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Fast and robust population transfer 
with a Josephson qutrit via shortcut 
to adiabaticity
Zhi-Bo Feng, Xiao-Jing Lu  , Run-Ying Yan & Zheng-Yin Zhao

We propose an effective scheme to implement fast and robust population transfer with a Josephson 
qutrit via shortcut to adiabaticity. Facilitated by the level-transition rule, a Λ-configuration 
resonant interaction can be realized between microwave drivings and the qutrit with sufficient 
level anharmonicity, from which we perform the reversible population transfers via invariant-based 
shortcut. Compared with the detuned drivings, the utilized resonant drivings shorten the transfer 
times significantly. Further analysis of the dependence of transfer time on Rabi couplings is helpful to 
experimental investigations. Thanks to the accelerated process, transfer operation is highly insensitive 
to noise effects. Thus the protocol could provide a promising avenue to experimentally perform fast and 
robust quantum operations on Josephson artificial atoms.

Behaving as a fundamental coherent control, quantum population transfer (QPT) is a critical issue in the con-
text of quantum information science and state engineering1–5. The pursuit of QPT in an accelerated manner 
has been an interesting topic recently. This is mainly because target state transfer can be accomplished rapidly, 
which thus makes the decoherence effects on quantum operations reduced greatly. For performing the fast QPT, 
some novel strategies have been put forward during the past years6–10. Particularly, there has been a great deal 
of investigations on shortcuts to adiabaticity (STA), a set of methods consisting of invariant-based inverse engi-
neering11,12, transitionless quantum driving13–15 and fast-forward scaling16. Compared to the adiabatic process, 
the STA can carry out nonadiabatically the accelerated state transfer within a much shorter time while remaining 
the high robustness against parameter fluctuations17–20. By means of a counter-diabatic driving, one can steer 
the rapid evolution of a system. The technique of transitionless quantum driving has been adopted widely for 
nonadiabatically addressing the dynamical behaviors and state engineering with different systems21–25. Much 
effort has also been invested toward the accelerated population transfers with two- and three-level systems via the 
invariant-based shortcut11,26–28.

Artificial atoms of superconducting quantum circuits are one of the most appealing candidates for quantum 
information processing29–31. By the external bias voltages and magnetic fluxes, population transfer with the arti-
ficial atoms have attracted considerable attention both theoretically and experimentally32–38. However, for the 
practical implementation of QPT, the noise-induced decoherence effects on superconducting artificial atoms are 
severe generally39–41. Isolating the considered system from the surrounding noises is a widely adopted approach to 
implement robust quantum operations. Alternatively, the exploration of fast QPT within a shorter time is highly 
preferable to diminish the decoherence effects. Based on the technique of STA, many valuable strategies for accel-
erating quantum operations with Josephson quantum circuits have been studied increasingly42–45. Very recently, 
an efficient protocol has been proposed for speeding up QPT in a transmon qutrit via the invariant-based short-
cut46, in which a Λ-type qutrit was reduced into an effective two-level system after adiabatically eliminating the 
intermediate state in the large detuning regime. It is found that the largely-detuned drivings could lead to slower 
operations than that induced by the resonant drivings. In another work47, assisted by a counter-diabatic driving, 
the accelerated QPT in a Δ-type qutrit has been explored using a Josephson charge-phase quantum circuit, where 
three different microwave drivings need to be applied to the qutrit simultaneously.

Inspired by the above remarkable progress, we develop a promising scheme for performing fast and robust 
QPTs with a charge-phase qutrit via invariant-based inverse engineering. At a magic bias point, the first three 
levels constitute our qutrit. Allowed by the level-transition rule, we obtain a Λ-configuration resonant interaction 
between the qutrit and microwave drivings, containing a microwave gate voltage and a time-dependent bias flux. 
By the technique of invariant-based STA, we address the reversible population transfer in an accelerated way. 
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Particularly, for speeding up transfer operations, the utilized resonant drivings in our scheme outperform the 
detuned drivings remarkably. The time dependence of coherent transfer on Rabi couplings could provide the 
experimental performance with some optimal choices. With the accessible decoherence rates, the protocol pos-
sesses high robustness due to a short operation time. So, the proposed QPT with the qutrit driven by two resonant 
drivings could offer a potential approach to experimentally implement fast and robust transfer operations on 
Josephson artificial atoms.

