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Abstract: Strongyloides spp. are parasitic nematodes that are transmitted through the environment and
are capable of causing disease. These nematodes affect an estimated 3–300 million humans worldwide.
Identifying the environmental reservoirs of Strongyloides spp. is essential for the development of
appropriate control strategies. This systematic literature review examined all published studies
that identified Strongyloides stercoralis, Strongyloides fuelleborni, Strongyloides fuelleborni kellyi, and
Strongyloides spp. from an environmental source. Most studies detected the nematode from
dog and primate fecal samples. Other environmental sources identified were ruminants, cats,
rodents, insects, water, soil, as well as fruit and vegetables. Most studies used microscopy-based
identification techniques; however, several employed molecular-based techniques, which have
become increasingly popular for the detection of Strongyloides spp. A limitation identified was a lack
of studies that comprehensively screened all potential environmental samples in a region. Future
research should undertake this holistic screening process to identify which environmental reservoirs
pose the greatest significance to human health. Potential controls can be identified through the
identification of environmental sources. Understanding where Strongyloides spp. is commonly found
within the environment of endemic areas will inform environmental control strategies to reduce this
neglected disease.

Keywords: Strongyloides spp.; Strongyloides stercoralis; Strongyloides fuelleborni; strongyloidiasis;
environmental reservoirs

1. Introduction

Strongyloidiasis is a disease caused by parasitic nematodes of the genus Strongyloides. Within this
genus, three species, Strongyloides stercoralis, Strongyloides fuelleborni, and Strongyloides fuelleborni kellyi
are known to parasitize humans [1,2].

S. stercoralis, S. fuelleborni, and S. fuelleborni kellyi are capable of autoinfecting the host. This occurs
after adult female parthenogenic nematodes within the infected human shed eggs. These eggs develop
to larvae that are passed within the stool. A certain number burrow through the wall of the large intestine,
thereby reinfecting the body. Infected individuals can have a low-level undetected infection for many
years [3]. When this auto-infective life cycle becomes uncontrolled in immunocompromised, young,
and elderly patients, a disseminated infection can develop. Disseminated infection occurs when the
parasite travels throughout the body. This can result in sepsis, bacterial meningitis, or gastrointestinal
hemorrhage [4]. The mortality rate from a disseminated infection and its comorbidities is estimated to
be 80% [3]. The larvae that are passed within the stool are then capable of completing a free-living
cycle, in which they molt twice to develop into filariform larvae. These infective filariform larvae are
capable of then reinfecting humans, where they can be involved with the autoinfection cycle again [5].

Pathogens 2019, 8, 91; doi:10.3390/pathogens8030091 www.mdpi.com/journal/pathogens

http://www.mdpi.com/journal/pathogens
http://www.mdpi.com
https://orcid.org/0000-0002-5173-0607
https://orcid.org/0000-0001-8940-3508
https://orcid.org/0000-0001-5677-9576
http://www.mdpi.com/2076-0817/8/3/91?type=check_update&version=1
http://dx.doi.org/10.3390/pathogens8030091
http://www.mdpi.com/journal/pathogens


Pathogens 2019, 8, 91 2 of 28

Both S. stercoralis and S. fuelleborni are able to complete their life cycle within animals such as
canids, primates, and insects. Animal species-specific strains of S. stercoralis unable to infect humans
have been identified [6]. This ability for the nematode to reproduce within other animals indicates that
all infected animals’ feces may pose an infection threat to humans.

After excretion in the stool, larvae can survive and reproduce within the environment,
and environmental sources contaminated with larvae can cause reinfection. Although Strongyloides
spp. are classified as soil-transmitted helminths, locations that harbor Strongyloides spp. within the
environment, with the exception of soil, have not been investigated holistically [7,8]. By reviewing
and collating all reported environmental sources of S. stercoralis, S. fuelleborni, and S. fuelleborni kellyi,
environmental interventions can be implemented.

We need a better understanding of the environmental sources of Strongyloides spp.; resistance to
the current anthelminthic drugs has been observed in other Strongyloides spp. [9]. Both environmental
and clinical control of Strongyloides spp. is essential [10]. The aim of this review is to identify all research
reporting S. stercoralis, S. fuelleborni, S. fuelleborni kellyi, and Strongyloides spp. within environmental
sources worldwide.

2. Results

One thousand two hundred and twenty-two papers were retrieved from SCOPUS and Web of
Science using the search terms identified as suitable, as seen in Table 1, with 174 articles identified as
eligible for inclusion.

S. stercoralis was identified in 35% of all studies and S. fuelleborni in 10% of all studies; both
S. stercoralis and S. fuelleborni were identified in 1% of all studies. S. fuelleborni and Strongyloides spp.
were identified in 0.5% of studies, and genus-level identification was identififed in 55% of all studies,
as seen in Table A1. S. fuelleborni kellyi was not identified within any papers.

The most commonly identified reports of Strongyloides spp. were within primates (26% of all
published works), and dogs (14% of all published works), as seen in Table A1. Other animals identified
as environmental sources included cats, ruminants, rodents, and insects. Water, soil, as well as fruit
and vegetables were all also identified as containing Strongyloides spp.

Fifty percent of all studies identifying Strongyloides spp. within primate populations identified the
larvae to genus level only. S. fuelleborni was the next most frequently identified species at 40%. Parasitic
infections were identified more frequently in terrestrial primates than arboreal primates [11,12]. Most
studies (80%) employed microscopy, as seen in Table A1. Proximity to human populations and increased
interaction with human populations was also frequently reported in infected populations [13,14].
Captive primates treated with anthelmintic drugs were also reported as carriers of Strongyloides
spp. [15]. Sample size ranged from 7 to 3349, and prevalence within primate studies ranged from <1%
to 100%, as seen in Table A1.

Domestic and stray dogs were the second most commonly identified source. Fourteen percent of
all studies identifying Strongyloides spp. were within dogs, with sample sizes ranging from 35 to 879
and prevalence ranged from <1% to 45%, as seen in Table A1.

All studies reporting incidences of Strongyloides spp. within ruminant farming animals only
identified Strongyloides to the genus level, as seen in Table A1.

