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Abstract

Motivation: The application of genome-wide chromosome conformation capture (3C) methods to prokaryotes pro-
vided insights into the spatial organization of their genomes and identified patterns conserved across the tree of life,
such as chromatin compartments and contact domains. Prokaryotic genomes vary in GC content and the density of
restriction sites along the chromosome, suggesting that these properties should be considered when planning
experiments and choosing appropriate software for data processing. Diverse algorithms are available for the ana-
lysis of eukaryotic chromatin contact maps, but their potential application to prokaryotic data has not yet been
evaluated.

Results: Here, we present a comparative analysis of domain calling algorithms using available single-microbe
experimental data. We evaluated the algorithms’ intra-dataset reproducibility, concordance with other tools and sen-
sitivity to coverage and resolution of contact maps. Using RNA-seq as an example, we showed how orthogonal bio-
logical data can be utilized to validate the reliability and significance of annotated domains. We also suggest that in
silico simulations of contact maps can be used to choose optimal restriction enzymes and estimate theoretical map
resolutions before the experiment. Our results provide guidelines for researchers investigating microbes and micro-
bial communities using high-throughput 3C assays such as Hi-C and 3C-seq.

Availability and implementation: The code of the analysis is available at https://github.com/magnitov/prokaryotic_
cids.

Contact: a.tyakht@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

loops and ordinary contact domains are assembled into megabase-
and sub-megabase-sized topologically associated domains (TADs)
that non-stochastically interact with each other and partition the en-
tire interphase chromatin into compartments.

1 Introduction

High-throughput quantitative surveys of chromatin spatial interac-
tions provide large volumes of data for assessing the 3D conform-

ation of a genome and elucidating interconnections between a
genome’s structural and functional organization. Initially, chromo-
some conformation capture (3C) methods like Hi-C (Lieberman-
Aiden et al., 2009) and 3C-seq (Rodley et al., 2009) were applied to
investigate the spatial structure of the genomes of higher eukaryotes
such as mammals (Dixon et al., 2012; Rao et al., 2014) and
Drosophila (Sexton et al., 2012; Ulianov et al., 2016). In this con-
text, 3C methods have revealed several layers of chromatin folding:

©The Author(s) 2020. Published by Oxford University Press.

In contrast, the 3D organization of prokaryotic genomes is more
primitive. Bacterial chromosomes are hierarchically folded into
large-scale macrodomains that consist of smaller chromosomal
interaction domains (CIDs) resembling eukaryotic TADs (Dame
et al., 2020). However, these structures appear to be irregularly dis-
tributed along the genome and are controlled by nucleoid-associated
proteins (NAPs) that form protein-DNA filaments and bridges and
thus facilitate DNA looping (Shen ez al., 2019). Although only a
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limited number of prokaryotes have been investigated in terms of
genome spatial structure, there is a prominent variation among the
3D organizational patterns of these organisms’ genomes. While the
chromosomes of Caulobacter crescentus and Bacillus subtilis are
folded into clearly defined CIDs generated by highly expressed genes
and NAPs (Le et al., 2013, 2016; Marbouty et al., 2015; Wang
et al., 2015), the Escherichia coli genome contains larger interaction
units, termed macrodomains, in addition to CIDs, and notably lacks
contacts between the right and left replichores (Cagliero et al., 2013;
Lioy et al., 2018). Smaller, though less pronounced, CIDs that in-
clude co-regulated genes were identified even in the genome-reduced
bacterium Mycoplasma pnewmoniae (Junier et al., 2016; Trussart
et al., 2017). Vibrio cholerae, a bacterium that carries two circular
chromosomes, demonstrates CIDs with structures similar to
C.crescentus and B.subtilis, but also has certain functional trans-
contacts between its two chromosomes (Val et al., 2016). Besides
the bacteria, the 3D organization of archaea genomes is of particular
interest, both because these organisms combine many properties of
bacteria and eukaryotes and because the interplay between genome
structure and regulation in archaea is of evolutionary interest. In
particular, some archaea have histone-like proteins that are involved
in the formation of hypernucleosomes (Henneman ez al., 2018). A
recent pioneering Hi-C analysis of the hyperthermophilic archaea
Sulfolobus islandicus and Sulfolobus acidocaldarius revealed
compartment-like structures which had been previously observed
only in eukaryotes (Takemata et al., 2019).