System and Model
As schematically depicted in Fig. 1, a Cooper-pair box (CPB) circuit under consideration includes a supercon-
ducting box with n extra Cooper pairs, in which the charging energy scale of the system is Ec. Through two sym-
metric Josephson junctions (with the identical coupling energies EJ and capacitances CJ), the CPB is linked to a 
segment of a superconducting ring. In the charge-phase regime48, the characteristic system parameter EJ has the 
same order of magnitude as Ec, which satisfy Δ ≫ EJ ~ Ec ≫ kBT, in which the large energy gap Δ prohibits the 
quasiparticle tunneling, and kBT stands for a low energy of thermal excitation. The CPB is biased by a static volt-
age Vd through a gate capacitance Cg. Meanwhile, a static magnetic flux Φd through the ring aims at adjusting the 
effective Josephson coupling EJd. An ac gate voltage ∼Vs is applied to the box through gate capacitance Cg as well, 
and a time-dependent flux Φ∼p threads the ring. Here the microwave drivings are used to induce the desired level 
transitions46,49, as mentioned below.

In the absence of the microwave drivings ∼Vs and Φ∼p, the static Hamiltonian of the CPB system is given by 
H0 = Ec(n − nd)2 − EJdcos θ, in which Ec = 2e2/Ct, with Ct = 2CJ + Cg being the total capacitance, and θ denotes the 
average phase difference of the two junctions, which is canonically conjugate to n, namely, [θ, n] = i. The polarized 
gate charge induced by Vd is nd = CgVd/2e, and π= Φ

Φ( )E E2 cosJd J
d

0
 is the effective Josephson coupling, in which 

Φ0 = h/2e indicates the flux quantum. Within the basis of Cooper-pair number states +n n{ , 1 }, the above 
Hamiltonian can be formally rewritten as
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where the first term is the charging energy, and the second one represents the Josephson coupling.
In light of Eq. (1), we can obtain the eigenlevels and eigenstates of the static charge-phase system. With the 

Josephson coupling EJ = Ec, we get EJd = 1.3Ec by adjusting Φd. And then the first three levels Ej versus nd are plot-
ted in Fig. 2, with j = 1, 2, and 3. At a magic point of nd = 0.5, we deal with three eigenstates | 〉sj , in which each state 
can be expressed as a superposition of Cooper-pair number states, i.e., | 〉 = ∑s c nj n jn , with cjn being the superpo-
sition coefficients. The quantum states at the magic point are insensitive to the first-order dephasing effect, which 
thus contributes to prolong the decoherence time of the system48. Driven by the considered microwave fields, the 
first three levels at the magic point can be decoupled from the fourth level due to the prohibition of the 
level-transition rule47. Thus the three-level subspace s s s{ , , }1 2 3  is selected to constitute an effective qutrit 
under consideration. It is found that level anharmonicity in the qutrit is enough, leading to energy spacings 
ω32 = (E3 − E2)/ℏ and ω21 = (E2 − E1)/ℏ far away from each other. The sufficient anharmonicity can eliminate the 
leakage errors induced by the coherent drivings, which is highly beneficial for performing robust population 
transfer with the qutrit35,49.