Studies identifying rodents as a source of Strongyloides spp. accounted for 5% of the published
works. Studies identified Rattus rattus, Rattus norvegicus, Mus musculus, Dasyprocta, and Hydrochoerus
hydrochaeris as carriers of Strongyloides spp. [16–22]. Sample sizes for rodent-based studies ranged from
10 to 502. The prevalence ranged from 10% to 97%, as seen in Table A1.

Studies identifying insects within the order Diptera as a source of Strongyloides spp. accounted for
2% of the published works, as seen in Table A1. Identified insects within this order included flies of the
genus Musca spp. and Lucilia spp. All studies identifying Strongyloides spp. within Diptera identified
it from sites within the continent of Africa [23–25]. The sample sizes ranged from 5000 to 9950, and
prevalence was between <1% and 2%.
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Insects within the order Blattodea were identified in 2% of all studies, as seen in Table A1.
Identified insects within this order include cockroaches from the genus Periplaneta spp. and Blattella
spp. Four of the five identified studies reported Strongyloides spp. within populations of Blattodea
in Africa. The remaining study identified Strongyloides spp. in Blattodea in Thailand. All studies
identified infected insects within housing and food preparation areas [26–29]. The sample sizes of
studies identifying insects within the order Blattodea ranged from 70 to 920, with the prevalence
ranging from 1% to 81%.

Half (50%) of published works identifying parasitic contamination of vegetables and fruits
found S. stercoralis upon leafy, rough-surfaced vegetables such as lettuces, cabbage, celery, spinach,
and carrot [30–37]. The sample sizes for fruit and vegetable-based studies ranged from 36 to 1130,
with prevalence ranging from <1% to 46%.

Countries where Strongyloides spp. was identified in soils in public areas included Spain, Iran,
Malaysia, Nigeria, Brazil, the Czech Republic, Slovakia, and Romania, as seen in Figure 2 [38–47].
Geophagy, the purposeful consumption of soils, was also commonly identified as a factor in infection
from soil-based sources.

Studies identifying environmental sources of S. stercoralis, S. fuelleborni, and Strongyloides spp. are
distributed across the world. Areas with a large amount of research included Europe, Africa, and
South East Asia, as seen in Figure 1. Areas lacking research include Oceania, and the Americas, as seen
in Figure 1. Many published studies identified Strongyloides spp. within temperate regions as opposed
to tropical regions, as seen in Figure 1.

Microscopy was the most commonly used identification technique (90%). However, molecular
detection was more common in recent publications. For example, in 2018, 6 of the 14 papers identified
employed molecular-based techniques; however, in 2011, 1 of 11 papers published used molecular-based
techniques, as seen in Table A1.
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Figure 1. Map displaying the global distribution of all reported environmental cases of Strongyloides stercoralis, Strongyloides fuelleborni, and Strongyloides spp. Where circles 
are representative of Strongyloides stercoralis, diamonds are representative of Strongyloides fuelleborni, and stars are representative of Strongyloides spp. The size of each shape 
is mapped to the number of studies published in that country. Location of shapes does not represent exact location of study, but country in which the study was completed. 
Colored fill of shapes was assigned to a single source and is consistent across all helminth species.

Figure 1. Map displaying the global distribution of all reported environmental cases of Strongyloides stercoralis, Strongyloides fuelleborni, and Strongyloides spp. Where
circles are representative of Strongyloides stercoralis, diamonds are representative of Strongyloides fuelleborni, and stars are representative of Strongyloides spp. The size of
each shape is mapped to the number of studies published in that country. Location of shapes does not represent exact location of study, but country in which the study
was completed. Colored fill of shapes was assigned to a single source and is consistent across all helminth species.
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3. Discussion

3.1. Animals

Primates and domesticated or feral dogs (canids) adapt well to association with human settlements
and cohabitation with humans, indicating the potential for transmission to humans. Contamination
with feces from domesticated or synanthropic primates and dogs may lead to other environmental
sources, such as water and soil, becoming reservoirs of Strongyloides spp. capable of causing infection.
Most studies found in this review were based on primate and dog investigation, suggesting that these
animals preferentially live closely with and benefit from humans. This habitual closeness presents a
chance for environmental transmission of Strongyloides spp.

3.1.1. Canids

Studies that report parasites found in canid feces frequently investigate multiple parasites such as
Ancylostoma spp., Giardia spp., and Strongyloides spp. These studies have often found low levels of
S. stercoralis within otherwise highly parasitically infected populations [40,48–56]. Infection occurs
more frequently in canids when they are living stray. This might be a result of exposure to infective
Strongyloides spp. larvae occurring more frequently to these dogs than dogs living within homes [57].
Mass drug administration (MDA) to stray dogs has been implemented successfully for the control
of rabies; accordingly, it may be an option for the control of Strongyloides spp. [10]. Isolated or
infrequent anthelmintic treatment increases infection rates and so considered treatment must be
implemented [10,58]. Studies identifying canid feces as containing Strongyloides spp. commonly also
screened the samples for other parasites. Sample sizes ranged from 35 to 3465. The highest prevalence
was reported by Beknazarova et al. [59] who screened 35 canine fecal samples from Australia, of which
49% were positive for Strongyloides spp. This low sample size with a high positivity rate in comparison
with other studies is representative of the inconsistent fecal shedding of Strongyloides spp. as well as
the endemic location of the study. The lowest prevalence was reported by Ardelean et al. [60] with 1%
of 3465 samples positive from dogs within Romania. Strongyloidiasis was observed most commonly
in dogs three to six months of age in this study. This variance based on age and study location may be
further impacted by the detection method. Ardelean et al. [60] reported high levels of Ancylostomidae
spp. which is morphologically similar to Strongyloides spp., therefore making reliable identification
with microscopy alone difficult.

