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Human neurodevelopment requires the organization of neu-
ral elements into complex structural and functional networks 
called the connectome. Emerging data suggest that prenatal 
exposure to maternal stress plays a role in the wiring, or miswir-
ing, of the developing connectome. Stress-related symptoms 
are common in women during pregnancy and are risk factors 
for neurobehavioral disorders ranging from autism spectrum 
disorder, attention deficit hyperactivity disorder, and addiction, 
to major depression and schizophrenia. This review focuses on 
structural and functional connectivity imaging to assess the 
impact of changes in women’s stress-based physiology on the 
dynamic development of the human connectome in the fetal 
brain.

Human neurodevelopment requires the organization of 
neural elements into complex structural and functional 

networks called the connectome (1–3). While development 
of the connectome is contingent on many factors, emerging 
data suggest that prenatal exposure to maternal stress may also 
play a role (4–7). Stress is a signal in response to challenging 
and uncontrollable adverse events and perceived threat (8,9), 
and exposure to early life stress is a risk factor for neurobe-
havioral disorders ranging from autism spectrum disorder 
(ASD), attention deficit hyperactivity disorder and addiction, 
to depression and schizophrenia (10–21). Both high stress and 
stress-related conditions, including depression and anxiety, 
potently stimulate biological stress pathways (7), alter synapto-
genesis (22,23), and change brain development (5,24–28). The 
prenatal period is critical for brain development, and prena-
tal stressors exhibit long-lasting influence on adult disorders, 
making stressor type and timing important factors to explore 
(27,29,30). Fetal sex and genetic variants may also mediate 
stress responsiveness (6,7,31–34).

Recent reports suggest that prenatal stress exposure (PNSE) 
is a global public health problem (13,29,35,36). PNSE has been 
reported in 10–35% of children worldwide (37). Nearly 8–23% 
of infants in the United States, or almost 800,000 neonates/
year, experience prenatal exposure to depression (38,39), and 
reports from developing countries support similar numbers 

(40–42). Likewise, 1 in 7 to 1 in 13 pregnant women in the 
United States affirm symptoms of anxiety, while 5.6–14.8% in 
developing countries suffer a similar diagnosis (40–44). Since 
a nationally representative study found that more than half of 
the pregnant women (65.9%) experiencing depression in the 
United States went undiagnosed (45), these data may under-
represent the problem.

PNSE is believed to both activate the hypothalamic- 
pituitary-adrenal (HPA) axis and result in epigenetic changes 
in the developing brain. This review will focus on converging 
preclinical and clinical imaging data to assess the impact of 
these changes in women’s stress-based physiology on the func-
tional development of the human fetal brain. Prior to review-
ing published data, we review common causes of PNSE and 
methods for measuring the structural and functional connec-
tome. We also provide preliminary human data demonstrating 
increasing connectivity in limbic system structures across the 
third trimester of gestation.

STRESS MODELS IN CLINICAL AND TRANSLATIONAL 
STUDIES
While the relationship between maternal psychosocial stress 
and adverse pregnancy outcomes has been shown in many 
studies, it is important to define the nature of the stressor 
and the subject population (46). Stressors range from depres-
sion and anxiety to natural disasters, bereavement and steroid 
administration. As stressors vary, so may the outcomes. For a 
listing of outcomes, putative prenatal stressors and representa-
tive publications, please see Table 1.

Depression and Anxiety
Although some older studies relied on retrospective recall mea-
sures and few evaluated the effects of increasing duration and 
strength of psychosocial stressors, more recent investigations 
have employed depression and anxiety as markers of maternal 
stress. Estimates suggest that 8–23% of women have symptoms 
of depression during their pregnancy (47). Likewise, 7.7–14% 
report anxiety, and there are numerous reports of coexisting 
depression and anxiety in the same pregnant woman at any 
given time. While depression and anxiety are common proxies 
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for stress, stress in pregnant women does not always coincide 
with elevated depression or anxiety scales. As such, cases of 
PNSE may be missed in such analysis. Finally, depression and 
anxiety may have independent or additive effects in regards to 
PNSE, making it difficult to fully disentangle these effects with 
this model. For a more complete review of this topic, please see 
Suri et al. (48).