Furthermore, Hi-C studies of microbiomes from diverse niches
have provided more comprehensive data than conventional metage-
nomic studies. As demonstrated in a recent study, utilizing Hi-C
data along with routine whole-genome ‘shotgun’ sequencing
improves the quality of metagenome-assembled genomes (MAGs) to
a remarkable extent, which is critical for the detailed description of
community composition (DeMaere et al., 2019). The application of
3C methods to the human gut microbiome made it possible to trace
the evolution of an entire microbial community in its natural envir-
onment, characterize the dynamics of the transfer of genes and mo-
bile elements, and provide evidence of adaptive evolution in core
genomes (Yaffe et al., 2020). Moreover, deconvolution of the micro-
biome Hi-C into contact maps of individual microbes provided a
first glimpse into the underexplored diversity of 3D genome organ-
izational patterns (Marbouty et al., 2017).

When state-of-the-art methods are applied to large-scale surveys
of the microbiome, which is an extremely complex object in terms
of genomic information, it is necessary to evaluate the methods’ pre-
cision, efficacy, computational cost and convenience. Such an evalu-
ation can be accomplished through data processing and analysis
with simpler single-microbe datasets, similarly to benchmarks that
have been performed with eukaryotes (Dali et al., 2017; Forcato
et al., 2017; Zufferey et al., 2018). The selection of optimal run
parameters and general usage recommendations for these tools is of
special interest, as these recommendations might be different as
compared to eukaryotic datasets.

In this study, we performed an extensive overview and bench-
marking process of most publicly available software tools applicable
to microbial CID calling using all available prokaryotic datasets as
well as simulated data. Additionally, we propose a new approach
for designing a robust Hi-C experiment on prokaryotes based on in
silico restriction enzyme selection.

2 Materials and methods

2.1 Sources of experimental data

The following 3C datasets of wild-type bacterial and archaeal spe-
cies were used for the analysis: B.subtilis (Marbouty et al., 2015;
Wang et al., 2015), C.crescentus (Le et al., 2013), E.coli (Lioy et al.,
2018), M.pneumoniae (Trussart et al., 2017) and S.acidocaldarius
(Takemata et al., 2019). Of these, only those datasets with at least
two biological replicates were used to benchmark domain callers.
RNA-seq data for the corresponding species were retrieved from
several previous studies (Hess ez al., 2013; Le et al., 2016; Vickridge

et al., 2017). The datasets’ accession numbers and the reference
genomes used are listed in Supplementary Table S1.

2.2 Sequencing data processing

2.2.1Hi-C

Paired-end reads were mapped to the reference genomes using
Bowtie v2.2.3 (Langmead et al., 2012) involving the iterative map-
ping procedure implemented in the hiclib package (https://bitbucket.
org/mirnylab/hiclib) as described previously (Imakaev et al., 2012).
The optimal start position for mapping was determined visually
from the read quality profile in FastQC as 4 bp. The minimal read
length for mapping was set to 25 bp. The iterative mapping step was
increased by 3 bp until a maximum read length was reached. We
then filtered out reads that mapped to multiple or zero positions,
‘same fragment’ and ‘dangling end’ read pairs and PCR duplicates.
The remaining read pairs were aggregated into genomic bins to pro-
duce a Hi-C contact map. For the purposes of benchmarking, we
used the bin size described in the original publications for each data-
set. The contact maps were iteratively corrected using the ICE algo-
rithm with default parameters, implemented in cooler package
(Abdennur et al., 2019).

2.2.2 RNA-seq

RNA-seq reads were mapped to the reference microbial genomes
using STAR v2.6.1c (Dobin et al., 2013) with an additional -
alignIntronMax parameter set to 1 to disable the mapping of spliced
reads. Unmapped and low-mapping-quality reads were then
removed using SAMtools v1.5 (Li ez al., 2009) with option -q 30.
To calculate the transcription level, the reads were binned using the
same window size as in the corresponding contact maps using
BEDtools v2.25.0 (Quinlan et al., 2010). When multiple RNA-seq
replicates were available, they were merged after the binning step.