3.1.2. Primates

Areas sparsely populated by humans increase roaming in primates due to the attractive food
sources but offer a low threat from the decreased human numbers. More frequent entry to communities
in search of food potentially increases the numbers of Strongyloides spp.-infected primate feces within
these sparsely populated communities [13,14]. Terrestrial Papio primates were likely to excrete
Strongyloides spp. larvae; however, arboreal Cercopithecus neglectus were less likely [11,12]. This may
be due to less frequent contact with soil containing Strongyloides spp. larvae. The impact of human
populations upon forests has led to an increased chance of interaction between humans and potentially
infected primates. Hasegawa et al. [61] observed that degraded forest increased the chance of roaming
and transfer of parasites.

Captive primates present an infection risk to handlers because anthelmintic treatment has been
observed to not eliminate Strongyloides spp. larvae shedding within feces [15]. This may be due to the
introduction of new individuals to groups, a phenomenon also observed within wild individuals [15].
This indicates the value in introducing physical environmental controls beyond anthelmintic drugs,
especially in communities exposed to roaming wild primates.

Tourist sanctuaries provide an ideal environment for contact between primates and humans.
Environmental controls such as fecal contamination removal can decrease helminthic infection in both
primates and humans without interfering with natural behaviors [62]. Strongyloides spp. is unable to
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transfer either from animal to human or from human to human directly [63]. This further supports
the importance of clearing feces because contact with the animals does not cause infection; however,
contact with fecal matter can cause infection. Larger groups, such as those within tourist sanctuaries,
are generally associated with higher parasitic species richness. Some variation of infection can be
expected based on food availability and stress levels [64].

Studies of primates had sample sizes ranging from 7 to 3349, with prevalence also ranging
from <1% to 100%. Prevalence within primate populations was reported to be higher than in canine
populations. Hasegawa et al. [61] reported 100% prevalence within seven gorilla and chimpanzees
from Uganda; whereas Li et al. [65] screened 3349 fecal samples and identified a prevalence rate of 6%.
This variation in prevalence may be due to the inconsistent shedding of Strongyloides spp. larvae. Li et
al. [65] employed microscopy whereas Hasegawa et al. [61] employed molecular techniques, which
may account for differentiation in prevalence.

3.1.3. Ruminants

Strongyloides spp. has also been found within the feces of ruminants used in western
farming settings including pigs, sheep, and cattle. All studies identifying Strongyloides spp. within
farm-associated ruminants only identified the parasite to the species level [66,67]. These may have been
genus specific, such as the pork threadworm, Strongyloides ransomi, or the more general Strongyloides
papillosis. All studies used microscopy, a technique that can have low success in identifying Strongyloides
spp. to species level. These recorded observations indicate the potential for infected ruminant feces to
provide an environmental source of Strongyloides spp.

3.1.4. Rodents

Rodents are known to carry a range of communicable diseases. Strongyloides spp. has been
found in several rodent species, including common house rats, and non-synanthropic rodents such as
Hydrochoerus hydrochaeris. S. stercoralis has been identified in house rat feces in East Java, Indonesia,
using microscopy [20]. The area in which S. stercoralis was identified in house rat feces is an area with
poor sanitation and hygiene. People reported a large house rat population within these areas [20].
In such cases, where a zoonotic pathogen is identified, control of the offending carrier can be employed.
The sample sizes of rodents were low in comparison with other sources, with the highest sample
size being 502 [19]. The highest prevalence was within a population of Rattus norvegicus within a
Brazilian slum [17]. The rodents sampled within this study had particularly high levels of infection
with helminths; in all except five, helminths were present within their feces [17]. This prevalence of
97% from a sample size of 299 is representative of animals living within an area highly contaminated
by human waste.

3.1.5. Insects

Increasing urbanization has allowed for synanthropic dependence to increase within insect
populations. Densely urbanizing areas lead to an increase in available food for insects, and areas with
poor sanitation and hygiene practices attract disease-carrying insects such as those within the order
Blattodea (cockroaches) and Diptera (flies). Filth flies present a source of helminth transmission. Their
preference for consuming wet, rotting substances indicates a high probability for the consumption and
carriage of Strongyloides spp. Carriage of Strongyloides spp. has been observed on the external body
of flies despite frequent preening and cleaning [68]. Fetene and Worku [23] identified S. stercoralis
within Chrysomya rufifacies, Musca sorbens, and Lucilia cuprina. C. rufifacies were identified largely within
butcheries and defecating grounds; M. sorbens was found more frequently within the market collection
sites. Furthermore, Musca domestica, a species always found in association with humans, has been
observed to carry Strongyloides spp. [24]. The presence of these flies within human food areas presents
a potential transmission route for Strongyloides spp. larvae. Prevalence was higher in the internal
structures of flies than on the external surface of flies [25]. This observation is further supported by
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the preference of these flies for consumption of wet substances. Insects within the order Blattodea,
commonly known as cockroaches, also present a transmission source. Parasite prevalence has been
found to be associated with housing type. Low-cost housing with pit latrines as well as housing in
close proximity to dumpsites was reported to contain higher levels of carrier cockroaches [26,28,29].
Through the introduction of environmental controls such as fly screens or nets, movement of carrier
insects can be decreased [27]. Sample sizes for both orders were high. Studies found low prevalence
with the exception of Morenikeji et al. [28] who reported 81% in 70 cockroaches.

3.2. Water

Contamination of water is also a potential source of helminth transferal. Pollution of water
sources with human and agricultural waste can render water sources unsuitable for use as drinking
and irrigation water. In areas where water access is limited, contaminated water may be employed for
these uses [69]. Waste stabilization ponds, chlorination, or activated sludge treatment systems may
be suitable approaches for reducing helminth levels; however, many studies monitoring wastewater
treatment methods have provided contradictory results [70–73]. Some studies identified standard
treatment techniques as adequate for removing larvae; however, others did not. Frequent monitoring
of treated waste water is important because treated water has been identified as containing higher
than acceptable levels of helminths including Strongyloides spp. [74]. To date, studies have focused on
the helminth burden of treated water instead of comparing treated with untreated levels. Through
focusing on untreated and treated waters from the same area, reduction in burden levels of treated
water may be better understood.

