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Abstract

Saturation mutagenesis1,2 – coupled to an appropriate biological assay – represents a fundamental 

means of achieving a high-resolution understanding of regulatory3 and protein-coding4 nucleic 

acid sequences of interest. However, mutagenized sequences introduced in trans on episomes or 

via random or “safe-harbor” integration fail to capture the native context of the endogenous 

chromosomal locus5. This shortcoming markedly limits the interpretability of the resulting 

measurements of mutational impact. Here, we couple CRISPR/Cas9 RNA-guided cleavage6 with 

multiplex homology-directed repair (HDR) using a complex library of donor templates to 

demonstrate saturation editing of genomic regions. In exon 18 of BRCA1, we replace a six base-

pair (bp) genomic region with all possible hexamers, or the full exon with all possible single 

nucleotide variants (SNVs), and measure strong effects on transcript abundance attributable to 

nonsense-mediated decay and exonic splicing elements. We similarly perform saturation genome 

editing of a well-conserved coding region of an essential gene, DBR1, and measure relative effects 

on growth that correlate with functional impact. Measurement of the functional consequences of 

large numbers of mutations with saturation genome editing will potentially facilitate high-

resolution functional dissection of both cis-regulatory elements and trans-acting factors, as well as 

the interpretation of variants of uncertain significance observed in clinical sequencing.

Functional consequences of genetic variants are best studied by manipulating the 

endogenous locus, which provides the native chromosomal context with respect to DNA 

sequence and epigenetic milieu, and for proteins, endogenous levels and patterns of 

expression7. Programmable endonucleases, e.g. zinc-finger nucleases (ZFNs), transcription 

activator-like effector nucleases (TALENs) or clustered regularly interspaced short 

palindromic repeat (CRISPR)/Cas-based RNA-guided DNA endonucleases, enable direct 
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genome editing with increasing practicality8. However, genome editing has primarily been 

applied to introduce single changes to one or a few genomic loci9, rather than many 

programmed changes to a single genomic locus.

We sought to leverage CRISPR/Cas96,10,11 to introduce saturating sets of programmed edits 

to a specific locus via multiplex HDR. We first targeted six bases of a BRCA1 exon12. We 

cloned an HDR library containing random hexamers substituted at positions +5 to +10 of 

BRCA1 exon 18 and fixed, nonsynonymous changes at positions +17 to +23 (as a ‘handle’ 

for selective PCR and to prevent re-cutting13 by destroying the protospacer adjacent motif 

(PAM)) (Fig. 1a; Supplementary Table 1). We co-transfected pCas9-sgBRCA1x18 and the 

HDR library into ~800,000 HEK293T cells, achieving 3.33% HDR efficiency. We 

performed two independent transfections with the same HDR library (‘biological replicates’ 

1, 2), and cells were split on day 3 (‘D3 replicates’ a, b).

We prepared genomic DNA (gDNA) and cDNA from bulk cells on D5. PCR reactions were 

primed on the ‘handle’ uniquely present within successfully edited genomes. Amplification 

was observed in HDR library/pCas9-sgBRCA1x18 transfected samples, but not in HDR 

library-only controls. Amplicons derived from gDNA and cDNA were deeply sequenced 

(Fig. 1a). The relative abundances of hexamers within replicates and the correlation between 

the HDR library and edited gDNA were consistent with limited ‘bottlenecking’ during 

transfection and minimal influence of hexamer identity on HDR efficiency (Extended Data 

Figs 1–2).

We estimated the effect of introducing each hexamer to these genomic coordinates on 

transcript abundance by calculating enrichment scores (cDNA divided by gDNA counts, 

calibrated to wild-type). These enrichment scores were well correlated between biological 

replicates (Fig. 1b, 1a vs. 2a: R = 0.659) and between D3 replicates (Extended Data Fig. 2c; 

1a vs. 1b: R = 0.662). When we pooled read counts from D3 replicates, correlation between 

biological replicates improved (Extended Data Fig. 2d; 1 vs. 2: R = 0.706).

To maximize precision (see Supplementary Note 1 for discussion of reproducibility), we 

merged data across all four replicates for 4,048 hexamers (Fig. 1c; Supplementary Table 2). 