Natural Disasters
Another approach to test the hypothesis that PNSE results 
in neurobehavioral disorders is the use of natural disasters 
as “experiments of nature.” Unlike depression and anxiety, 
natural disasters are independent of the subject’s genetic 
background, personality or other confounding characteris-
tics. Disasters strike in a random manner, similar to a ran-
domized controlled experiment, and thus can provide data 
on prenatal stressors to which a given cohort of pregnant 
women were exposed (13). Using this strategy, the impact 
of disasters ranging from hurricanes to terrorist attacks 
on neurobehavioral outcomes of the offspring have been 
assessed (13,49–52).

Preconception Stress
In contrast, the influence of preconception adversity and the 
impact of high cumulative stress on maternal perception of 
prenatal stress on the developing connectome are just begin-
ning to be explored (53–55). Consistent with preclinical stud-
ies showing effects of repeated stress on neural atrophy and 
neurobehavioral effects (56), human studies link altered struc-
ture and function of limbic, subcortical, and frontal regions to 
higher levels of cumulative stress (28,57,58). These data sug-
gest that preconception adversity may shape perception and 
control of prenatal stress levels and should be considered in 
investigations of PNSE on neurobehavioral and MRI outcomes.

Prenatal Maternal Stress
PNSE has been widely associated with preterm birth, intra-
uterine growth restriction, and reduced fetal head growth 
(50,51,59–61). In addition, several studies have reported that 
increased acute maternal stress is associated with changes in 
fetal heart rate, activity level, sleep patterns, and higher pulsa-
tility indices in the middle cerebral artery (21,60). PNSE can 
also be directly measured using prospective data collections 
in samples of pregnant women with questionnaires, clinical 
interviews, and biological samples such as cortisol from mater-
nal saliva, blood, or amniotic fluid.

METHODS TO ASSESS CONNECTIVITY USING MRI
Advances in neuroimaging provide important information 
about microstructural and functional connectivity (62), and 
offer opportunities to understand the impact of PNSE on the 
developing connectome (1–3). In the following section, we 
define measures commonly used in connectomics with exam-
ples shown in Figure 1.

Functional connectivity provides information about neural 
regions that are physiologically functionally coupled, inde-
pendent of structural connectivity (63). Based on the blood 
oxygen level dependent signal and derived from time series 
observations, it assesses “temporal correlations between spa-
tially remote neurophysiological events.” (63) High correlation 
between time courses of two regions or voxels implies high 
functional connectivity. For the references included in this 
review, functional MRI (fMRI) data are largely collected in the 
resting state, or resting state-fMRI (rs-fMRI).

Methods to assess rs-fMRI data (64,65) include seed, inde-
pendent components analysis, and voxel-wise connectivity. 
Seed-based connectivity is most frequently used in human 
studies and involves (i) selecting a predefined region of interest 
(ROI), (ii) extracting the average time course from this ROI, 
and (iii) correlating this average time course with the time 
courses of every other voxel in the gray matter. Independent 
components analysis is mathematical modeling technique that 
parcellates the brain into independent spatial components 
or networks. These networks can be compared across stub-
ject groups or used for later analysis. Voxel-wise connectivity 
methods are generalizations of seed-based connectivity where 
many seed connectivity analyses are performed treating each 
voxel in the gray matter as a unique ROI. As these methods 

Table 1. Disorders and putative prenatal stressors

Disorder
Prenatal stress and 
representative references

Autism spectrum disorder Anxiety (13,103)

Conjugal conflict (104)

Depression (105,106)

Maternal bereavement (55)

Natural disasters (13,52)

Attention deficit hyperactivity disorder Anxiety (61,103,107,108)

Maternal bereavement (15,55)

Bipolar affective disorder Stress (109)

Cognition Anxiety (107,110)

Depression (48)

Natural disaster (111)

Psychosocial stress (60,112)

Depression Depression (16,48,113)

PTSD (113)

Internalizing problems Depression (114)

Neonatal behavioral changes Anxiety (115,116)

Depression (48,115,117)

Natural disasters (49,51)

Perceived stress scale (118,119)

PTSD (51)

Pervasive developmental disorder Depression (53)

Psychosis Cumulative life experiences 
(120,121)

Depression (121)

Schizophrenia PTSD (122,123)

PTSD, post-traumatic stress disorder.
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produce a large amount of data (approximately 20,000 seed-
connectivity results), seed-connectivity results for each voxel 
are often summarized to a single number using network theory.