Untreated water used for drinking can contain Strongyloides spp., particularly when water is
sourced from storm water or collected rainwater [75]. According to one study, when water runoff

moves into drinking water sources such as rivers, it can carry Strongyloides spp. larvae with it [75]. Bore
and ground-water contamination can also occur and has been identified [76,77]. Jonnalagadda and
Bhat [77] found that improper washing of vessels used to collect and store water can lead to helminth
contamination. Implementation of appropriate washing and sanitation education in areas with high
contamination risk may decrease incidences of infection.

Prevalence of Strongyloides spp. within non-potable water was higher than in potable water; this
was expected because most sources of non-potable water were collected from wastewater treatment
facilities [71]. The prevalence of Strongyloides spp. within non-treated wastewater was between
40–100%. Treated waste water intended for use on crops for human consumption had a much lower
prevalence (2%); however, it was still observed to be present, supporting the importance of monitoring
water intended for reuse [70].

3.3. Fruit and Vegetables

The rough nature of green, leafy vegetables surfaces means that adhesion of parasitic larvae
and eggs occurs easily when these vegetables are either washed with contaminated water or come
into contact with contaminated human fecal-based fertilizers (i.e., night soil) [30]. Studies identified
S. stercoralis contamination most frequently within leafy, rough-surfaced vegetables such as lettuces,
cabbage, celery, spinach, and carrot [30–37]. This correlation may be due to these vegetables growing
close to or in the ground, which may lead to increased contamination from fertilizers [78,79]. Market
vendors commonly wash vegetables prior to purchase, and consumption of raw vegetables such as
salad leaves is frequently noted [31,79,80]. There is an increasing focus on the study of vegetables,
washing water, and farm soil to determine where in the food chain parasites are being introduced [33].

Prevalence of Strongyloides spp. within fruit and vegetable samples was generally low, ranging
from <1% to 46%. Ogbolu et al. [81] found S. stercoralis in 46% of fresh vegetables sold at open markets
in Nigeria. The application of night soils and untreated wastewater is common within low-income
nations may have led to the high level of prevalence [81]. Lower prevalence was also reported within
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Nigeria, between <1% and 19%. This variation may be due to differences in handling of samples,
treatment during farming, and cross contamination [30,31].

3.4. Soil

Increasing urbanization has led to an ever-increasing amount of waste. Modern waste includes
not only fecal waste but waste produced in the form of rubbish. Dumpsites and landfills are commonly
employed to deal with this large amount of waste; Strongyloides spp. contamination can occur
throughout the nearby environments. Dumps and landfills pose a transmission risk due to the ability
of Strongyloides spp. larvae to survive effectively in the soil [82].

Contamination of soils with animal feces within public recreation areas also presents a transmission
source. High levels of soil-transmitted helminths were reported in public area soils such as parks in
Spain, Iran, Malaysia, Nigeria, Brazil, the Czech Republic, Slovakia, and Romania [38–47].

The texture and chemistry of soil also plays a role in the prevalence of Strongyloides spp. larvae.
Moisture levels in soils increases the incidence of rhabditiform larvae developing into filariform
larvae [83]. This requirement for moisture is supported by the findings of a study of helminth larvae
during the wet season, which found that no larvae were located during the dry season despite
contamination [39]. High sand and silt content soils favor the survival of Strongyloides spp. and other
helminth larvae. This is due to the high porosity of these soils, which allows larvae to move effectively
through the soils towards sources of nutrition and moisture [84].

Strongyloides spp. is transmitted from soil-based sources to humans through skin-to-soil contact;
however, the behavior of purposefully ingesting soil known as geophagy can also lead to soil-based
infections. Geophagy is culturally accepted and common in sub-Saharan Africa. This behavior
is common in pregnant women; S. stercoralis infections have been observed, along with other
soil-transmitted helminth infections, in these women [85,86]. Geophagy may be undertaken as
a method for diet supplementation in low-income areas. Notably, these areas are more likely to have
helminth-contaminated soil, which leads to an increased chance of infection.

Prevalence of Strongyloides spp. within soil was between 1% and 20%. Ivoke et al. [85] screened
797 pregnant women for parasitic infections related to geophagy. The prevalence of infection was
1% within this cohort. This low prevalence is likely due to picking soils specifically for consumption.
Higher prevalence was observed in soils sampled in soil directly from areas densely populated with
poor health infrastructure [41].

3.5. PCR and Microscopy

Identification of Strongyloides spp. nematodes can be undertaken using several methods. These
fall into either techniques involving the identification of Strongyloides spp. larvae using a microscope
or molecular-based techniques. Microscopy presents several problems but it accounts for most larval
identification-based techniques (90%) as presented in this literature review. This study did not exclude
papers based on year; accordingly, this overrepresentation of microscopy is likely a result of the
recent introduction of polymerase chain reaction (PCR) techniques. Recent papers have increasingly
employed PCR as accessibility to the equipment increases. In 2018, 5 of the 14 papers published
employed molecular-based techniques; in contrast, in 2011, only 1 of 11 studies published employed
molecular-based techniques, as seen in Table A1. This increasing use of molecular-based techniques is
expected, and its use will allow for more accurate identification of species of Strongyloides spp. The
strengths of microscopy include that it can be employed within the field or where resources are limited;
however, microscopy alone cannot reliably differentiate S. stercoralis from S. fuelleborni. The reliance
on microscopy-based techniques is hazardous because both species are morphologically similar [34].
Molecular techniques allow for the accurate identification of Strongyloides spp. to the species level;
however, set up of molecular protocols can be expensive. Each technique has strengths and weaknesses;
when looking at all published works, a consideration of the identification techniques allows for more
accurate assessment of reports.
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3.6. Global Distribution

Globally, published research has mainly focused in countries within Africa, Europe, and South
East Asia. Commonly, Strongyloides spp. is reported as a tropical disease; however, Strongyloides spp.
was often also reported in temperate regions such as Europe, as seen in Figure 1 [83,87]. This may be
due to a lack of resources within low-income nations, leading to an overrepresentation of the generally
higher income countries within Europe. Australia and the Americas both lacked studies looking at the
environmental sources of Strongyloides spp. (Figure 1). This indicates a need for more research into the
environmental transmission of S. stercoralis, S. fuelleborni, and Strongyloides spp. within these areas.