As shown in Fig. 3, two classical microwave drivings Φ∼p = Φpcos(ωpt) and ∼Vs = Vscos(ωst), acting as the corre-
sponding pump and Stokes fields, are applied to induce the desired level couplings ↔s s1 3  and ↔s s2 3 , 

Figure 1. Schematic diagram of the considered artificial atom of a Josephson circuit driven by two microwave 
fields.
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respectively, where the microwave frequency ωp (ωs) is resonantly matched with the transition frequency ω31 
(ω32)47. Note that the amplitudes Φp and Vs are controllable here. Different from the previous works that induced 
level transitions only via electrical interactions35,49, the present scheme adopts both ac voltage and time-dependent 
bias flux. Owing to the sufficient level anharmonicity, there exists a large detuning δs = ωs − ω21, and thus the ∼Vs
-induced transition between s1  and s2  vanishes nearly. Since the amplitude Φp (Vs) is much smaller than Φd (Vd) 
in our scenario, the effects of Φp and Vs on the eigenlevels can be ignored safely.

In our scheme, we treat a Λ-type interaction between the qutrit and the microwave drivings. The magnetic 
interaction between the CPB system and the bias flux Φ∼p reads

∑= − + + . .H
E

n n H c
2

( 1 ),
(2)p

Jp

n

which has a non-diagonal coupling form within the basis n . The amplitude of Φ∼p is much smaller than Φ0, which 
yields π
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Φ

Φ



cos 1p

0
 and π π
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Φ

Φ

Φ

Φ

 

sin p p

0 0
. In this situation, the Josephson coupling induced by the time-dependent 

bias flux becomes π=
πΦ

Φ
Φ
Φ

 ( )E E2 sinJp J
p d

0 0
. Facilitated by the parity-symmetry determined selection rule50, the 

magnetic interaction Hamiltonian Hp gives rise to the direct coupling between s1  and s3  at nd = 0.5, the transi-
tion element of which is given by ω= Ωs H s tcos( )p p p1 3 , in which

Figure 2. The first three eigenlevels Ej of the CPB system vs the gate charge nd, with j = 1, 2, and 3. The system 
parameters are Ec/h = 3.3 GHz and EJd = 1.3Ec. Level states s1 , s2 , and s3  are chosen at nd = 0.5. Here E1 has 
been taken as the zero-energy reference.

Figure 3. A Λ-configuration interaction between the qutrit and the microwave drivings Φ∼p and ∼Vs with the 
corresponding frequency ωp and ωs.
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denotes the relevant Rabi coupling, and = ∑ | | + | + . . | ″′
″ ″′ ′ ⟨ ⟩⟨ ⟩⁎O c c n n n H c n( 1 )n n n n n13 , , 1 3  is the overlap between 

| 〉 = ∑ | ′〉′ ′s c nn n1 1  and | 〉 = ∑ | ″〉″ ″s c nn n3 3 , where n′ and n′′ are Cooper-pair numbers.
The interaction Hamiltonian between the microwave pulse ∼Vs and the CPB system takes a diagonal form,

∑= − −H E n n n n n2 ( ) ,
(4)s c s

n
d

where ns = nscos(ωst), with ns = CgVs/2e. Here the fast oscillating term ns
2 with a higher frequency 2ωs has been 

omitted well under the rotation wave approximation (RWA)35. The ∼Vs-induced transition matrix element between 
s2  and s3  takes =t s H ss23 2 3 . In terms of = ∑s c nn n2 2  and = ∑s c nn n3 3 , we then have t23 = Ωscos(ωst), 
where

Ω = − E O n2 (5)s c s23

indicates the Rabi coupling, with = ∑ − ⁎O n n c c( )n d n n23 2 3  being the overlap between s2  and s3  at the bias point nd.
Within the eigenstate basis of s s s{ , , }1 3 2 , the Λ-configuration interaction under the reference frame rotat-

ing at frequencies ωp and ωs can be expressed as

=







Ω

Ω Ω

Ω







H
2

0 0
0

0 0
,

(6)
I

p

p s

s



where the RWA has been adopted and the two-photon resonance is satisfied, i.e., ω31 − ωp = ω32 − ωs = 0. 
Obviously, the Hamiltonian in Eq. (6) has a dark eigenstate with zero eigenenergy, which is a superposition of s1  
and s2 . Through adiabatically adjusting the Rabi couplings, population transfers can be implemented within the 
subspace s s{ , }1 2  when the system evolves only along the dark state1. However, the adiabatic operations gener-
ally need long times, which are undesirable for some artificial systems with short decoherence times.