Anatomical connections in the developing brain represent 
microstructural connectivity (66). Diffusion-weighted imaging 
(dMRI) assesses the diffusion of water along axons and per-
mits visualization of axonal pathways. By modeling the direc-
tional diffusion of water as an ellipsoidal shape, or “tensor”, 
at each voxel in the brain, dMRI permits assessment of white 
matter tracts. The first eigenvector, λ1, describes the direction 

of maximal diffusion, while the second and third define dif-
fusivity perpendicular to this principle axis. Radial diffusivity 
represents the average of λ2 and λ3 and is affected by changes 
in axon caliber and myelination. Fractional anisotropy (FA) 
measures the degree to which water diffuses in one direction 
(along the axon) by computing the ratio of λ1 to λ2 and λ3 
and is the most common measure used to assess axonal integ-
rity. High values of FA suggest more highly organized, strongly 
myelinated tracts.

The three main approaches to analyzing dMRI data include 
region ROI quantification, tract-based analysis and tractog-
raphy, and voxel-based morphometry (VBM). ROI quan-
tification is frequently used in human studies investigating 
the impact of PNSE on the developing connectome. In this 
method, one or more ROIs are selected a priori and the average 
FA across all voxels in the ROI calculated. Typically, ROIs are 
major white matter tracts. Tractography is modeling technique 
used to identify these tracts. Once identified, they can be ana-
lyzed using graph theory or ROI analyses. In VBM analysis, FA 
data from all subjects are transformed into a common space 
and compared across each voxel of the white matter.

Finally, although not direct measures of the connectome, we 
include studies assessing brain morphometry, including corti-
cal volumes and thickness. Morphological features of different 
brain regions are not independent of those of other areas, and 
the brain shows a high level of coordination between different 
structures (67). This coordination of morphological features is 
often referred to as anatomical covariance (67–69) and resem-
bles functional and structural connectivity.

PRECLINICAL DATA SUPPORT THE IMPACT OF PNSE ON 
DEVELOPING CONNECTOME
Across multiple species and numerous time points, converging 
data suggest that gestational stress influences brain develop-
ment. Similar to the human subjects, the offspring of numer-
ous species exposed to PNSE demonstrate increases in anxiety 
and depression, impaired spatial memory and alterations in 
cognition (70,71). Systematic experimental investigations 
using standardized animal models and outcome measures 
(6,72,73) address not only the impact of PNSE on maternal 
endocrine functions and the “re-programming” of the fetal 
HPA axis (74–79), but also suggest that changes in corticogen-
esis contribute to the long-lasting effects on brain and behavior 
(Table 2) (74,80,81).

MRI STUDIES OF PNSE AND THE DEVELOPING BRAIN
While the neural correlates of acute and cumulative post-
natal stress in human subjects are active fields of study, MRI 
research investigating PNSE in human subjects is just starting 
to be explored. As described below and shown in Table 3, many 
investigators have interrogated the impact of PNSE on the lim-
bic system and connected regions in the developing brain.

Studies During infancy
Recent studies suggest a significant relationship between ante-
natal maternal depression and/or anxiety and structure and 

Figure 1. Examples of functional and structural connectivity.  
(a) Functional connectivity. Functional connectivity measures the 
synchrony or correlation of brain activity between two or more regions 
of the brain. Common methods include seed connectivity, independent 
components analysis, and voxel-wise connectivity. Seed-based connectiv-
ity measures functional connectivity from a predefined region of interest 
(ROI, or seed, shown in green) and the rest of the gray matter. Regions of 
positive or negative functional connectivity are shown as red and blue 
regions. Independent components analysis is mathematical modeling 
technique that parcellates the brain into independent spatial components 
or networks. Example components shown are the motor network and the 
defualt mode network. Voxel-wise connectivity methods involve correlat-
ing the time course of every voxel in the gray matter with the time course 
of every other voxel in the gray matter. Connectivity for each voxel are 
often summarized to a single number using network theory to highlight 
so-called hub regions in the brain. (b) Structural connectivity. Structural 
connectivity measures anatomical white matter connections linking 
different cortical and sub cortical regions. Common methods include ROI 
quantification, tract-based and tractography, and voxel-based morphom-
etry. For ROI quantification, average FA across all voxels in a priori ROIs 
(shown in white outline and overlay) is compared across study groups. 
Tractography is modeling technique used to identifying white matter 
tracts used in further analyses. In VBM analysis, FA data from all subjects 
is transformed into a common space and comparison across each voxel 
of the white matter is performed. (Figure modified with permission, John 
Wiley & Sons, Hoboken, NJ)