4. Materials and Methods

This systematic literature review is based on an adapted version of the PRISMA statement.
This tool allows for the transparent and reliable reporting of evidence. A systematic search of the
databases Scopus and Web of Science was undertaken, and all articles published prior to 2019 were
included. Key words used in searches included Strongyloides spp., strongyloidiasis, tap water, soil,
insect, zoonotic, and waste, as seen in Table 1. A search strategy was developed to ensure a transparent
and complete literature review of all identified environmental sources of Strongyloides spp. was
completed. This strategy is as follows; All non-English documents were excluded from the search.

To be included, published data must have reported Strongyloides spp. in one of the three
spp. capable of human infection or to the genus level because these studies cannot be excluded as
identifying disease-causing Strongyloides spp. The document must have reported this presence within
an environmental source. Documents were excluded if they were reviews, reports of humans with
Strongyloides spp. infection with no mention of contributing environmental source, or lab-based studies,
as seen in Figure 2.

First, all titles and abstracts of all papers were manually reviewed to ensure the papers met
inclusion criteria. If it was unclear from titles and abstracts if papers met the criteria, they were
included for full text review. Papers that were unclear were included. Papers were then read as full text
and compared against inclusion and exclusion criteria. Articles that met these criteria were included
in the study. All papers included in the study had key points extracted and recorded including the
environmental source reported, species of Strongyloides spp. observed, detection method used, and the
country from which the sample was taken.

Table 1. Complete search strategy and all key words used to identify relevant literature.

Search Terms Employed to Identify Relevant Literature

Strongyloides OR Strongyloidiasis OR “Strongyloides stercoralis” OR “S. stercoralis” OR “Strongyloides fuelleborni”
OR “S. fulleborni” OR “Strongyloides fulleborni kellyi” OR “S. fulleborni kellyi”

AND
“Tap Water” OR “Potable water” OR Water OR Soil OR Dirt OR sediment OR synanthropic OR “synanthropic
insect” OR Insect OR “Musca domestica” OR flies OR “Musca vetustissima” OR Sarcophagidae OR “Chrysomya
megacephala” OR “Musca sorbens” OR “Lucilia cuprina” OR “Calliphora vicina” OR “Blattella germanica” OR
“Periplaneta Americana” OR Cockroach OR dog OR “Canis lupis” OR zoonotic OR Monkey OR “septic tank” OR
waste OR wastewater OR rubbish OR trash OR environment
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5. Conclusions

Although Strongyloides spp. is considered a soil-transmitted helminth, there are several
environmental sources that can potentially provide a route of transmission of the disease. Understanding
the potential sources, combined with the adoption of environmental controls for Strongyloides spp. is
likely to decrease transmission and therefore infections. Animals such as dogs, primates, and insects,
as well as soil, water, and fruit and vegetables have all been reported to contain Strongyloides spp.
larvae, capable of perpetuating infection within humans who have come into contact. Future research
is needed to undertake a holistic screening of all environmental sources within endemic areas to
identify those which pose the greatest significance to human health. By understanding the established
and recorded environmental reservoirs of S. stercoralis, S. fuelleborni, and S. fuelleborni kellyi, better
environmental controls can be implemented.
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Appendix A

Table A1. Summary of all reports, and studies identifying S. stercoralis, S. fuelleborni, S. fuelleborni kellyi, and Strongyloides spp. within environmental sources worldwide.

Species Parasite Prevalence Sample Size Detection Method Country Reference Source

Strongyloides stercoralis 1% 3465 Microscopy Romania (Ardelean et al., 2005) [60] Dog
Strongyloides stercoralis 49% 35 Molecular Australia (Beknazarova et al., 2017) [59] Dog
Strongyloides stercoralis <1% 3208 Microscopy Iceland (Eydal and Skirnisson 2016) [88] Dog
Strongyloides stercoralis <1% 215 Microscopy Brazil (Ferreira et al., 2006) [89] Dog

Strongyloides spp. <1% 457 Microscopy Canada (Gaunt and Carr 2011) [90] Dog
Strongyloides stercoralis <1% 181 Microscopy Brazil (Goncalves et al., 2007) [91] Dog
Strongyloides stercoralis 87% 88 Molecular Cambodia (Jaleta et al., 2017) [6] Dog
Strongyloides stercoralis <1% 879 Microscopy Greece (Kostopoulou et al., 2017) [48] Dog
Strongyloides stercoralis <1% 189 Microscopy Thailand (Leelayoova et al., 2009) [49] Dog
Strongyloides stercoralis 45% 171 Microscopy Brazil (Martins et al., 2012) [58] Dog
Strongyloides stercoralis 4% 52 Microscopy Romania (Mircean et al., 2012) [92] Dog

Strongyloides spp. 5% 175 Microscopy Malaysia (Noor Azian et al., 2008) [40] Dog
Strongyloides stercoralis 2% 281 Microscopy Greece (Papazahariadouet al., 2007) [50] Dog
Strongyloides stercoralis 2% 272 Microscopy Italy (Paradies et al., 2017) [93] Dog

Strongyloides spp. 11% 90 Microscopy Sri Lanka (Perera et al., 2013) [57] Dog
Strongyloides stercoralis 6% 174 Microscopy Iran (Razmi et al., 2009) [52] Dog
Strongyloides stercoralis <1% 239 Microscopy Italy (Riggio et al., 2013) [53] Dog
Strongyloides stercoralis <1% 639 Microscopy Italy (Sauda et al., 2018) [55] Dog

Strongyloides spp. 15% 94 Microscopy Cambodia (Schär et al.,2014) [87] Dog
Strongyloides stercoralis 10% 60 Microscopy Slovakia (Štrkolcová et al., 2017) [45] Dog

Strongyloides spp. 2% 171 Microscopy England (Wright et al., 2016) [56] Dog
Strongyloides stercoralis <1% 463 Microscopy Italy (Zanzani et al., 2014) [94] Dog

Strongyloides spp. 2% 197 Microscopy Thailand (Pumidonming et al., 2016) [51] Dog
Strongyloides stercoralis 18% 824 Microscopy Qatar (Abu-Madi et al., 2007) [95] Cat

Strongyloides spp. 47% 28 Microscopy Christmas Island (Adams et al., 2008) [96] Cat
Strongyloides spp. 54% 37 Microscopy Brazil (Lima et al., 2017) [97] Cat
Strongyloides spp. 3% 414 Microscopy Romania (Mircean et al., 2010) [98] Cat

Strongyloides stercoralis 14% 173 Microscopy Brazil (Monteiro et al., 2016) [99] Cat
Strongyloides stercoralis 44% 103 Microscopy Kenya (Njuguna et al., 2017) [100] Cat

Strongyloides spp. <1% 300 Microscopy Thailand (Rojekittikhun et al., 2014) [101] Cat
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Table A1. Cont.