2.3 Domain callers

For the comparison, we selected publicly available domain callers
based on either scoring function, statistical model, or clustering
approaches. Since all domain callers require a pre-processed contact
map as input, we applied a common data-processing pipeline,
described above, to obtain the contact maps. We then used linear in-
terpolation to fill in missing data to avoid zero-count columns and
rows in the contact maps while running the domain-identification
algorithms. A CID was defined as a genomic region containing two
or more internal bins and two boundary bins. We subjected all the
domains annotated by the tools to a filtration step based on their
size. For the domain calling procedure, we used the default parame-
ters where possible, except in the case of parameters that depend on
the input data and may affect the resulting CIDs. Such parameters
were varied to determine the values that maximize the average
Jaccard Index (JI) between the domain boundaries across the bio-
logical replicates (see ‘Performance metrics’). The description of the
parameters and the ranges of variation are given in the
Supplementary Tables S2 and S3.

2.4 Performance metrics
All analyses were run on Ubuntu 18.04.2 x86_64-linux-gnu on
2 x Intel(R) Xeon(R) CPU ES5-2680 @ 2.70 GHz, 192 GB RAM ser-
ver in a single thread mode. The performance of the tools was
assessed using the modified JI (Forcato ef al., 2017) and the
Measure of Concordance (MoC) (Zufferey et al., 2018). The JI was
defined as the ratio of the number of intersecting domain boundaries
between two biological replicates and the total number of domain
boundaries that the tool identified in both replicates. The MoC was
defined as in the original publication (Zufferey et al., 2018). When
more than two replicates were available, the metric was calculated
across all pairs and averaged. The comparative analysis of the results
from this work and previously published benchmarks is given in the
Supplementary Table S4.

To assess the biological relevance of annotated CIDs, we used
publicly available RNA-seq data. RNA-seq profiles were CPM-
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normalized and smoothed using the Savitzky—Golay filter with a
sliding window of five bins and first-order polynomial approxima-
tion. We then extracted the expression levels from =10 bins around
each annotated boundary and calculated the average expression pro-
file at the predicted CID boundaries. Statistical significance was
assessed using a Wilcoxon signed-rank test of expression values
from five bins around the CID border and five adjacent bins.

2.5 Restriction fragments comparison

We performed an in silico comparison of the expected restriction
fragment sizes produced by various restriction enzymes across the
diversity of prokaryotic genomes using the list of representative ref-
erence bacterial and archaeal genomes from the NCBI Genome data-
base. Entries with incompletely assembled genomes and with more
than one circular chromosome were discarded from the list. The in
silico genome digestion was performed using the Restriction pack-
age from Biopython. For our simulations, we selected four restric-
tion enzymes: HindIIl (restriction site: AAGCTT) and Hpall
(CCGG), which are the most commonly used enzymes in prokaryot-
ic Hi-C experiments, and Ncol (CCATGG) and Msel (TTAA),
which have the opposite GC content of the recognition site.

2.6 Hi-C read pairs simulation

To simulate i silico Hi-C sequencing, we used the Sim3C software
tool (DeMaere et al., 2018). Since Sim3C is unable to predict the
real positions of domain boundaries, we used it in a mode with dis-
abled CID simulation. We set the ligation efficiency to 0.75 and the
read length to 50bp. The simulations were carried out for
Clostridium difficile (NCBI Reference Sequence ID: NC_009089.1),
Bacteroides fragilis (NC_006347.1), Bifidobacterium adolescentis
(NC_008618.1) and Pseudomonas aeruginosa (NC_002516.2)
genomes. For each genome, we generated 15 million paired reads
that were analyzed using the data processing pipeline described
above to produce a contact map.