High connectivity (r>0.9)

Low connectivity (r>0.1)

Seed connectivity

Region of interest Tract-based and tractography Voxel-based

Independent component analysis (ICA)
Voxel-wise
connectivity

a

b
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function in the developing brain. Rifkin-Graboi performed 
structural MRI and dMRI on 157 nonsedated 6–14-day-old 
newborns whose mothers participated in the GUSTO study 
(Growing Up in Singapore Towards Healthy Outcomes), 
a cohort of Asian women enrolled during the first trimes-
ter of pregnancy. Socioeconomic status, prenatal exposures, 
pregnancy measures, and birth outcomes were recorded, 
and imaging data were analyzed only for those infants who 
met the following criteria: (i) gestational age (GA) ≥37 wk, 
(ii) birth weight (BW) >2,500 g, and (iii) Apgar5 min > 7. The 
Edinburgh Postnatal Depression Scale and the State Trait 
Anxiety Inventory (STAI) were administered to all women at 
26 wk of pregnancy. Adjusting for household income, mater-
nal age and smoking exposure, postmenstrual age (PMA) at 
MRI, and BW, Rifkin-Graboi (24) found significantly lower FA 
but not volume in the right amygdala in infants of mothers 
with high EDPS scores. This suggests a significant relation-
ship between PNSE and microstructure of the right amygdala, 
a region associated with stress reactivity and vulnerability for 
mood disorders.

Similarly, Qiu interrogated the GUSTO cohort to examine 
the consequences of PNSE to maternal anxiety on neonatal 
development of the hippocampus, a structure critical for stress 
regulation (27). Entry criteria for this analysis differed from 
those of Rifkin-Graboi’s 2013 study, and included both term 
and late preterm infants who met the following criteria: (i) GA 
≥ 35 wk; (ii) BW > 2,000 g; and (iii) Apgar5 min > 9. There were 
175 GUSTO infants available for this analysis; 42 underwent 
repeat scans at age 6 mo, and 35 (83%) had usable data. In Qiu’s 
analysis, antenatal maternal anxiety did not influence bilateral 
hippocampal volume at birth, but children of women with 
increased anxiety during pregnancy showed slower growth 
of both the left and right hippocampus between birth and 
age 6 mo. Subsequently, evaluating 21 GUSTO infants with 
high PNSE (i.e., maternal STAI > 90) and 34 with low PNSE 
(i.e., maternal STAI < 70), Rifkin-Graboi showed that ante-
natal anxiety predicted decreases in FA of regions important 
for cognitive-emotional responses to stress (i.e., right insula 
and dorsolateral prefrontal cortices (PFC)), sensory process-
ing (right middle occipital cortex), and socio-emotional func-
tion (i.e., right angular gyrus, uncinate fasciculus, posterior 
cingulate, and parahippocampus) at age 5–17 d (25). Of note, 
infants were eligible for this analysis if met the following crite-
ria: (i) GA ≥ 36 wk; (ii) BW > 2,000 g; and (iii) Apgar5 min > 7.

Finally, Scheinost (82) and Qiu (26) investigated prena-
tal depression/anxiety exposure and amygdala connectivity 
using rs-fMRI in preterm neonates at term equivalent age and 
infants at age 6 mo, respectively. These data showed that, in 
the neonatal period, the amygdala is functionally connected to 
subcortical and posterior cortical regions, and, by age 6 mo, is 
connected to widespread networks subserving emotional reg-
ulation, memory, and social cognition. In preterm neonates, 
Scheinost showed that PNSE reduces amygdalar-thalamic 
connectivity and is additive to effects of preterm birth. Using 
24 GUSTO infants, Qui showed that infants born to moth-
ers with higher prenatal depressive symptoms had greater 

rs-fMRI of the amygdala with the left temporal cortex, insula, 
anterior cingulate (ACC), medial orbitofrontal, and ventrome-
dial PFC. These networks are reported in children and adults 
with depression, suggesting that rs-fMRI data may foreshadow 
future neuropsychiatric disease.

