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Abstract

We identify a memory-specific attention mechanism in the human anterior temporal lobe, an area 

implicated in semantic processing and episodic memory formation. Spiking neuron activity is 

suppressed and becomes more reliable in preparation for verbal memory formation. Intracranial 

EEG signals implicate this region as a source of executive control for attentional selection. 

Consistent with this interpretation, its surgical removal causes a significant memory impairment 

for attended words relative to unattended words.

Attention mechanisms for vision are divided into modulation and selection processes1. 

Modulation processes occur in early visual areas, where attention increases neural spike rate, 

sharpens tuning curves, and improves signal-to-noise2. In contrast, selection processes occur 

in fronto-parietal attention areas, which exert top-down control over whichever visual area is 

responsible for processing the attended visual feature or location3. A key distinction is that 

modulation processes are found in brain areas that are visually responsive irrespective of 

attentional state, whereas selection processes can be found in brain areas that respond only 

to attentional cues4.

To identify attention mechanisms that enhance memory, we recorded intracranial EEG 

(iEEG) in 18 epileptic neurosurgery patients as they memorized words that were cued by a 

row of asterisks (preparatory cue; Fig. 1a,b; Supplementary Fig. 1). Cued words were 

remembered significantly more often than uncued words. To isolate attention signals, we 

contrasted high frequency power (70–200 Hz) for cued words that were successfully 

remembered versus uncued words that were inadvertently remembered. We evaluated the 

preparation phase preceding a to-be-remembered word, and the encoding phase when the 
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word is read, interpreted, and memorized (Fig. 1c). During the preparation phase, high 

frequency power in the anterior temporal lobe was significantly lower for cued words 

relative to uncued words (Fig. 1d, ATL; Supplementary Figs. 2–3). In contrast, during the 

encoding phase the anterior temporal lobe did not signal attention, though two other brain 

areas showed increased high frequency power during cued words (Fig. 1e; Supplementary 

Fig. 4): the posterior temporal lobe (PTL) and frontal cortex.

The time course of high-frequency power changes in the anterior temporal lobe revealed a 

robust and significant decrease following the preparatory cue in individual electrodes and 

across the population of participants (Fig. 1f, red traces). For uncued words, there was no 

change in high frequency power before, during, or after word presentation (Fig. 1f, black 

traces), even though the words were subsequently remembered. The lack of a response to 

uncued words suggests that this area is not involved in perceptual processing of written 

words, nor verbal memory formation, per se. Instead, the clear response to the preparatory 

cue implicates this region as a source of attentional selection processes that enhance memory 

formation. The dynamic, attention-related response was significantly attenuated preceding 

cued words that were subsequently forgotten, implicating a causal role for this signal in 

memory formation (Fig. 1i).

In the posterior temporal lobe, both cued and uncued words triggered a significant increase 

in high frequency power when the word was on the screen (Fig. 1g, black and red traces are 

greater than zero). However, power was significantly greater for cued words relative to 

uncued words. This response illustrates the modulatory effects of attention in visual 

processing and working memory1,5. In contrast, in the frontal attention area, only cued 

words triggered an increase in high frequency power, whereas there was no change in high 

frequency power for uncued words (Fig. 1h). The lack of a response to uncued words, 

combined with a large response to cued words, is consistent with this region’s role in 

attentional selection1. For both regions, the response was significantly less for cued-words 

that were subsequently forgotten (Fig. 1j,k), consistent with their established roles in visual 

attention. We tested whether the magnitude of preparatory decreases in the anterior temporal 

lobe on any given trial predicted the subsequent magnitude of encoding increases in the 

posterior temporal or frontal attention areas (Supplementary Fig. 5). Indeed, the trial-by-trial 

relationships are significantly negatively correlated, consistent with the anterior temporal 

lobe being an attentional selection region that participates in a larger attention network for 

enhancing memory formation.