2.7 Downsampling of contacts

We performed downsampling of the obtained Hi-C matrices using
the previously described approach (Yardimet ez al., 2019). The Hi-C
matrix was converted into a set of pairwise interactions from which
we uniformly sampled a given number of contacts. These down-
sampled contacts were then re-binned into the Hi-C matrix at a
given resolution.

2.8 Generation of pseudo-replicates

To evaluate the effect of matrix coverage and resolution on CID an-
notation, we generated two pseudo-replicates of the E.coli dataset.
This dataset was selected since it has the highest coverage and there-
fore could be subsampled into a wide range of total contacts and res-
olutions. Pseudo-replicates were generated by merging the two
biological replicates and then downsampling contacts from the com-
bined matrix.

2.9 Coverage and resolution effects

To estimate how the coverage and resolution of contact maps
affected the annotation of CIDs by the domain callers, we used the
generated pseudo-replicate matrices. We fixed the resolution to
10 kb while testing the effect of coverage (1, 3, 5 and 10 millions of
contacts) and the number of total contacts to 20 million while test-
ing the effect of resolution (3, 5, 10 and 15kb). For all obtained
matrices, the domains were identified as described above. To com-
pare the domains obtained for matrices with different coverage, we
calculated the number of intersecting boundaries for all pairwise
annotations by each tool. To compare the domains obtained for
matrices with different resolutions, we allowed an offset of 30 kb for
boundary positions and calculated the percentage of overlap be-
tween these ‘extended’ boundaries for all pairwise annotations by
each tool.

3 Results

3.1 Genome analysis and simulations can improve

experimental design

The restriction enzyme chosen for a chromosome conformation cap-
ture experiment defines the resolution limit of the contact map
obtained (Pal ez al., 2019). According to general practice for eukary-
otic genomes, four-base cutter enzymes produce shorter restriction
fragments, resulting in higher-resolution contact maps as compared
to six-base cutters (Lajoie et al., 2015). While this might also be true
for some bacterial species, it may be difficult in many cases to deter-
mine whether a four- or six-base cutter would produce a better con-
tact map. For example, when comparing B.subtilis contact maps
created with Hpall (4-cutter) and HindIIl (6-cutter) restriction
enzymes (Supplementary Fig. S1A), it is obvious that the four-cutter
enzyme outperforms the six-cutter. However, for C.crescentus con-
tact maps created with two different six-cutter enzymes, Ncol and
BglIl, the difference in map quality is also quite dramatic, with Ncol
yielding a better contact map (Supplementary Fig. S1B). This vari-
ance can be explained by the diversity of prokaryotic genomes with
respect to GC content and restriction-site density, suggesting that
these parameters should be taken into consideration when selecting
a restriction enzyme for the Hi-C/3C-seq library preparation.

To analyze how GC content and genome heterogeneity may af-
fect the outcome of a prokaryotic chromosome conformation sur-
vey, we collected a representative set of bacterial and archaeal
genomes (N =1867) and performed in silico digestion experiments.
The restriction fragment sizes that directly impact the quality of the
contact map were highly dependent on the GC content of the gen-
ome (absolute value of Spearman’s r>0.62, P-value < 0.001),
where enzymes with GC- and AT-richer recognition site sequences
more frequently cut genomes with high and low GC content, re-
spectively (Fig. 1A).

To develop a methodology for evaluating whether a restriction
enzyme is suitable for an experiment and for estimating an enzyme’s
resolution limit and potential contact map quality, we simulated
genome digestion and Hi-C sequencing for B.subtilis and
C.crescentus for which real Hi-C data were available. We utilized
the restriction enzymes previously used in the Hi-C protocols for
these species and downsampled the number of contacts to the same
value found in the experimental data (Fig. 1B and Supplementary
Fig. S2A). We binned each of the simulated and experimental maps
across a range of resolutions (3, 5, 10 and 15kb) and compared
them by calculating the fraction of non-zero cells in the map. These
values appeared to be highly correlated (Pearson’s » > 0.98, P-value
< 0.001) between simulated and experimental B.subtilis maps
(Fig. 1C) for both Hpall and HindIII enzymes. Given a certain num-
ber of contacts, this metric can be used to estimate the upper-bound
map resolution achievable for a specific genome-enzyme combin-
ation. When comparing rows and columns containing only zeros,
which represent ‘problematic’ bins with an extremely large or small
number of restriction sites and/or low chromatin accessibility, we
observed that the experimental maps were reproduced in the simula-
tion at both 5 and 10kb resolutions (Fig. 1D). Similar results were
obtained from the C.crescentus simulations with the Ncol and BglII
restriction enzymes (Supplementary Fig. S2B and C). Taken to-
gether, these results show that our simulation represents the real
data quite well and can be used during the design of a prokaryotic
Hi-C experiment.