Studies During childhood
Studies of older children also suggest that maternal anxi-
ety is associated with specific changes in brain morphology. 
Buss evaluated children ages 6–10 y whose mothers had been 
enrolled in a prospective study of pregnancy at the University 
of California, Irvine or Cedars Sinai Hospital in Los Angeles, 
CA, between 1998 and 2002 (83). Families were contacted 
again in 2007 and invited to participate in a follow-up study of 
their children to assess the influence of PNSE on brain devel-
opment. At the time of this report, 35 mother–child dyads had 
both usable MRI data and complete maternal data. VBM on 
these children demonstrated that exposure to high maternal 
stress at 19 wk of gestation correlated with gray matter reduc-
tions in the PFC, premotor cortex, medial temporal lobe, lateral 
temporal cortex, post-central gyrus, and cerebellum extending 
to the middle occipital and fusiform gyri. Although the num-
bers are small and assessments of postnatal stress exposure 
were not included in the authors’ analyses, high pregnancy 
stress at 25  and 31 wk of gestation was not associated with 
local reductions in gray matter volume, suggesting the impor-
tance of earlier exposure to gestational psychological stress. 
Similarly, Sarkar performed dMRI studies to assess both FA 
and perpendicular diffusivity (Dperp) on 22 children ages 6–9 y 
whose mothers were retrospectively assessed for PNSE when 
the children were age 17 mo (84). For these children, PNSE 
was positively correlated with right uncinate FA and negatively 
with right uncinate Dperp, while PNSE was not associated with 
control tract properties.

In addition, since reduced cortical volume and thickness 
have both been associated with a history of depression in adult 
populations (85,86), Sandman measured cortical thickness in 

Figure 2. Development of left amygdala functional connectivity during 
the perinatal period. During the perinatal period, (a) left amygdala con-
nectivity is first characterized by a largely local circuitry, (b) then begins 
to connect to ipsilateral regions in the frontal and temporal lobes, and 
(c) finally develops connections to the contralateral amygdala.

a

b

c

P < 0.05 P < 0.001
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81 school aged children whose mothers had participated in 
the longitudinal study described above; (83) all were prospec-
tively evaluated for depression at 19, 25, and 31 wk of gestation 
(47). Prenatal maternal depression exposure was associated 
with thinning in the right frontal lobe, and the strongest asso-
ciation was with exposure at 25 wk gestation. Morphological 
changes were primarily found in the superior, medial orbital, 
and frontal pole regions of the right PFC, consistent with data 
in adults with depressive symptomatology (85,86). Further, the 
significant association between prenatal depression exposure 
and child externalizing behavior in this cohort of children was 
mediated by these changes.

Studies During Adulthood
Finally, although MR studies of young adults with early life 
stress exposures are just beginning to emerge (87–89), Favaro 
explored the relationship between PNSE, cortical volumes and 
rs-fMRI in a sample of 35 healthy women aged 14–40 y (90). 
The sample was composed of volunteers to whose mothers a 
semi-structured interview assessing stress related events dur-
ing pregnancy was administered. Subject scores were assigned 
based on interview data and used for MRI analyses. For these 
women, greater PNSE was associated with decreased gray mat-
ter volume in the left medial temporal lobe and both amygda-
lae. Strength of PNSE was positively correlated with rs-fMRI 
between the left medial temporal lobe and pre-genual cortex, 
and connectivity between the left medial temporal lobe and 

left medial-orbitofrontal cortex partially explained variance in 
depressive symptoms in this cohort.

EMERGING FACTORS
As studies begin to investigate the impact of PNSE on the con-
nectome, several factors from both preclinical and clinical data 
have emerged as key considerations for future studies. These 
factors include defining the normal developmental trajecto-
ries of the fetal connectome, the type, timing and duration of 
PNSE, and the fetal sex. Other factors not addressed within 
this review include assessing the role of paternal preconcep-
tion stress and identifying the molecular signatures of PNSE.