Results
Fast population transfer via invariant-based STA. The instantaneous eigenstates |ψn〉 (with n = 0, ±) 
of the Hamiltonian in Eq. (6) are

ψ
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θ
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where θ = arc tan(Ωp/Ωs), and the corresponding eigenvalues are E0 = 0 and = ± Ω + Ω±E /2p s
2 2 , respectively. 

In ref.51, Lewis and Riesenfeld derived a useful relation between the solutions of the Schrödinger equation of a 
system with time-dependent Hamiltonian and the eigenstates of the corresponding invariant. Based on the 
invariant-based inverse engineering, we can speed up the population transfer significantly. In the following, we 
construct a desired dynamical invariant. The Hamiltonian in Eq. (6) can be rewritten as
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where T̂x, T̂y and T̂z are spin-1 angular momentum operators52,
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The matrices T̂x, T̂y, and T̂z satisfy the commutation relations
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The Hamiltonian in Eq. (6) possesses SU(2) dynamical symmetry53. Thus the relevant dynamical invariant, 
meeting the condition dI/dt ≡ ∂I(t)/∂t + (1/iℏ)[I(t), HI(t)] = 0, can be constructed as
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where Ω0 is an arbitrary constant with units of frequency to keep I(t) with dimensions of energy. Consequently, 
the eigenstates of the invariant I(t), which satisfy I(t)|φn〉 = λn|φn〉, can be obtained as

φ
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γ
γ β
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−
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0

and
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2

sin cos sin
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(13)

whose eigenvalues are λ0 = 0 and λ± = ±Ω0/2, respectively.
According to Lewis-Riesenfeld theory51,54,55, the dynamics of the three-level system is generally governed by a 

superposition of orthonormal dynamical modes51,

∑ φΨ = αt C e t( ) ( ) ,
n

n
i

n
n

where each Cn is a time-independent amplitude and the Lewis-Riesenfeld phases αn are defined as


∫α φ φ= ′
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∂
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In the case of three-level system, we have α0 = 0 and

∫α β γ β β γ=
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t
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where the dot represents a time derivative. Because of dI/dt = 0, the time-dependent parameters γ and β are 
related to Rabi frequencies Ωs,p by the following equations,

β γ β γ βΩ = −


2( cot cos sin ), (16)s

β γ β γ βΩ = + .


2( cot sin cos ) (17)p

Once the appropriate boundary conditions for γ and β are fixed, the Rabi frequencies Ωs and Ωp are deter-
mined to perform the desired population transfer from an initial state to a final one12.

To keep the state stationary at initial and final times, we set the boundary conditions for β and γ as follows,

β β= =  t(0) 0, ( ) 0, (18)f

γ γ= =
 

t(0) 0, ( ) 0, (19)f

which imply Ω(0) = Ω(tf) = 0, meanwhile HI(t) and I(t) are commutative with each other at both the initial time 
t = 0 and final time t = tf. Only along the invariant eigenstate φ t( )0  in Eq. (12), the Hamiltonian HI(t) in Eq. (6) 
can drive an initial state |s1〉 = (1, 0, 0)T to a target state |−s2〉 = (0, 0, −1)T after a duration time tf, where the 
superscript T stands for matrix transposition. Based on Eqs (16) and (17), the boundary conditions of γ and β can 
be given by

β β π
= =t(0) 0, ( )

