic activity.46 The ability of neurons to modify the 
strength of their synaptic transmission is called synaptic plastic-
ity. Two major forms of long-lasting synaptic plasticity have been 
characterized in the mammalian brain—long-term potentiation 
(LTP) and long-term depression (LTD)—which are, by defini-
tion, a long-lasting increase or decrease of the synaptic activity, 
respectively. Some data suggest a role for JAK-STAT in the mod-
ulation of receptors involved in this process such as the 2-amino-
3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA), 
N-methyl-d-aspartate (NMDA) or muscarinic receptors in the 
hippocampus and a role of this pathway in learning and memory.

Regulation of synaptic receptors and plasticity by cytokines/
hormones. AMPA and NMDA receptor-mediated EPSPs (excit-
atory post-synaptic potentials) are increased following applica-
tion of GH to hippocampal slices. This GH-induced potentiation 
and a tetanus-induced LTP are mutually occluded, suggesting a 
common signaling mechanism. Furthermore, the GH effect is 
reduced by AG490, a JAK2 inhibitor.47 CPEB-1 (cytoplasmic 
polyadenylation element binding protein 1) also plays a role in 
synaptic plasticity by controlling GH transcription.48 CPEB-1 
KO mice have impaired synaptic plasticity, decreased GH expres-
sion in the hippocampus compared with WT and a reduction of 
the activated form of JAK2 and STAT3. GH application induced 
an enhancement of synaptic transmission in the CA1 area of the 
hippocampus which was smaller in slices from KO compared 
with WT animals and the phosphorylation of JAK2 was detect-
able only in WT samples. Furthermore, a theta-burst stimulation 
able to induce LTP in slices from WT animals failed to do so in 
these KOs.47

On the other hand, treatment of rat hippocampal slices with 
IL-6 reduced LTP in CA1 pyramidal cells, compared with vehicle 
treated slices. This effect was blocked by application of a tyrosine 
kinase inhibitor (lavendustin A).49 Moreover, following the IL-6 
mediated reduction of LTP, STAT3 phosphorylation levels were 
increased while there was an inhibition of MAPK/ERK phosphor-
ylation and both effects were reduced when using lavendustin A. 
Another study also showed that IL-6 could increase the calcium 
influx through NMDA receptors and that this effect was medi-
ated by JAK-STAT although the mechanism remains unclear.50

Brain derived neurotrophic factor (BDNF) can have a longer 
lasting effect on synaptic receptors by indirectly modifying the 
expression of gamma-amino-butyric-acid receptors (GABARs). 
An increase in CREB phosphorylation and inducible cAMP 
early repressor (ICER) expression in the DG mediates the repres-
sion of Gabra1 (rat gene for GABA

A
R α1 subunit) transcription 

following status epilepticus in vivo.51 BDNF (whose expression 
increases after seizures) increases ICER via the JAK-STAT path-
way in vitro and inhibiting this pathway before status epilepticus 
induction prevents the decrease in Gabra1 transcription.

One study investigated a potential relationship between aging 
and LTP,52 focusing on the imbalance between a pro-inflammatory 
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medulloblastoma (the main form of neuroepithelial embryonic 
tumors).56,57 Both grade III/IV glioma and medulloblastoma are 
associated with alteration of the JAK-STAT pathway leading to 
STAT aberrant activation.58-60 The main STAT isoform deregu-
lated is the pro-oncogenic STAT3.

STAT3 is not activated in healthy brains under basal condi-
tions, whereas in human brain tumors, high levels of STAT3 
tyrosine 705 and STAT3 serine 727 phosphorylation are 
detected,61 demonstrating a constitutive and maximal activa-
tion of this enzyme. STAT3 targets genes that promote cell 
cycle and inhibit apoptosis, two key mechanisms underlying 
tumorigenesis. Tumor recognition by the immune system is also 
blocked by STAT3 over-activation due to increased secretion of 
factors that inhibit the anti-neoplastic activity of microglia and 
macrophages.62-66

Over-activation of STAT3 is probably mediated by several 
mechanisms. Many signaling pathways have been shown to be 
involved in progression of brain tumors and most of them con-
verge onto STAT3, such as epidermal growth factor (EGF), LIF, 
interferons and other interleukins or erythropoietin receptor 
(EPOR).67 Positive feedback loops are probably a key mechanism 
as STAT3 overexpression leads to increased secretion of these 

The serotonin receptor 5HT2A can activate phospholipase C 
(PLC) in rat frontal cortex. Olanzapine, an atypical antipsychotic 
drug, can desensitize the 5HT2AR-stimulated PLC. This mech-
anism is mediated by the JAK-STAT pathway in the frontal cor-
tex.54 In vivo olanzapine injection induced desensitization of this 
receptor in the rat hypothalamic paraventricular nucleus (HPN) 
as well as in the frontal cortex but only in the latter did olan-
zapine increase the level of phospho-JAK2. Consistently, AG490 
could only prevent the desensitization of 5HT2AR-stimulated 
PLC in the frontal cortex but not the 5HT2AR-stimulated-
hormone release in the HPN.