Species Parasite Prevalence Sample Size Detection Method Country Reference Source

Strongyloides stercoralis 21% 38 Microscopy Thailand (Sedionoto and Anamnart 2018)
[102] Cat

Strongyloides spp. 99 1.0% 99 Microscopy Denmark (Takeuchi-Storm et al., 2015) [103] Cat

Strongyloides fuelleborni UNK UNK Molecular and
Microscopy Japan (Arizono et al., 2012) [13] Primate

Strongyloides spp. 41 44% 41 Microscopy Uganda (Bezjian et al., 2008) [11] Primate
Strongyloides spp. 37% 24 Microscopy French Guiana (De Thoisy et al., 2001) [14] Primate
Strongyloides spp. 21% 125 Microscopy India (Ekanayake et al., 2006) [104] Primate

Strongyloides fuelleborni 28% 293 Microscopy Uganda (Gillespie et al., 2004) [105] Primate
Strongyloides fuelleborni

and Strongyloides
stercoralis

<1% S.
stercoralis, 4%
S. fuelleborni

2103 Microscopy Uganda (Gillespie et al., 2005) [106] Primate

Strongyloides fuelleborni 84% 153 Microscopy Tanzania (Gillespie et al., 2010) [107] Primate

Strongyloides fuelleborni
and Strongyloides spp.

11% S.
fulleborni, 15%

S. spp
27 Microscopy Spain (Gomez et al., 1996) [15] Primate

Strongyloides fuelleborni 23% 401 Microscopy Japan (Gotoh 2000) [108] Primate
Strongyloides fuelleborni

and Strongyloides
stercoralis

100% 7 Molecular Uganda (Hasegawa et al., 2016) [61] Primate

Strongyloides spp. 88% 96 Microscopy Ecuador (Helenbrook et al., 2015) [64] Primate
Strongyloides spp. 4% 238 Microscopy Uganda (Hodder and Chapman 2012) [109] Primate
Strongyloides spp. 7% 40 Microscopy Kenya (Karere and Munene 2002) [12] Primate
Strongyloides spp. 41% 624 Microscopy Borneo (Klaus et al., 2018) [62] Primate

Strongyloides fuelleborni 32% 652 Microscopy Borneo (Klaus et al., 2017) [110] Primate
Strongyloides fuelleborni 57% 141 Microscopy Puerto Rico (Knezevich et al., 1998) [111] Primate

Strongyloides spp. 43% 686 Microscopy Tanzania (Kooriyama et al., 2012) [112] Primate
Strongyloides spp. 74% 3142 Microscopy Côte d’Ivoire (Kouassi et al., 2015 [113] Primate
Strongyloides spp. 13% 366 Microscopy India (Kumar et al., 2018) [114] Primate

Strongyloides fuelleborni
44% S.

fuelleborni, 4%
S. spp.

25 Microscopy Malaysia (Kuze et al., 2010) [115] Primate

Strongyloides fuelleborni 95% 20 Molecular and
Microscopy Indonesia (Labes et al., 2011) [116] Primate
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Table A1. Cont.

Species Parasite Prevalence Sample Size Detection Method Country Reference Source

Strongyloides spp. 37% 59 Microscopy Ethiopia (Legesse and Erko 2004) [117] Primate
Strongyloides spp. 5% 222 Microscopy Belgium (Levecke et al., 2007) [118] Primate
Strongyloides spp. 6% 3349 microscopy China (Li et al., 2017) [65] Primate

Strongyloides stercoralis 6% 46 Microscopy Nigeria (Mafuyai et al., 2013) [119] Primate
Strongyloides spp. 50% 134 Microscopy Costa Rica (Maldonado-Lopez et al., 2014) [120] Primate
Strongyloides spp. 77% 78 Microscopy Ecuador (Martin-Solano et al., 2017) [121] Primate
Strongyloides spp. 17% 53 Microscopy Uganda (Matsubayashi et al., 1992) [122] Primate

Strongyloides fuelleborni 58% 432 Molecular Uganda (McLennan et al., 2017) [123] Primate
Strongyloides spp. 84% 121 Microscopy Uganda (Muehlenbein et al., 2005) [124] Primate

Strongyloides fuelleborni 45% 315 Microscopy Kenya (Munene et al., 1998) [125] Primate
Strongyloides fuelleborni 21% 297 Microscopy Kenya (Muriuki et al., 1998) [126] Primate

Strongyloides spp. 76% 83 Microscopy Costa Rica (Parr et al., 2013) [127] Primate
Strongyloides spp. 13% 366 Microscopy Tanzania (Petrasova et al., 2010) [128] Primate
Strongyloides spp. 44% 130 Microscopy Tanzania (Petrzelkova et al., 2010) [129] Primate

Strongyloides stercoralis 15% 86 Microscopy Peru (Phillips et al., 2004) [130] Primate
Strongyloides spp. 43% 47 Microscopy Gabon (Pouillevet et al., 2017) [131] Primate

Strongyloides fuelleborni 6% 125 Microscopy Cameroon (Pourrut et al., 2011) [132] Primate
Strongyloides spp. 53% 55 Microscopy Ghana (Ryan et al., 2012) [133] Primate

Strongyloides spp. 8% 420 Molecular Mexico (Solorzano-Garcia and de Leon 2017)
[134] Primate

Strongyloides fuelleborni 39% 243 Molecular Thailand and Laos (Thanchomnang et al., 2018) [135] Primate
Strongyloides spp. 35% 283 Microscopy India (Tiwari et al., 2017) [136] Primate