We had the unique opportunity to examine spiking-neuron responses in the anterior temporal 

lobe in four participants (Fig. 2a). An example neuron showed no significant change in its 

spike rate of 2 sp/s when the participant viewed uncued words that were subsequently 

remembered (Fig. 2b, black trace and raster). However, when the preparatory cue appeared, 

spike rate significantly decreased for 500 ms (Fig. 2b, red trace and raster). This example 

neuron’s response mirrored that of the recorded population of 197 units. Population spike 

rate decreased significantly following the preparatory cue and remained low during the first 

500 milliseconds of the encoding period (Fig. 2c, red versus black line).
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Visual attention improves signal-to-noise in spiking neurons, measured as decreased 

fanofactor for individual neurons, and changes in noise correlations among pairs of 

neurons2,6. We did not observe any systematic changes in noise correlations related to 

attention in the anterior temporal lobe (Supplementary Fig. 6). However, we observed a 

robust decrease in fanofactor immediately following the preparatory cue (Fig. 2d, red vs 

black trace). The preparatory decrease in fanofactor overlaps in time with the preparatory 

decrease in spike rate, suggesting that these processes are related. We confirmed that this 

was the case across the population of neurons, as we found a significant correlation between 

a neuron’s change in spike rate and its change in fanofactor during the 500 ms preceding 

word onset (Fig. 2e). This suggests that the wide-spread suppression of high-frequency 

power across the anterior temporal lobe measured by iEEG electrodes reflects both the 

suppression of neural spiking activity and improved signal-to-noise.

As a causal test of anterior temporal lobe’s involvement in enhancing verbal memory, we 

trained and tested all participants before, and 3 months after, its surgical removal (Fig. 3a,b). 

Removal of the anterior temporal lobe caused a significant decrease in memory 

performance, with cued-word recognition significantly more impaired than uncued 

recognition (Fig. 3c). The decrease in cued-word recognition was statistically 

indistinguishable for language dominant (dashed lines) and non-dominant (solid lines) 

temporal lobectomies (Supplementary Fig. 7). These results implicate a critical role for 

preparatory suppression of the anterior temporal lobe — making the semantic concepts and 

meanings of our experiences more salient for improved memory formation.

ONLINE METHODS

Participants

Eighteen neurosurgery patients (5 male; age 35 ± 3 years; FSIQ 99 ± 5; mean ± s.e.m.; see 

Supplementary Table 1 and Life Sciences Reporting Summary) with drug-resistant epilepsy 

underwent a surgical procedure in which platinum recording electrodes were implanted 

beneath the dura on the cortical surface to localize the source of their seizures. In all cases, 

the clinical team determined the placement of the contacts to best localize epileptogenic 

regions. Four participants additionally and specifically consented to have micro-electrode 

arrays implanted in the anticipated site of surgical resection (details below). Data were 

collected at the Clinical Center at the National Institutes of Health (NIH; Bethesda, MD). 

The research protocol was approved by the Institutional Review Board (ClinicalTrials.gov 

Identifier NCT01273129), and informed consent was obtained from the participants. All 

testing took place in the participant’s room during their stay in the Epilepsy Monitoring Unit 

or in the outpatient clinic.

We note that all behavioral and electrophysiological findings reported here come from 

participants with epilepsy, and thus results must be interpreted cautiously in terms of normal 

brain function. There are at least two ways that epilepsy could affect the interpretation of our 

results: first, epileptic activity itself could contaminate physiological signals, and second, the 

long-term malfunction of epileptic tissue could result in massive restructuring of the affected 

nervous system and potentially adjacent areas. Although we cannot eliminate these potential 

confounds, we took steps to mitigate them. First, we only analyzed electrophysiological 
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signals collected outside the ictal onset zone. The onset zone was determined by the clinical 

team using iEEG electrodes, and all micro-electrode arrays were at least 2 cm from the 

closest iEEG contact that detected ictal or inter-ictal activity. Second, we removed any trials 

showing epileptic activity (or other transient noise) in the remaining electrodes using an 

automated algorithm tuned to match the assessment of the clinical team. Third, the location 

and cellular abnormality that causes epilepsy varies across participants, thus by aggregating 

data across participants we effectively average out participant-specific abnormalities. Fourth, 

all measures reported here are a contrast between cued and uncued conditions for each 

participant, electrode, or neuron. Thus, any baseline differences in memory capacity (for 

participants), tissue abnormality (for electrodes), or noise levels (for electrodes and units) 

should be effectively subtracted out before statistical comparison of the effects of attention.