2
, (20)f

γ γ= = .t(0) 0, ( ) 0 (21)f

Now we design β(t) and γ(t) as polynomial ansatz,

∑β =
=

t b t( ) ,
(22)j

j
j

0

3

which satisfies the conditions in Eqs (18) and (20). And

∑γ =
=

t a t( )
(23)j

j
j

0

4

meets the conditions in Eqs (19) and (21). Without loss of generality, we have reset a small value ε for the bound-
ary conditions12
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γ ε γ ε γ π= = =t t(0) , ( ) , ( /2) /4, (24)f f

avoiding the infinite Rabi frequencies at the initial time t = 0 and final time t = tf.
In what follows, we concentrate on the physical realization of the shortcut-based population transfer with the 

available parameters. At the considered magic point nd = 0.5, the overlap between states s2  and s3  induced by the 
electric interaction takes O23 = −0.468. By means of the adjustable ns(t), the Rabi frequency Ωs(t) is time depend-
ent. When the amplitude is chosen as ns = 5.8 × 10−2, the maximum value of Ωs can reach up to πΩ = ./2 0 18s

m( )  
GHz for Ec/h = 3.3 GHz. Similarly, with the time-dependent bias flux Φp(t), Rabi coupling Ωp(t) can be controlled 
as well. With Φp/Φ0 = 3.2 × 10−2 and Φd/Φ0 ⋍ 0.275, the maximum Rabi coupling takes πΩ = ./2 0 18p

m( )  GHz for a 
magnetic interaction-induced overlap O13 = −0.714.

As displayed in Fig. 4(a,b), using the polynomial ansatz in Eqs (22) and (23), we have the time-dependent Rabi 
couplings Ωs,p, by which the target population inversion from s1  to −s2  can be accomplished after a duration 
time tf = 16.8 ns. Even with the slightly diminished couplings πΩ = ./2 0 16s p

m
,

( )  GHz47, the transfer time is about 
19 ns, much shorter than the adiabatic transfer time ~150 ns as discussed in ref.47. Here the transferred probability 
amplitude from the initial state s1  to target state −s2  can be formally expressed as

φ ε= − 〉 =→P s t( ) cos , (25)f1 2 2 0

where φ| 〉t( )f0  is the final state at t = tf. For a chosen ε = 0.02 in our scheme, we get P1→2 = 99.98%, which is high 
enough for quantum state engineering. As an important and necessary issue for quantum information processing, 
the inverse population transfer from an initial state |−s2〉 to target state |s1〉 has been demonstrated in Fig. 4(d), in 
which the required frequencies Ωs,p as functions of time are given in Fig. 4(c). As a result, the bidirectional state 
transfer |s1〉 ↔ |−s2〉 can be executed flexibly by adjusting the Rabi couplings.

As a distinct advantage, our protocol adopting the resonant two-photon interaction can implement the faster 
transfer operation, when compared with the largely-detuned drivings. For a two-photon resonance but with a 
common detuning Δ, the above Λ-type interaction Hamiltonian becomes


=







Ω

Ω Δ Ω

Ω







H
2

0 0
2

0 0
,

(26)
d

p

p s

s

where Δ = ω31 − ωp = ω32 − ωs. In the large detuning regime Δ ≫ Ωs,p, as mentioned in ref.46, level state |s3〉 is 
scarcely populated during the population transfer |s1〉 ↔ |s2〉. After an adiabatical elimination of the intermediate 

Figure 4. Rabi frequency Ωs and Ωp in (a), and the induced population inversion from |s1〉 to |−s2〉 via the STA 
in (b). The redesigned Rabi frequency Ωs and Ωp in (c) and the inverted population inversion from |−s2〉 to |s1〉 
in (d). The evolution time for the reversible transfer is tf = 16.8 ns, and the parameters is chosen as ε = 0.02.
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state |s3〉, a reduced two-level system within the subspace {|s1〉, |s2〉} can be obtained, whose Hamiltonian can be 
described by


=





−Δ Ω
Ω Δ






H
2

,
(27)

e
e e

e e

with an effective detuning Δ = Ω − Ω Δ( )/(4 )e p s
2 2  and Rabi coupling Ωe = −ΩpΩs/(2Δ). Based on the 

Hamiltonian in Eq. (27), the accelerated population transfers have been studied using the inverse engineering 
approach46. Here our central point of interest is the effect of detuning Δ on the transfer speed. For a state transfer 
from |s1〉 to |−s2〉, as indicated in Fig. 5(a), we analyze the dependence of needed time tf on the detuning Δ for the 
utilized πΩ = ./2 0 18s p

m
,

( )  GHz. It is obvious that the evolution time tf increases with Δ. When Δ/2π = 1.0 GHz as 
chosen in46, the transfer time increases up to 46 ns. Physically, the dispersive interaction between |s1〉 and |s2〉 is 
built after the adiabatical elimination of the auxiliary state |s3〉, thereby the transfer process will be slowed down 
in contrast to the resonant case.