To illustrate the practical relevance of the suggested method, we
applied this procedure to several bacterial genomes with widely
varying GC content (29-66%) for which the 3D genome structure is
yet to be elucidated. As expected, we observed that simulations with
restriction enzymes that have theoretically shorter restriction frag-
ments produced much better contact maps. Moreover, there was a
clear positive association between bacterial GC content, restriction
site GC content and map quality (Supplementary Fig. S3), support-
ing our hypothesis that it is important to select an optimal restriction
enzyme for each prokaryotic species during Hi-C analysis.
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3.2 Domain annotations vary significantly between the

tools

Previous analyses of prokaryotes using Hi-C technology revealed
several layers of their 3D architectural organization, such as com-
partments (Takemata et al., 2019), macrodomains (Lioy et al.,
2018) and CIDs (Le et al., 2013). To annotate the latter, it is neces-
sary to have: (i) a high-resolution contact map, typically not less
than 15kb, and (ii) a suitable algorithm for domain calling. One
current limitation is that most domain calling algorithms have been
developed for eukaryotes, whose domains appear slightly differently
on contact maps. We therefore aimed to perform a comprehensive
benchmark of the available domain callers to determine their poten-
tial application to prokaryotes.

For the comparative analyses, we used experimental 3C data
from five prokaryotic studies that had different numbers of samples
and involved protocols with different restriction enzymes
(Supplementary Table S1). A uniform data processing pipeline was
applied to all samples to increase the comparability of the results
and facilitate the CID calling procedure. We compared the perform-
ance of 29 common domain callers using two metrics: the JI, which
measures the normalized overlap between annotated domain boun-
daries, and the MoC, which calculates the overall silhouette similar-
ity between two CIDs’ segmentations of a genome.

Opverall, the CIDs’ segmentations between the biological repli-
cates appeared to be rather stable and were identified by all tools
(Supplementary Fig. S4); nevertheless, the exact positions of the

boundaries remain ambiguously mapped as measured by the JI and
MoC metrics (Fig. 2A and B, respectively). The domain-annotation
similarities were very high across all tools except HiCExplorer and
ClusterTAD (median MoC of 0.71), while the median boundary re-
producibility was lower (median JI of 0.35) and only seven tools had
JIscores above 0.5.

Across all prokaryotic datasets, lavaburst.modularity, HiCseg,
Insulation Score and Directionality Index showed the highest repro-
ducibility of boundaries (JI > 0.55) and the highest concordance be-
tween domains (MoC > 0.83) for biological replicates within the
same study.

Surprisingly, four out of five tools demonstrating the lowest con-
sistency between boundaries (deDoc, GMAP, IC-Finder and
TADtree) had the average level of concordance for the domain posi-
tions themselves (Fig. 2A and B). However, the robustness of the
boundary annotations was generally superior, since this metric is in-
dependent of the number of CIDs, their sizes and their relative
positions.