Behavior: Task Design

We designed a verbal memory task to isolate the neural mechanisms of attention that lead to 

improved memory formation (Supplementary Fig. 1). Participants were instructed to 

memorize words that were cued by a row of asterisks. Following a distraction task, we tested 

recognition memory of the cued and uncued words. Task difficulty was adjusted for each 

participant to achieve two performance criteria: recognition of cued words was better than 

that of uncued words, and recognition of uncued words was better than chance. These two 

criteria enable the dissociation of attention and memory mechanisms because we can 

directly contrast the neurophysiological signature of successful memory formation with and 

without attentional enhancement.

Successful memorization of cued and uncued words in our task is likely supported by 

episodic memory processes of familiarity and recollection7, though it is possible that short-

term memory processes such as working memory could be involved1. Working memory 

could be used to sub-vocally rehearse cued and uncued words throughout the memorization, 

distraction, recognition, and recall phases of the task. Although this is a possibility, we think 

it is unlikely that this would account for recognition memory performance in this task. First, 

the time from encoding to recall was between 60 to 600 seconds, depending on list length, 

which is longer than the intervals commonly used for working memory tests8. Second, 

during this interval participants actively engaged in several different mental processes, such 

as arithmetic and responding to the recognition tests, which would make it difficult to 

actively focus on and sub-vocally rehearse the words. Third, performance on the recall test 

indicates they followed our instruction to specifically memorize the cued words, which 

suggests the participants were not expending effort to actively rehearse uncued words that 

were successfully recognized.

Behavior: Performance Criteria

We adjusted task parameters on a session-by-session basis to achieve two performance 

criteria: (i) recognition of cued words was significantly better than uncued words, (ii) 

recognition of uncued words was significantly better than chance (see Supplementary Fig. 

8). We defined chance as the false-alarm rate for novel foil words in seen/unseen recognition 

tests, or 25% for 4-alternative forced choice recognition tests. We tested for significant 

differences using a chi-squared test on the contingency table of seen and unseen responses9. 
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In the case of 4-alternative forced choice, we deemed uncued recognition significantly 

greater than chance if the 95% binomial confidence interval10 exceeded 25%.

We often dedicated the first one or more sessions to identifying the ideal task parameters 

while we trained the participants on the task. During training participants were instructed to 

say the cued words out loud during the encoding phase so we could confirm they were 

correctly identifying those words. After training we instructed them to remain silent except 

for the recall test at the end of each list. Sessions used to train the participant were discarded 

from all subsequent analysis. By tuning the task difficulty to each individual participant, we 

were able to collect iso-performance data across participants who showed a wide range of 

natural aptitude for the task.

Behavior: Effect of Surgery

Only participants that passed our performance criteria on a seen/unseen recognition test 

during pre-operative testing were included in our analysis of the behavioral effects of 

surgery. For each participant in this analysis, task parameters (e.g., list length) and anti-

epileptic pharmaceutical treatment were identical in the pre-operative and post-operative test 

sessions. Pre-operative testing sessions were preceded by 1 to 3 training sessions used to 

identify ideal task parameters. Post-operative testing sessions were preceded by 

approximately 15 minutes of training to re-familiarize the participant with the task. We 

quantified behavioral performance in these pre- and post-operative sessions using D-prime. 

This measure of recognition accuracy incorporates false alarm rates to account for an 

individual’s bias towards seen or unseen responses. We calculated D-prime as the z-

transformed probability of responding ”seen” to previously seen words minus the z-

transformed probability of responding ”seen” to a foil word, adding 0.5 the numerator and 

1.0 to the denominator of the proportion of seen trials before z-scoring to protect against 

extreme values11. The location of tissue removed from each participant was determined from 

post-operative MRI and was projected to a standard brain to visualize overlap of removed 

tissue between participants.