Strongyloides stercoralis 31% 135 Microscopy Thailand (Wenz-Mucke et al., 2013) [137] Primate
Strongyloides spp. 24% 272 Microscopy South Africa (Wren et al., 2015) [138] Primate
Strongyloides spp. 24% 332 Microscopy South Africa (Wren et al., 2016) [139] Primate

Strongyloides fuelleborni
and Strongyloides spp. UNK 14 Molecular Malaysian Borneo (Frias et al., 2018) [140] Primate

Strongyloides spp. 29% 64 Microscopy Brazil (De Souza et al., 2012) [66] Sheep

Strongyloides spp. 8% 165 Microscopy Papua New
Guinea (Koinari et al., 2013) [141] Sheep

Strongyloides spp. <1% 27 Microscopy New England (MacGlaflin et al., 2011) [142] Sheep
Strongyloides spp. UNK 1798 Microscopy Brazil (McManus et al., 2009) [143] Sheep
Strongyloides spp. 2% 275 Microscopy Greenland (Andreassen et al., 2017) [144] Fox
Strongyloides spp. 4% 22 Microscopy Iran (Dalimi et al., 2006) [145] Fox
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Species Parasite Prevalence Sample Size Detection Method Country Reference Source

Strongyloides stercoralis 16% 249 Microscopy Mexico (Hernandez-Camacho et al., 2011)
[146] Fox

Strongyloides stercoralis 2% 1198 Microscopy Slovakia (Miterpakova et al., 2009) [147] Fox
Strongyloides spp. 65% 60 Microscopy Pakistan (Afshan et al., 2013) [16] Rat
Strongyloides spp. 97% 299 Microscopy Brazil (Carvalho-Pereira et al., 2018) [17] Rat
Strongyloides spp. 40% 25 Microscopy Brazil (Lima et al., 2017) [97] Rat
Strongyloides spp. 13% 76 Microscopy Bangladesh (Fuehrer et al., 2012) [18] Rat

Strongyloides spp. 10% 502 Microscopy Nigeria (Isaac et al., 2018) [19] Mouse
and rat

Strongyloides stercoralis 53% 98 Microscopy Indonesia (Prasetyo et al., 2016) [20] House rat
Strongyloides spp. 10% 10 Microscopy Brazil (Souza et al., 2015) [21] Capybaras
Strongyloides spp. 10% 31 Microscopy Brazil (Gioia-Di Chiacchio et al., 2014) [22] Capybaras

Strongyloides stercoralis 2% 6530 Microscopy Ethiopia (Fetene and Worku 2009) [23] Flies
Strongyloides stercoralis <1% 9950 Microscopy Ethiopia (Getachew et al., 2007) [24] Flies
Strongyloides stercoralis 2% 5000 Microscopy Nigeria (Umeche 1989b) [25] Flies
Strongyloides stercoralis 12% 749 Microscopy Nigeria (Adenusi et al., 2018) [26] Cockroaches
Strongyloides stercoralis 1% 920 Microscopy Thailand (Chamavit et al., 2010) [27] Cockroaches
Strongyloides stercoralis 81% 70 Microscopy Nigeria (Morenikeji et al., 2016) [28] Cockroaches
Strongyloides stercoralis UNK 234 Microscopy Nigeria (Tatfeng et al., 2005) [29] Cockroaches
Strongyloides stercoralis 2% 125 Microscopy Nigeria (Adesewa and Morenikeji, 2017) [82] Soil

Strongyloides spp. 3% 625 Microscopy Spain (Dado et al., 2012) [38] Soil
Strongyloides spp. 8% 120 Microscopy Egypt (Etewa et al., 2016) [83] Soil

Strongyloides stercoralis 1% 797 Microscopy Nigeria (Ivoke et al., 2017) [85] Geophagy
Strongyloides stercoralis 2% 1078 Microscopy Tanzania (Kawai et al., 2009) [86] Geophagy
Strongyloides stercoralis 3% 112 Microscopy Iran (Motazedian et al., 2006) [39] Soil

Strongyloides spp. 7% 182 Microscopy Malaysia (Noor Azian et al., 2008) [40] Soil
Strongyloides stercoralis 20% 102 Microscopy Nigeria (Ogbolu et al., 2011) [41] Soil

Strongyloides spp. 5% 2520 Microscopy Brazil (Rocha et al., 2011) [42] Soil
Strongyloides spp. 2% 500 Microscopy Czech Republic (Valkounova 1982) [43] Soil
Strongyloides spp. 3% 125 Microscopy Brazil (Mandarino-Pereira et al., 2010) [44] Soil

Strongyloides stercoralis 14% 14 Microscopy Slovakia (Strkolcova et al., 2017) [45] Soil
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Species Parasite Prevalence Sample Size Detection Method Country Reference Source

Strongyloides stercoralis 12% 17 Microscopy South Africa (Sumbele et al., 2014) [84] Soil
Strongyloides spp. 4% 45 Microscopy Romania (Tudor 2015) [46] Soil

Strongyloides stercoralis 6% 150 Microscopy Nigeria (Umeche 1989a) [47] Soil
Strongyloides spp. 6% 16 Microscopy Brazil (da Silva et al., 2014) [148] Soil

Strongyloides spp. UNK 8 Microscopy Cameroon (Aghaindum and Landry, 2019) [149] Non-potable
water

Strongyloides spp. 40% - 100% 100 Microscopy Saudi Arabia (Bolbol 1992) [69] Non-potable
water

Strongyloides stercoralis 2%% UNK Microscopy Brazil (Bastos et al., 2008) [70] Non-potable
water

Strongyloides spp. 100% 3 Microscopy Brazil (Cutolo et al., 2006) [71] Non-potable
water

Strongyloides stercoralis 19% 52 Microscopy Palestine (Hilles et al., 2014) [150] Seawater

Strongyloides stercoralis 1% 85 Microscopy Turkey (Bakir et al., 2003) [151] Drinking
water

Strongyloides fuelleborni
and Strongyloides spp.