To evaluate the consistency of domain boundaries as identified
by different tools for the same dataset, we calculated how frequently
each tool’s annotated CID boundaries were identified by other tools
(the percentage of shared boundaries; Supplementary Fig. S5A). On
average, all tools had comparable proportions of shared boundaries
(~85%), however, most of them tended to be shared with only one
to four other tools. Among all tools, IC-Finder, lavaburst.variance
and EAST had the highest proportion of unique boundaries—i.e.
those that were not detected by any other tool—while TopDom,
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Fig. 2. Comparative analysis of annotated domains in prokaryotes. Swarm plots of the JI (A) and MoC (B) metrics for pairwise comparison of domain segmentations between
biological replicates. Tools are ordered by median JI value, from highest to lowest. Each dot represents the average score for a single dataset. Black lines represent the median
value for each metric across all datasets. (C) Bubble chart for the number of CIDs (represented by bubble size) and their median sizes (represented by colour-scale) annotated

by each domain caller for each dataset

OnTAD and TADpole had the highest proportion of shared bounda-
ries (>50% were detected by more than five other tools).

We also examined the internal properties of the annotated
domains. The number and sizes of the CIDs annotated by different
tools varied considerably when compared between biological repli-
cates (Fig. 2C). For example for E.coli, EAST annotated on average
225 domains per replicate, while TADpole identified an average of
only seven. For all datasets, Arrowhead annotated the fewest CIDs
(66 in total), while TADbit annotated the most (704 in total). The
median CID sizes for both C.crescentus contact maps at a resolution
of 10kb ranged from 40kb for CaTCH and MrTADFinder to
610kb for GMAP. Moreover, some tools (GMAP, TADpole and
HiCExplorer) consistently annotated larger CIDs than the others.

Notably, while some CID segmentations covered most of the
genome (e.g. greater than 90% coverage with lavaburst.modularity,
HiCseg, Insulation Score, Directionality Index, TADbit,

Chromosight, TopDom, Spectral TAD, chromoR and TADpole), al-
most one-third of the tools did not produce continuous CID segmen-
tations (e.g. less than 40% coverage with CaTCH, HiCExplorer,
Armatus, Arrowhead, CHDF, IC-Finder and EAST), omitting al-
most half the genome (Supplementary Fig. S5B).

We additionally evaluated the running time of each tool using 5
and 10 kb contact maps (Supplementary Fig. S6). The running time
of most tools did not exceed 30s for a Skb and 5s for a 10 kb con-
tact map, respectively.

3.3 Coverage and resolution might affect CID
identification performance

To investigate the impact of coverage and resolution on the identi-
fied domains, we generated contact maps of pseudo-replicates using
a merged E.coli dataset for a range of contact numbers and
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resolutions that represent the actual parameters of the prokaryotic
Hi-C experiments.

All tools except Arrowhead, CHDF and spectral showed high
agreement of the CID boundaries annotated at different coverages
(Supplementary Figs S7 and S8). On the other hand, some but not
all of the tools (e.g. lavaburst.corner, lavaburst.modularity and
Directionality Index) robustly annotated CIDs across different reso-
lutions (Supplementary Figs S9 and S10). Generally, the concord-
ance of each tool’s CID segmentations was higher across varying
contact map coverage depths (median MoC of 0.76) than across
varying contact map resolutions (median MoC of 0.46).
Lavaburst.modularity and lavaburst.corner exhibited the best per-
formance across coverage depth and resolutions, respectively.
Overall, lavaburst.modularity, HiCseg, Insulation Score and
Directionality Index demonstrated robust CID detection across the
selected set of coverage depths and resolutions, similarly to their per-
formance with the prokaryotic datasets chosen for this study.

Domain callers should exhibit consistent annotation of compar-
ably sized CIDs across coverage depths as well as an inverse rela-
tionship between CID size and map resolution. Therefore, we
categorized all tools according to these criteria by calculating their
median annotated domain sizes (Fig. 3A and B). As expected, most
tools demonstrated the proper responses to changes in both coverage
and resolution. However, the predictions of a number of the tools
(HiCExplorer, lavaburst.variance, ClusterTAD, Arrowhead,
TADtree and TADpole) failed to exhibit the desired trends.

Overall, the results demonstrate that some of the domain calling
algorithms that we benchmarked are insensitive to the coverage and
resolution of the contact map (Fig. 3C), which makes them suitable
for use on prokaryotic datasets with varying sequencing depths and
resolutions.