Intracranial EEG: Data Processing

We recorded intracranial EEG (iEEG) data from subdural electrodes (PMT Corporation, 

Chanhassen, MN) sampled at 1000 Hz using a Nihon Kohden EEG data acquisition system. 

Subdural contacts were arranged in both grid and strip configurations with an inter-contact 

spacing of 5 or 10 mm. Electrode localization was accomplished by co-registering the post-

operative CTs with the post-operative MRIs using both FSL Brain Extraction Tool (BET) 

and FLIRT software packages. Pre-operative MRIs were used when post-operative MRIs 

were not available. The electrode locations were projected to the cortical surface of a 

Montreal Neurological Institute N27 standard brain, and atlas information for each electrode 

was obtained using a Talairach daemon12,13.

Our first step in cleaning the iEEG signals was to eliminate any electrodes identified by the 

clinical teams as being part of the ictal onset zone during the monitoring period. Taking the 

remaining electrodes, we removed any additional channels and/or trials from our analysis 

that showed additional signs of noise (epileptic activity, physical movement of the 
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participant, or external sources of transient electrical perturbations) using a procedure we 

adapted from the EEG analysis software package FieldTrip14. For each channel and trial, we 

computed the variance of the voltage trace during the 5.25 seconds surrounding the encoding 

period (−1.5 seconds prior to word onset to 3.75 seconds following word onset). This 

resulted in a two-dimensional matrix of variance measures, channels by trials, from which 

we identified the maximum variance for each trial and the maximum variance for each 

channel. The procedure then calculated the quartiles of the resultant distribution of trial 

variances and channel variances, and identified whether any trials or channels exceeded a 

threshold of the third quartile + wthresh* the inter-quartile range, where wthresh is a user-

specified parameter. If any trials exceeded the threshold, the maximum variance trials were 

iteratively removed, which the quartiles being recalculated at each step. If any of the 

removed trials caused a change in the number of channels that exceeded threshold, that trial 

was flagged for exclusion. Otherwise, if any channels exceeded threshold after all noisy 

trials were removed, those noisy trials were put back into the matrix, and instead noisy 

channels were iteratively removed. This procedure of identifying noisy trials, and then 

channels, was iterated until all trials and channels were within the threshold limits. When 

adapting this procedure to our dataset, we found that a wthresh of 0.5 (equivalent to 2 

standard deviations from the mean) was conservative in catching time points judges as noisy 

by the epileptologist on our clinical team. After systematically removing noisy channels and 

trials, we removed the effects of a common reference from the voltage traces by subtracting 

a global common average, computed across all channels separately for each trial and time 

point. We confirmed that any potential noise artifacts caused by saccadic eye movements do 

not account for the attention-related effects reported in the anterior temporal lobe 

(Supplementary Fig. 9).

Intracranial EEG: Power Analysis

We estimated a continuous time measure of high-frequency power using a wavelet 

decomposition (complex Morlet kernel; wave number 6; 70 to 200 Hz with 5 taps per 

octave). This frequency range is a proxy for local neural spiking activity15. We log-

transformed the power estimates16, down-sampled in time using a sliding 100 ms boxcar 

window with a step of 50 ms, and baseline-corrected and z-transformed each time point by 

subtracting the mean and dividing by the standard deviation of power measured during a 

baseline period. Baseline was the 500 ms following the offset of the orientation cue (”+”) for 

all trials. We did this separately for each recording session to account for changes in day-to-

day signal quality. High frequency power was computed as the average z-transformed value 

from all wavelets between 70 and 200 Hz, yielding a single time series for every electrode 

and every trial. For individual electrodes, we tested for significant differences between the 

cued and uncued time series by calculating a two-sample t-test across trials at every time 

point. For population-average electrode effects in predefined regions of interest 