In addition, we address the required transfer time tf versus the maximum Rabi couplings Ωs p
m
,

( ), which is a cru-
cial issue in the context of the invariant-based STA for speeding up quantum operation. Generally, tf gets reduced 
with the increase of Ωs p

m
,

( ), consistent with the Heisenberg uncertainty relation. As shown in Fig. 5(b), we numeri-
cally illustrate the dependence of tf on Ωs p

m
,

( ) in the resonant regime. Clearly, the suitable enhancement of Ωs p
m
,

( ) with 
the available parameters is a feasible way for realizing the faster population transfer experimentally.

Robustness against decoherence effects. Without dissipation effects, one could obtain an ideal popu-
lation transfer with conversion probability Pid = 1. However, owing to the decoherence effects originating from 
energy relaxation and dephasing, the system evolution becomes dissipative. By adopting the standard dissipation 
theory, we next treat the decoherence effects on the population transfer. After tracing out the environmental 
degrees of freedom56, we have the reduced density matrix ρ which is associated with s1 , s2 , and s3 . For a weak 
coupling between the qutrit and the environment57, by taking the Born-Markov approximation, the dynamical 
evolution of ρ can be characterized by the Lindblad-type master equation58–60

ρ ρ ρ= − +
d
dt

i H[ , ] £( ), (28)I

in which the first term governs the unitary evolution subject to a Λ-type driving, and the second term47

∑ρ γ σ ρ
γ

σ ρ=







+







ϕ

=

≠

−D D£( ) [ ]
2

[ ]
k l

k l
kl kl

kl

z
kl

, 1,2,3

( ) ( )
( )

( )

contains the possible relaxations and dephasing effects caused by the noisy environment. Here γ(kl) and γϕ
kl( ) are the 

relaxation rate and dephasing rate regarding states k  and l , respectively, and ρ ρ ρ ρ= − −† † †D L L L L L L L[ ] (2 )/2, 
with σ= −L kl( ) and σz

kl( ). The inversion operator is defined as σ =− k lkl( ) , and Pauli operator is 
σ = −l l k kz

kl( ) , in which the energy levels satisfy Ek < El.
To quantitatively represent the decoherence effects on the population transfer, we introduce a fidelity as46

φ ρ φ=F t t( ) ( ) , (29)
i

f
i

f0
( )

0
( )

Figure 5. (a) For the maximum Rabi couplings πΩ = ./2 0 18s p
m
,

( )  GHz, the needed time tf for transferring |s1〉 to 
|−s2〉 vs Δ (in units of 2 π GHz). (b) In the resonant regime with Δ = 0, the transfer time tf vs Ωs p

m
,

( ) (in units of 
2 π GHz). The parameter is taken as ε = 0.02.
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in which φ| 〉t( )i
f0

( )  is an ideal state at a given time t = tf for a complete population inversion, and ρ φ φ= | 〉〈 |t t( ) ( )f f0 0  
denotes the density matrix regarding the realistic state φ| 〉t( )f0 . Specifically, we consider the fidelity F of state 
transfer from s1  to −s2  after an evolution time tf = 16.8 ns. Here assume that γ(13) = γ(23) = γ(12) = γ and 
γ γ γ γ= = =ϕ ϕ ϕ ϕ

(13) (23) (12)  for simplicity. By numerically calculating Eqs (28) and (29), the fidelity F as a function 
of γ and γϕ is displayed in Fig. 6. With the currently accessible decoherence rates γ/2π = 0.05 MHz and 
γϕ/2π = 0.3 MHz61, a robust operation having an inversion probability Pin = 96.42% can be performed with the 
qutrit. Apparently, the high robustness benefits from the rapid process by the shortcut approach.