Fetal Networks
“Trajectory analysis is central to the assessment of the impact 
of PNSE on the developing brain.” (2) Fetal rs-fMRI is an 
emerging technology obtaining information about neural 
network development in utero by directly measuring the fetal 
brain (91). These methods are needed to investigate the pre-
natal connectome as it develops and pinpoint how and when 
PNSE alters its development. Using cross-sectional functional 
connectivity data between 21–38 wk of gestation, fetuses show 
evidence of both long-range functional connectivity and the 
emergence of neural networks across the third trimester, mim-
icking those in older children and adults (92,93). However, 
both longitudinal and cross-sectional data are needed to more 
fully characterize the developmental trajectories of PNSE. To 

Table 4. Prenatal stress and the connectome: Endocrine and genetic mechanisms

Author/year Number Risk factors/time Age at scan Outcome Results

Hypothalamic-pituitary-adrenal axis

Buss 2012 (33) 65 Maternal cortisol at  
15, 19, 25, 31, and 
37 wk GA

7 y Child amygdala and 
hippocampal volumes

Higher cortisol levels at 15 wk GA associated with larger R 
amygdala volume in girls but not in boys

Child affective problems Higher cortisol levels at 15 wk GA

Associated with more affective problems in girls but not 
in boys

Davis 2013 (141) 54 Subjects with and 
without exposure 
to antenatal steroid 
exposure (ANS)

6–10 y MRI – cortical thickness ANS children had bilateral cortical thinning; most 
significant region was rostral ACC

Child Behavior Check List 
(CBCL)

Children with more affective problems had a thinner left 
rostral ACC

Candidate genes

Qiu 2015 (72) 146 Pregnancy anxiety 
scale administered  
at 19, 25, and  
31 wk GA

Newborn Voxel-based morphometry Individual COMT SNPS modulated association between 
antenatal maternal anxiety and prefrontal and parietal 
cortical thickness

Among rs737865-val158met-rs165599 haplotypes, the 
A-val-G haplotype modulated positive associations of 
maternal anxiety with cortical thickness in right PFC and 
right parietal cortex

Catechol-O-
methyltransferase (COMP) 
genotypes

The G-met-A mediates negative associations of anxiety 
with thickness in bilateral precentral gyrus and prefrontal 
cortex

Epigenetic mechanisms

Chen 2015 (142) 247 Maternal anxiety  
(STAI) at 26 wk of 
gestation

Newborn Regional brain volumes 
BDNF genotype and 
methylation status

Infant brain-derived neurotrophic factor (BDNF) 
genotype influenced association of prenatal anxiety on 
both epigenome as well as that between epigenome and 
right amygdala and left hippocampus volumes

STAI, State Trait Anxiety Inventory.
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begin to address this problem, we performed longitudinal  
rs-fMRI on 10 typically developing fetuses at 30–32, 34–36 wk 
PMA and following term delivery. This study was approved 
by the Yale University Human Investigation Committee, and 
pregnant women signed consent for the protocol. Because of 
its documented role in neurobehavioral disorders and altera-
tions in studies of PNSE described above, we interrogated the 
emergence of amygdala networks during the prenatal period. 
During the 3rd trimester, left amygdala connectivity is first 
characterized by local circuitry, then begins to connect to ipsi-
lateral regions in the frontal and temporal lobes, and finally 
develops connections to the contralateral amygdala (Figure 2). 
The development of these important cross-hemispheric con-
nections between the right and left amygdala develop during 
the end of the third trimester and likely increases the vulner-
ability of this circuitry to PNSE (55).

Timing of Stress exposure
There is increasing recognition that fetal stress exposure has a 
particularly pronounced impact during early periods of corti-
cogenesis, commonly known as critical periods in the devel-
oping brain. Critical periods refer to epochs characterized 
by both increasing plasticity and greater vulnerability; thus, 
these are times when the developing brain may be most easily 
modified in either favorable or unfavorable directions. Critical 
periods are thought to be environmentally sensitive, and many 
authors believe they underlie the developmental origins of 
neurobehavioral disorders such as ASD.