(Supplementary Fig. 10), we first calculated a mean cued and mean uncued time series for 

each electrode, then averaged the time series from all electrodes in that region for each 

participant, and then calculated a paired t-test across participants at every time point. For 

individual electrodes and population averages we corrected for multiple comparisons in time 

using a cluster-based permutation procedure described below.
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We used a whole-brain analysis to identify brain regions showing consistent differences 

between cued and uncued high frequency power across participants. With iEEG, the precise 

placement of electrodes is different for each participant, which limits our ability to examine 

spatially resolved effects across participants. We overcame this limitation by spatially 

smoothing electrode effects so they could be projected onto a low-density (1 cm × 1 cm) 

mesh covering the cortical surface of an MNI N27 standard brain12. For each participant, we 

averaged z-scored high-frequency power during the 1-second preparatory phase from all 

electrodes that were within 12.5 mm of a given mesh node (Supplementary Fig. 2). Only 

mesh nodes that contained electrodes from three or more participants were evaluated in a 

paired t-test across participants. We corrected for multiple comparisons in space using a 

cluster-based permutation procedure. This analysis was repeated for the 1-second encoding 

phase. Whole-brain t-maps (Fig. 1d-e) were rendered on the vertices of a standard brain by 

computing the average value of all mesh nodes that were within 12.5 mm of that vertex (3-D 

Gaussian kernel, SD of 4.2 mm). Dark gray regions contain data from fewer than three 

participants.

Intracranial EEG: Attention-Related Responses

After using the whole-brain analysis and time-series analysis described above to identify the 

locations and timing of attention-related responses, we measured the trial-by-trial magnitude 

of the responses in each region to determine whether the regions’ responses modulated 

memory accuracy, and/or were correlated with one another. We defined a 500 ms window 

that captured the time period of significant across-participant attention dynamics in each 

region: this was −500 to 0 ms preceding word onset for the anterior temporal lobe, and 250 

to 750 ms following word onset for the posterior temporal and frontal cortices. We defined 

the dynamic response of a given trial to be the mean value in this window, minus the mean 

value of the 500 ms immediately preceding and 500 ms immediately following the window. 

This subtraction effectively removes slow fluctuations in baseline power, often described as 

auto-correlations17,18, so that our trial-level measure reflects the dynamic, attention-related, 

response observed across participants.

We evaluated whether the observed attention-related responses in each region modulated 

memory encoding by comparing two conditions: correctly-remembered cued words versus 

forgotten cued words (Fig. 1i-k). We hypothesized that if the observed signals were required 

for memory formation, they would be absent in cued trials that were subsequently forgotten. 

We required at least 5 trials per condition to include it in the analysis. Participants rarely 

forgot cued words in sessions that passed our strict behavioral criteria (8 ± 2 total errors per 

participant; 8 of 18 participants with fewer than 5), so we included sessions that did not pass 

our criteria for this analysis (17 ± 5 total errors per participant; 5 of 18 participants with 

fewer than 5). We then tested for significant differences in the responses using a paired t-test 

across participants. We next evaluated whether the early response in the anterior temporal 

lobe on any given trial predicted the subsequent responses in the posterior temporal and 

frontal attention areas. For each participant, we computed the rank correlation between the 

trial-by-trial response in pairs of regions, using only correctly remembered cued trials. We 

then tested for significant across-participant correlations using a one-sample t-test of the 

resultant correlation coefficients.
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Single Unit Recordings: Data Processing

We manually identified single units offline and used quantitative metrics of isolation quality 

to select units for subsequent analysis (Supplementary Fig. 11). After identifying a list of 

channels with potential single unit activity, we loaded the bandpass time series of each 

channel, one at a time, into Plexon Offline Sorter (Plexon, Inc; TX) for manual spike sorting. 

We converted the continuous voltage time series into a population of voltage snippets (1.067 

ms long, 30 samples) that crossed a manually defined voltage threshold. We set the threshold 

such that random noise fluctuations in the signal would occasionally cross the threshold and 

be captured as a noise snippet. We projected each snippet into principle component space, 

and only retained isolated units that were separable from each other and separable from 

noise throughout the duration of the experiment. Based on these criteria we identified 623 

putative single units, of which 302 passed additional quantitative criteria of isolation 

quality17,19, mean spike-rate, and a minimum number of trials-per-condition (Supplemental 

Fig. 11). In order to maintain independent samples for statistical testing, we only allowed an 

individual unit to contribute once to the dataset, even if it was recorded on multiple days, 

leaving us with 197 independent units (Supplemental Fig. 12).