Additionally, we justify the weak coupling condition for adopting the Lindblad-type master equation in our 
scenario. For the state transfer between |s1〉 and |−s2〉, as given in Fig. 4, it is numerically found that the average 
amplitudes of the time-dependent Rabi couplings Ω s ,p(t) during the evolution processes take 

∫ πΩ = .t dt( ) /2 58 4
t

t
s p

1
0 ,

f

f  MHz, which are much larger than the mentioned relaxation and dephasing rates. 
Specifically, we have Ωs(t)/2π ≥ 3 MHz (Ωp(t)/2π ≥ 3 MHz) when t ∈ [5.65 × 10−3 ns, 16.69 ns] (t ∈ [0.11 ns, 
16.79 ns]), see Fig. 4(a). Thereby, apart from the transient processes of initial and terminal stages, the most evolu-
tion of inducing state transfer meets the required condition well, namely, the decoherence effects are much weaker 
than the Rabi couplings. Moreover, with the currently chosen decoherence rates, the fidelity of state transfer 
between |s1〉 and |−s2〉 can reach up to 96.43% (96.42%) at t = 16.69 ns (16.79 ns), respectively.

Discussion
The present strategy may have the following characteristics and advantages. (i) Compared with the adiabatic 
process of population transfer1, the shortcut-based operation has been sped up sharply and still insensitive to 
timing errors and parameter fluctuations, which thus have a variety of potential applications to quantum coherent 
control and information processing. (ii) Different from the transmon-regime quantum circuit62, our considered 
charge-phase CPB has the sufficient level anharmonicity, and then the driving-induced leakage errors can be 
neglected safely. The suitable level structure is very beneficial to implement the nonleaky quantum manipula-
tion63. (iii) Within the Λ-type qutrit, the two-photon resonant interaction has been constructed in our scheme. By 
applying the invariant-based shortcut to an effective three-level system directly, we realize the faster quantum 
operations than that in the case of the reduced two-level system as utilized in46. (iv) In contrast to ref.47, the 
invariant-based engineering in the proposed protocol keeps Hamiltonian in its original form, which could pro-
vide a more straightforward way to understand the dynamical process. Only two resonant microwave drivings are 
needed for performing the rapid state transfers, in which the decrease in number of the drivings is highly useful 
to the experimental implementation. Besides, the operation time has been shortened significantly from 25 ns 
(with fidelity 99.81%) in ref.47 to 16.8 ns (with fidelity 99.98%) in the present scheme. (v) Facilitated by the direct 
magnetic coupling between s1  and s3 , the present Λ-type qutrit is addressed at the magic point nd = 0.5, which 
is different from the previous works35,50. Then the first-order dephasing effect can be removed effectively, which 
thus enhances the system decoherence time greatly.

In summary, we propose a promising scheme for speeding up the adiabatic population transfer in a Josephson 
qutrit by the technique of invariant-based STA. At the magic working point, the three lower levels constitute an 
effective qutrit with sufficient level anharmonicity. Based on the electric and magnetic couplings, a Λ-type reso-
nant interaction is induced by two microwave drivings. In the resonant regime, we implement the accelerated and 
reversible population transfer via the invariant-based inverse engineering. As a prominent advantage, our pro-
tocol shorten the operation times significantly compared to the largely-detuned drivings. We further analyze the 
time dependence of state transfer on Rabi couplings, which is helpful to possible realizations. With the accessible 
decoherence rates, the rapid transfer operation is highly robust against the noise effects. So the protocol could 
offer an optimal avenue for experimentally investigating fast and robust population transfers with the Josephson 
artificial atoms.

Figure 6. For a considered population transfer from |s1〉 to |−s2〉, fidelity F vs the relaxation rate γ and 
dephasing rate γφ (in units of 2π MHz).
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