Typically developing fetuses with PNSE during the mid-
dle second and third trimesters of gestation are reported to 
be at the greatest risk for neurobehavioral disorders (13,52). 
Reviewing Swedish birth registries, Class examined associa-
tions between PNSE in 738,144 offspring born in 1992–2000 
for childhood outcomes and 2,155,221 offspring born in 
1973–1997 for adult outcomes. Although data for GA are 
not available, third trimester bereavement stress significantly 
increased risk of both ASD and attention deficit hyperactiv-
ity disorder (55). Similarly, children who had been exposed to 
tropical storms during gestation months 5–6 or 9–10 had 3.8 
times greater risk of developing ASD than children who had 
been exposed to the same storms, in the same place, but dur-
ing other months of gestation (52). Duration of maternal stress 
may also play a role. Analyzing data from 4,682 live births, 
Latendresse reported that children of mothers with the longest 
periods of prenatal depression exposure experienced more 
than seven times increased risk for pervasive developmental 
disorder when compared to children with no PNSE (53).

In contrast, in the GUSTO study, mothers were assessed 
for gestational depression and/or anxiety at 26 wk, and MRI 
measures were correlated with these data (24–27). In addition, 
Sandman performed depression screening on 82 pregnant 
mothers at 19, 25, and 31 wk gestation and found that ante-
natal exposure to maternal depression at 25 wk gestation was 
significantly correlated with cortical thinning in 24% of the 
frontal lobes in the offspring (47). Finally, although cortisol 
levels are not available for subjects in the prior MRI studies, 

high levels of maternal cortisol at 15 wk (but not 19, 25, 31, or 
37 wk) of gestation were associated with amygdala volumetric 
changes in girls but not in boys (33). Since high levels of corti-
sol are believed to reprogram the fetal HPA axis and maternal 
stress has been reported to downregulate 11 β-hydroxysteroid 
dehydrogenase (75), the placental enzyme which metabolizes 
cortisol (75), future studies of maternal psychological stress 
during gestation should consider longitudinal assessments of 
maternal cortisol in tandem with fetal neuroimaging.

Sex Differences in Prenatal Stress outcomes
The link between PNSE and outcomes may be moderated by 
fetal sex. The source of sex differences upon early development 
is unclear but may include placental functioning, exposure to 
adrenal hormones and testosterone and an assortment of epi-
genetic mechanisms (94–97). Recent fetal pathways also pro-
posed include sex-dependent responses of the transcriptome 
(6,98–100), naturally occurring sexually-dimorphic processes 
mediating neuron-glial interactions (101), and differential 
responses of target regions in the developing brain (102). 
Thus, while PNSE may have consequences for both males and 
females, the specificity of effects may differ. To the best of our 
knowledge, however, only a single study has reported sex dif-
ferences in MRI outcome measures. These data suggest that 
higher cortisol levels at 15 wk of gestation were associated with 
larger right amygdala volumes and more affective problems in 
female but not male offspring (33).

MECHANISMS OF PRENATAL STRESS AND THE 
CONNECTOME
Taken together, published studies of PNSE suggest both proxi-
mate and long-lasting influence on the connectome. However, 
mechanisms of how PNSE alters the developing connectome 
must be explored. Mechanistic studies have focused on the HPA 
axis, candidate genes, and epigenetic pathways (see Table 4).

MOVING FORWARD: INVESTIGATION OF THE CLINICAL 
PROBLEM, CHANGES IN CARE
Converging data suggest that PNSE alters the developing 
connectome. As noted by Sporns, “The placement of brain 
connectivity as an intermediate phenotype between environ-
mental exposures and behavior makes it an important target 
for studies that link networks across levels from behavior to 
molecules, neurons and emerging networks in the develop-
ing brain” (62). To better address the impact of PNSE on the 
connectome, longitudinal studies of maternal/fetal dyads with 
and without stress exposure are needed. Such investigations 
would benefit from repeated assessments of maternal stress 
in order to identify type, time of onset, and duration of PNSE 
and correlate these data with sequential imaging. In addition, 
preconceptional stress may influence offspring outcome, and 
pregnant women should be surveyed for cumulative stress 
at the time of study enrollment. Likewise, both genetic vari-
ants and epigenetic changes may contribute to outcome in the 
offspring, and consideration should be made to include these 
data in PNSE-offspring outcome analyses. Finally, longitudinal 
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fetal imaging will provide important information about target 
regions, and developmental trajectory analyses are well suited 
for interrogation of the developing connectome.

These strategies can be used to detect developmental distur-
bances of the connectome that may underlie the development 
of neurobehavioral disorders.
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