Among this pool of neurons we excluded any trials that appeared to be contaminated by 

transient noise. The method we used was analogous to the one we used to identify noisy 

iEEG channels and trials. In this case, we iteratively removed trials such that no individual 

trial had an across-unit mean z-score spike count above 2.8. We found that this threshold 

consistently eliminated trials that were deemed contaminated based on qualitative 

assessment of epileptic activity and/or transient noise by the clinical team.

Single Unit Recordings: Analysis

We used a 500 ms boxcar sliding window, with steps of 50 ms, to calculate a continuous 

estimate of time-evolving spike counts each trial. We then calculated the z-transformed, 

baseline-corrected spike count by subtracting the mean and dividing by the standard 

deviation of the spike count during the baseline period, defined as the 500 ms interval 

following the orientation cue (same baseline period as in the iEEG analysis). For each unit, 

the mean z-scored spike rate was computed at each time point separately for cued and 

uncued trials. Similarly, fanofactor was calculated for each unit and each time point as the 

variance divided by the mean spike count for that time point across trials. Population 

average spike rate and fanofactor were calculated across units, and significant differences 

between cue conditions were assessed at each time point using a paired t-test across units. 

We corrected for multiple comparisons in time using a cluster-based permutation procedure.

For each pair of recorded units, noise correlations were calculated separately for cued and 

uncued trials as the correlation in spike counts across trials20 (Supplementary Fig. 5). This 

was done using a larger time window of 2.5 seconds (−1 to 1.5 s relative to word onset) to 

stabilize spike-count variation, though the results were consistent across a wide range of 

window sizes. We used a linear classifier to predict attentional state from population spiking 

activity during this same time window. We iteratively tested whether population activity 

predicted attentional state for each trial using a leave-one-out logistic regression with early 

stopping21. Each iteration we removed one trial to test the model, and randomly selected 
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20% of the remaining trials (equally drawn from cued and uncued) for the early stopping 

test. We repeated this iterative procedure 2000 times for each session using true 

(unshuffled), decorrelated (shuffled trial numbers but intact trial labels for each neuron), and 

random (trial labels randomized for each neuron on each iteration) data to estimate the mean 

classifier performance for each manipulation. Significant differences between manipulations 

were assessed using a paired t-test across sessions.

Statistics

Unless otherwise specified, significant differences were assessed using a paired two-tailed t-

test between the cued and uncued conditions, with the independent sample being participants 

or neurons (unpaired two-tailed t-tests were used when the independent sample was trials). 

We corrected for multiple-comparisons in time series and brain-wide data using a non-

parametric permutation procedure. Because of this non-parametric procedure, there is no 

underlying assumptions of normality or equal variance in the data that would require formal 

testing. No statistical methods were used to pre-determine sample sizes (number of 

participants, subjects, or trials) but our sample sizes are similar to those reported in previous 

publications12,17. Data collection and analysis were not performed blind to the conditions of 

the experiment. No data was excluded except for: sessions and/or participants that did not 

meet our behavioral criterion, electrodes, neurons and trials that were excessively noisy, and 

units that were not well isolated. The data from each of our three analyses (human iEEG, 

single-unit, pre/post resection) are extremely rare and were collected over the course of 3 

years. Thus we have not replicated the experiments reported here in another cohort of 

participants.

Statistics: Cluster-based Permutation Procedure

We corrected for multiple comparisons in space or time using a non-parametric cluster-based 

permutation procedure to control family-wise error12,22. For whole-brain analysis, we 

corrected for multiple comparisons at each of the mesh nodes by first identifying clusters of 

neighboring mesh nodes that showed a significant effect in the same direction (positive or 

negative) and were within 12.5 mm of each other. For time series analysis across trials, units, 

or participants, we corrected for multiple comparisons at each time point by first identifying 

clusters of adjacent time points that showed a significant effect in the same direction 

(positive or negative). For each cluster (whether spatial or temporal), we computed a cluster 

statistic as the absolute value of the sum of the t-statistics for all elements within that cluster. 