JAK-STAT Signaling Pathway in Brain Pathologies

Brain tumors. WHO (World Health Organization) classifies 
brain tumors using histological criteria and grades. The histo-
logical criteria are used to predict the biological behavior of the 
neoplasm whereas the grades (I to IV) determine the malignancy 
scale of the tumor, IV being the most aggressive and lethal.55 
Glioma are the most common CNS tumors observed in humans 
and up to 70% of all glioma are classified as grade III and IV. 
Up to 20% of children with primary brain tumors present 

Figure 3. A non-nuclear role for JAK-STAT in synaptic plasticity (adapted from Nicolas et al.2). (A) Pooled data of field recordings showing t     hat a JAK 
inhibitor (AG490, 10 µM) can block the induction (but not the maintenance) of NMDAR-LTD. (B–C) Pooled data and representative currents of patch-
clamp recordings (CA1 cells) in organotypic slices transfected with a JAK2 shRNA (B) and a STAT3 shRNA (C) showing that no LTD can be induced. (D) 
After stimulation, the area surrounding the stimulating electrodes (dendrites) and the CA1 cells bodies were microdissected. The nuclei were isolated 
from the cell bodies by centrifugation. The blots of P-STAT3 and STAT3 show that the phosphorylation of STAT3 was increased in both compartments 
after LTD. (E) Pooled data of field-recording performed on slices where the cell bodies have been removed, showing that the nuclei are not required 
for the induction of NMDAR-LTD. (F) Schematic summary of the data: Activation of NMDARs during synaptic stimulation leads to JAK2 phosphoryla-
tion and activation via a pathway involving Ca2+, protein phosphatase 2B (PP2B, inhibited by cyclosporine A) and Protein phosphatase 1 (PP1, inhibited 
by okadaic acid). JAK2 activates STAT3 which then translocates to the nucleus, but only the cytoplasmic actions of STAT3 are required for NMDAR-LTD. 
The 11 treatments in red are all able to inhibit LTD, whereas the four treatments in blue do not.
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neuronal survival.93 The role of STAT1 is more consensual as it 
promotes cell death.

Neurodegenerative diseases. Neurodegenerative diseases 
include a large variety of diseases including AD, leukodystrophies 
and multiple sclerosis and involving neuron and/or glia degenera-
tion. JAK2/STAT3 activation has been shown to protect neurons 
and alteration of this pathway could be one of the mechanisms 
involved in neurodegenerative diseases like AD independently of 
any inflammation process. Aβ, which is believed to play a key 
role in this pathology, is neurotoxic under certain conditions. 
Nicotinic Acetylcholine receptors can reduce Aβ neurotoxicity 
by activating JAK2/STAT3, but whether the neuroprotection 
requires STAT3 gene regulation is not known (see Buckingham 
et al.94 for a detailed review). Humanin and its derivatives abolish 
Aβ neurotoxicity by activating the JAK2/STAT3 pathway and 
maintain cholinergic activity.95

Within the CNS, myelin formation is supported by oligoden-
drocytes. Death of these cells and the resulting demyelination 
is one of the main features of leukodystrophies and multiple 
sclerosis, two of the main white matter disorders.96 STAT1 and/
or STAT3 activation by cytokines97,98 or STAT5 by glucocorti-
coid receptor99 promote the survival of oligodendrocytes, an 
effect counteracted by SOCS3.98 Pharmacological modulation of 
SOCS and STAT activity could provide exciting potential thera-
peutic strategies for the treatment of demyelinating diseases.

Conclusion

The JAK-STAT pathway, by its strong links to cell proliferation, 
differentiation, survival and to inflammation, is one of the most 
important signaling pathways involved in the regulation of neural 
function. Its dysregulation in brain pathologies has been clearly 
demonstrated both in human and animal models, highlight-
ing its great therapeutic potential. However, extensive research 
is required to understand how the JAK-STAT pathway exerts 
its effect in the brain. Indeed, while activation of the different 
JAK and STAT isoforms in the CNS has been until now mainly 
associated to gene regulation, emerging studies unraveled mecha-
nisms of action independent of any nuclear effect in neurons.
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factors or expression of their receptors. Decreased activity of the 
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