11% S.
fuelleborni, 15%

S. spp.
9950 Microscopy Zimbabwe (Dalu et al., 2011) [76] Drinking

water

Strongyloides spp. UNK UNK Microscopy Egypt (El Shazly et al., 2003) [75] Drinking
water

Strongyloides stercoralis 7% 80 Microscopy Egypt (El-Badry et al., 2018) [152] Drinking
water

Strongyloides stercoralis 81% 16 Microscopy Brazil (Freitas et al., 2017) [153] Drinking
water

Strongyloides stercoralis 51% 232 Microscopy India (Jonnalagadda and Bhat 1995) [77] Drinking
water

Strongyloides stercoralis 100% UNK Microscopy USA (Klotz et al., 1992) [154] Drinking
water

Strongyloides stercoralis UNK UNK Molecular Malaysia (Zeehaida et al., 2011) [155] Fruit &
vegetables

Strongyloides stercoralis <1% 1130 Microscopy Nigeria (Adamu et al., 2012) [30] Fruit &
vegetables
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Species Parasite Prevalence Sample Size Detection Method Country Reference Source

Strongyloides stercoralis <1% 960 Microscopy Nigeria (Adenusi et al., 2015) [31] Fruit &
vegetables

Strongyloides stercoralis 10% 150 Microscopy Nigeria (Amaechi et al., 2016) [78] Fruit &
vegetables

Strongyloides stercoralis 7% 190 Microscopy Nigeria (Amuta et al., 2017) [32] Fruit &
vegetables

Strongyloides stercoralis 7% 240 Microscopy Nigeria (Dada et al., 2015) [33] Fruit &
vegetables

Strongyloides spp. 1% 453 Microscopy Iran (Fallah et al., 2016) [34] Fruit &
vegetables

Strongyloides stercoralis 36% 360 Microscopy Ghana (Kudah et al., 2018) [35] Fruit &
vegetables

Strongyloides spp. 13% 108 Microscopy Brazil (Luz et al., 2017) [156] Fruit &
vegetables

Strongyloides spp. 19% 199 Microscopy Nigeria (Maikai et al., 2012) [157] Fruit &
vegetables

Strongyloides spp. 11% 36 Microscopy Malaysia (Matyusof et al., 2017) [80] Fruit &
vegetables

Strongyloides stercoralis 1% 260 Microscopy Sudan (Mohamed et al., 2016) [36] Fruit &
vegetables

Strongyloides stercoralis 10% 265 Microscopy Thailand (Punsawad et al., 2019) [37] Fruit &
vegetables

Strongyloides stercoralis 46% 120 Microscopy Nigeria (Ogbolu et al., 2009) [81] Fruit &
vegetables

Strongyloides stercoralis 14% 140 Microscopy Iran (Madadi 2010) [158] Fruit &
vegetables

Strongyloides stercoralis 19% 80 Microscopy Nigeria (Ohaeri and Unogu 2011) [79] Fruit &
vegetables

Strongyloides spp. 7% 15 Microscopy Zambia (Berentsen et al., 2012) [159] Other
animals

Strongyloides spp. 5% 272 Microscopy Nepal (Bista et al., 2017) [160] Other
animals
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Species Parasite Prevalence Sample Size Detection Method Country Reference Source

Strongyloides spp. 100% 1 Microscopy Brazil (Cardia et al., 2016) [161] Other
animals

Strongyloides spp. 4% 432 Microscopy Spain (Cordon et al., 2008) [162] Other
animals

Strongyloides spp. 40% 52 Microscopy Russia (González et al., 2007) [163] Other
animals

Strongyloides spp. 2% 956 Microscopy India (Gupta et al., 2018) [164] Other
animals

Strongyloides spp. <1% 1005 Microscopy Germany (Hallinger et al., 2018) [165] Other
animals

Strongyloides spp. 31% 42 Microscopy Japan (Hasegawa et al., 2017) [166] Other
animals

Strongyloides spp. <1% 400 Microscopy Croatia (Hermosilla et al., 2017) [167] Other
animals

Strongyloides spp. 64% - 99% 990 Microscopy Mexico (Hu et al., 2018) [168] Other
animals

Strongyloides spp. 4% 821 Microscopy China (Huang et al., 2014) [169] Other
animals

Strongyloides spp. 15% 2280 Microscopy Pakistan (Khan et al., 2010) [67] Other
animals

Strongyloides spp. UNK 6 Microscopy Namibia (Kumba et al., 2003) [170] Other
animals

Strongyloides spp. 36% 58 Microscopy Poland (Mizgajska-Wiktor et al., 2010) [171] Other
animals

Strongyloides spp. 67% 12 Microscopy Mexico (Mukul-Yerves et al., 2014) [172] Other
animals

Strongyloides spp. 57% 201 Microscopy Estonia (Oja et al., 2017) [173] Other
animals

Strongyloides spp. 47% 383 Microscopy Mexico (Ojeda-Robertos et al., 2017) [174] Other
animals

Strongyloides spp. 7% 6 Molecular Iberian Peninsula (Perera et al., 2013) [175] Other
animals
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Species Parasite Prevalence Sample Size Detection Method Country Reference Source

Strongyloides spp. 3% 468 Microscopy Poland (Pilarczyk et al., 2015) [176] Other
animals

Strongyloides spp. 17% 86 Microscopy Bangladesh (Rahman et al., 2018) [177] Other
animals

Strongyloides spp. 3% 1883 Microscopy Italy (Rinaldi et al., 2009) [178] Other
animals

Strongyloides spp. 44% 163 Microscopy Portugal (Rosalino et al., 2006) [179] Other
animals

Strongyloides spp. 45% 82 Microscopy Australia (Turni and Smales 2001) [180] Other
animals

Strongyloides spp. UNK UNK Microscopy Namibia (Turner et al., 2010) [181] Other
animals

Strongyloides spp. UNK UNK Microscopy Namibia (Turner et al., 2012) [182] Other
animals

Strongyloides spp. <1% 213 Microscopy Kenya (VanderWaal et al., 2014) [183] Other
animals

Strongyloides spp. 74% 243 Microscopy Philippines (Ybanez et al., 2018) [184] Other
animals
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