In this way, a large cluster statistic can arise from a wide-spread but moderate effect, or a 

localized but strong effect. Finally, we created a vector-valued cluster statistic from the 

ranked list of cluster statistics (where the length of the vector equals the number of identified 

clusters). This “true” vector-valued cluster statistic must be compared to an empiric 

distribution of such statistics to determine whether any of the observed effects would be 

expected by chance.

We created an empiric distribution of vector-valued cluster statistics by randomly 

reassigning labels (cued vs uncued) at the level of participants, units, or trials (for example 

unit and electrodes), then computing a synthetic vector-valued cluster statistic for each of 

5000 permutations. In each permutation, we matched the synthetic vector’s length to that of 
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the true vector. In permutations that had more clusters than the true data, the lower-ranked 

cluster statistics were not included in the vector, and for permutations with fewer clusters 

than the true data, the resultant vector was padded with zeros. The empiric distribution of 

vector-valued cluster statistics was used to calculate the likelihood of observing each cluster 

in the true data. For instance, we calculated a p-value for the second-biggest observed cluster 

statistic by counting the number of second-biggest cluster statistics that were greater or 

equal to the true statistic, divided by the total number of permutations. This method of 

comparing each cluster to its rank-matched surrogate requires an additional correction for 

multiple comparisons to maintain the familywise error rate22. We therefore used the false 

discovery rate23 to identify clusters that remained significant (two-tailed p < 0.05) after 

correction for multiple comparisons.

Data Availability

The data that support the findings of this study are available from the corresponding author 

upon request and are also available for public download at https://neuroscience.nih.gov/

ninds/zaghloul/downloads.html.

Code Availability

Custom code used to generate the findings of this study are available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Preparatory suppression of anterior temporal lobe improves memory encoding. a-c) 

Behavioral task that dissociates memory and attention. b) Mean recognition performance 

(n=18 participants). d,e) Whole-brain across-participant differences in iEEG high-frequency 

power for cued versus uncued words during the preparation and encoding (n=18 

participants). Dashed lines indicate regions of significant differences, corrected. f-h) Time-

resolved high-frequency power for cued (red) versus uncued (black) words in individual 

example electrodes (left, locations marked as arrows in e, trial count is sum of cued and 

uncued) and across participants (right, N=number of participants, E=total number of 

electrodes from that region). Shaded region indicates s.e.m. across trials (left) or participants 

(right). Red line indicates significant differences from a two-tailed t-test, corrected. i-k) 

Across-participant comparison of attention-related response magnitude for correctly 

remembered vs forgotten cued words (paired t-test, two tailed, uncorrected).
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Figure 2. 
Anterior temporal lobe suppression improves signal-to-noise in spiking neurons. a) Location 

of microelectrode arrays in four participants (left) and example time series from four 

microelectrodes (right). b) Raster plot (bottom) and PSTH (top) from an example unit 

showing preparatory suppression. c) Population spike rate and d) fanofactor show 

preparatory suppression. Shaded regions indicate mean+/−s.e.m. across trials (b; n=97) or 

units (c,d; n=197). Red line (b,c,d) indicates significant differences, corrected. e) 

Spearman’s rank correlation between the preparatory change (−500 to 0 ms) in fanofactor 

and spike rate. Each point is a single unit.
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Figure 3. 
Anterior temporal lobe is required for attention-enhanced memorization. a) Anatomical 

MRIs from a participant before and after surgical removal of the anterior temporal lobe. b) 

Overlap of removed tissue across 13 participants. c) Recognition accuracy (D-Prime) for 

cued words was significantly more impaired than for uncued words 3-months after surgery 

(two-way, repeated measures ANOVA, with surgery and attention condition being the 

factors; n=13). Dashed lines indicate participants with a language-dominant resection.
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