3.4 Validation of identified domains using gene

expression data

While the robustness of CID detection across replicates supports the
technical relevance of a given algorithm, the concept of CIDs is op-
erational rather than ultimate and therefore requires validation from
additional layers of biological information. For a number of bac-
teria, CID boundaries have been reported to be enriched in highly
expressed genes and NAPs (Dame et al., 2020). Therefore, the level
of their abundance at CID boundaries, as compared to the regions
within CIDs, is a potential measure of the quality of annotated
domains.
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We further validated the domain annotations produced by the
four  best-performing tools (lavaburst.modularity, HiCseg,
Insulation Score and Directionality Index, as discussed above) by
calculating genome-wide expression levels for C.crescentus,
B.subtilis and E.coli with available RNA-seq data and comparing
expression distribution at and between CID boundaries
(Supplementary Figs S11 and S12). This analysis revealed that, sur-
prisingly, lavaburst.modularity, the tool that had the highest JI and
MoC scores across all datasets, demonstrated a very poor enrich-
ment of gene expression at the boundaries for B.subtilis and E.coli
(Wilcoxon signed rank test, P-value > 0.1). However, Insulation
Score and Directionality Index, which did not exhibit the best repro-
ducibility scores, produced results that aligned more closely with
expected patterns, showing a statistically significant increase in ex-
pression around CID boundaries for all three bacteria when validat-
ing domain boundaries with RNA-seq data (Wilcoxon signed rank
test, P-value < 0.05). This example shows that in some cases, a high
concordance between the CID boundaries has nothing in common
with the underlying biology, driven by transcription and protein oc-
cupancy of DNA, and is only an intrinsic property of the domain
caller and the segmentation itself.

4 Discussion

Our initial attempt to comparatively analyze domain calling algo-
rithms for use with prokaryotes led to a further effort to optimize
experimental designs by selecting the best restriction enzyme for a
specific microbe. Notably, variable GC content and restriction site
distribution along the genome imply local deteriorations in the qual-
ity of Hi-C contact maps, particularly in the vicinity of horizontal
gene transfer hotspots in prokaryotes (Ravenhall et al., 2015). To
address these issues, one can use a mixture of two or more restric-
tion enzymes to capture more contacts and improve the map quality.
Our in silico analysis showed that it is possible to use computational
methods to accurately predict which restriction enzymes are appro-
priate for an experiment. This method could be especially useful for
experiments that involve microbiome samples containing bacterial
species which may have either low or high GC content.
Additionally, conducting preliminary profiling of a microbiome
composition using cost-effective methods like 16S rRNA sequencing
could help to evaluate both community structure and the extent of
GC variability across its member taxa. The proper choice of restric-
tion enzyme also has implications for advanced applications of Hi-C
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Fig. 3. Properties of the domains annotated at different coverage depths and resolutions. Clustered heatmaps of the median size of CIDs annotated in the E.coli pseudo-repli-
cates across different (A) coverages and (B) resolutions. (C) Scatter plot of the t-SNE performed on the matrix of MoC values across coverage and resolutions and JI values
obtained for the segmentations between biological replicates. Clusters were annotated using the k-means clustering algorithm


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa555#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa555#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa555#supplementary-data

4566

M.D.Magnitov et al.

to metagenomic data, such as the binning and assembly of MAGs
(DeMaere et al., 2019) as well as the identification of microbial
hosts for phages and antibiotic-resistance genes (Stalder et al.,
2019). While our observations may prove useful for the design of
experiments with prokaryotes, they are not the only relevant crite-
ria; other factors like methylation sensitivity and reaction conditions
may also be important for the selection of restriction enzymes.

Next, we used a curated list of publicly available wild-type mi-
crobial Hi-C datasets to evaluate the domain callers. Bacterial
mutants were intentionally excluded from our analysis to avoid con-
founding effects; however, our recommendations may also facilitate
the investigation of chromosome packaging mechanisms in bacteria
based on genome-perturbation models. Since data are available for
only a single strain per species, we note that CIDs may vary greatly
across related strains of the same species. In the future, it would be
interesting to explore how domain positions are associated with
translocations of genes and operons, polymorphisms and other
inter-strain genomic differences. It would also be interesting to in-
vestigate how CIDs vary across different environmental conditions
(heat or cold shock, osmotic stress, etc.), as well as in different
growth phases, since changes in gene expression can dramatically af-
fect bacterial genome conformation and vice versa (Shen et al.,
2019; Wolf et al., 1999).

We developed three basic criteria to identify high-quality domain
calling algorithms. First, the algorithm should be technically robust,
which means that it should produce similar results for two contact
maps of experimental replicates. A higher concordance between
these contact maps implies a better domain annotation, as supported
by our observations from the analyzed pseudo-replicates. Notably,
it was at this stage that considerable variability between the tools
was detected and superior tools were selected (lavaburst.modularity,
HiCseg, Insulation Score and Directionality Index). Second, a good
algorithm should yield CIDs that are not dependent on the coverage
and resolution of the Hi-C data. Interestingly, most of the evaluated
tools succeeded in this respect, which makes them suitable to use for
prokaryotic datasets that vary in sequencing depths and resolutions.
Furthermore, the tools are also applicable for Hi-C analyses of
microbiomes, where the relative abundance of different microbes
can vary by orders of magnitude. Third, a good algorithm should
produce CIDs that are concordant with the other biological proper-
ties of the organism, as reflected by linear genomic features such as
gene expression, gene density and operon structures, histone-like
proteins and NAPs binding. We utilized RNA-seq data as an ex-
ample to show how such data can be used to assess the reliability of
domain annotation. Our results showed that when selecting a tool,
it is important to remember that it might be robust technically but
not biologically. In particular, among the four tools that were highly
ranked in terms of concordance between replicates and coverage
and resolution stability (lavaburst.modularity, HiCseg, Insulation
Score and Directionality Index), only two performed well in terms
of correlation between CID boundaries and gene expression. To put
these results in perspective, it would be intriguing to evaluate the ex-
tent of the association of gene expression and CIDs across the di-
verse branches of the prokaryotic tree of life, and how this
association scales with the size of genes and operons.

When comparing the performance of the tools described here
with the previously published benchmarks (Supplementary Table
S4), we have found that the list of the tools exhibiting high reprodu-
cibility between the biological replicates is remarkably the same.
However, some algorithms shown to work well for eukaryotic data-
sets failed to reliably annotate prokaryotic CIDs or were not effi-
cient as measured by other metrics. While comparing the sensitivity
to coverage and resolution of the contact maps, the majority of the
tools presented here are more robust to coverage than to resolution,
similar to the results reported previously. Despite the overall frac-
tions of the shared domain boundaries being generally lower for
prokaryotes, the top-scoring algorithms from our list were able to
produce the biologically relevant results supported by the gene ex-
pression data.

We note that the very concept of prokaryotic CIDs is yet to be
validated by observations of a wider range of single microbes. A

major hurdle in partitioning bacterial genomes into contact domains
is that CID boundaries are not stable; perhaps, more precise descrip-
tions such as insulation profiles or preferential contact distributions
should be examined without generalizing to the domain level.
Single-cell prokaryotic Hi-C experiments might prove useful here, as
they capture alternative 3D genome conformations that are distinct
from cell to cell. Apparently, some prokaryotes may not even mani-
fest domain structure, as has been shown in archaea in two
Sulfolobus species (Takemata et al., 2019). It remains to be explored
which phylogenetic branches exhibit defined 3D patterns in their
genomic structure, as well which conditions pertain to those
patterns.

The applicability of our recommendations might be affected by
the many other factors that play a role in 3C experiments, such as
the variable efficacy of bacterial genome fixation, ligation and re-
striction, the thickness of prokaryotic cell walls, etc. However, the
general methodological advice and optimal run parameters that we
identified for the domain callers that we benchmarked are more gen-
eral and may facilitate future studies in the 3D genomics of prokar-
yotes, as well as serve as a reference when performing CID
identification for microbes. We anticipate that our analysis will pro-
vide guidelines for further investigations of prokaryotic genome or-
ganization using high-throughput chromosome conformation
capture methods.
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