Several results support the biological validity of the resulting enrichment scores. First, as 

anticipated by nonsense-mediated decay (NMD), hexamers introducing stop codons were 

associated with markedly reduced mRNA levels (Fig. 1c; Wilcoxon rank sum test (WRST) 

P = 9.7×10−84; median for nonsense hexamers 12-fold below overall median). Second, 

previous studies measured hexamer influence on splicing at analogous coordinates of 

different exons via a plasmid minigene assay14. Despite these contextual differences, the 

strongest exonic splicing silencers (ESSs) (bottom 2% in ref 14) scored 9-fold below median 

(Fig. 1c; WRST P = 2.0×10−24), the strongest exonic splicing enhancers (ESEs) (top 2% in 

ref 14) scored 1.5-fold above median (Fig. 1c; WRST P = 2.4×10−11), and the complete 

datasets correlated reasonably well (Extended Data Fig. 3a; ρ = 0.524). We also observed 

correlation between GC content and enrichment scores (Extended Data Fig. 3b), strongest 

for bases most proximal to the splice junction, consistent with a posited role for GC content 

in the stability of splicing structures15 (although reverse transcription bias is a potential 

confounder).
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We next sought to assay the effects of SNVs across the full 78 bp BRCA1 exon 18 

(Extended Data Fig. 4). We cloned three HDR libraries with selective PCR sites in either the 

5′ or 3′ region and 3% doping16 (97(wt):1:1:1) in the other half of the exon (L: 5′ 

degeneracy, 3′ nonsynonymous selective PCR site; R: 3′ degeneracy, 5′ nonsynonymous 

selective PCR site; R2: 3′ degeneracy, 5′ synonymous selective PCR site) (Supplementary 

Table 1). Five days post-transfection with pCas9-sgBRCA1x18 (1.02–1.29% HDR 

efficiency), we selectively amplified and deeply sequenced gDNA and cDNA.

Using data from all edited exons with ≥1 mutation and ≥10 gDNA counts, we estimated 

effect sizes (beta values) of all possible SNVs using a weighted linear model. Estimated 

effect sizes were reproducible (R = 0.846 (R), 0.853 (R2), and 0.686 (L); Fig. 2a, Extended 

Data Figs 5–6, Supplementary Table 3). Effect sizes for the same SNVs interrogated with 

different selective PCR strategies (R vs. R2) were also well correlated (R = 0.847; Fig. 2b).

The estimated effect sizes reflect empirically measured changes in transcript abundance 

resulting from programmed edits (Fig. 2c). As expected with NMD, nonsense mutations 

reduced transcript abundance (WRST P = 1.4×10−203; 5.6-fold below median). 

Additionally, several missense and synonymous SNVs reproducibly resulted in large 

reductions in transcript abundance, and SNV effect sizes correlated with a predictive model 

for exonic variants that disrupt splicing17 (ρ = 0.322; Extended Data Fig. 7a). Because 

library L does not destroy the PAM, we calculated enrichment scores for indels from non-

homologous end-joining (NHEJ). As expected with NMD, only frameshifting indels were 

associated with large depletions (Extended Data Fig. 7b,c).

To further demonstrate this method, we targeted a well-conserved region of DBR1, the RNA 

lariat debranching enzyme, which scored highly in a genome-wide screen for essentiality18 

(Extended Data Fig. 8). We used array-synthesized oligonucleotides to program a DBR1 

HDR library to include the wild-type sequence and every possible SNV across 75 bp (73 3′-

most bases of exon 2 and first two bases of intron 2), and also all 63 possible codon 

substitutions at three residues (388 genome edits were programmed; single base deletions 

were abundant from synthesis errors). The HDR library also introduced two fixed 

synonymous changes (to disrupt the PAM and prevent re-cutting13) and a selective PCR site 

in intron 2.

An optimized sgRNA sequence19,20 was cloned into a bicistronic sgRNA/Cas9-2A-EGFP 

vector (pCas9-EGFP-sgDbr1x2). Five million haploid human cells21 (Hap1) were co-

transfected with the DBR1 HDR library and pCas9-EGFP-sgDbr1x2. On D2, ~250,000 

EGFP+ cells were FACS sorted and further cultured, taking samples on D5, D8 and D11 

(1.14% HDR efficiency, estimated on D8). Following gDNA isolation and selective PCR, 

deep sequencing was performed to quantify the relative abundance of edited haplotypes in 

each sample.

We first examined the relative proportions of mutation classes at each time point (Fig. 3a). 

The strong enrichment of synonymous mutations and depletion of nonsense and 

frameshifting mutations over time indicated that selection was acting on edited cells in 

culture, consistent with DBR1 essentiality. We calculated enrichment scores (D8 or D11 
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counts divided by D5 counts) for 365 of the 388 (94%) programmed edits and 12 single base 

deletions (the subset with relative abundance >5×10−5 on D5) (Fig. 3b; Extended Data Fig. 

9; Supplementary Table 4). Enrichment scores strongly correlated with functional 

consequence. The median enrichment score for synonymous edits was nearly identical to 

wild-type (1.006-fold lower), but 73-fold lower for missense edits (P = 1.7×10−8; WRST 

against synonymous edits), 207-fold lower for nonsense edits (P = 1.9×10−9), and 211-fold 

lower for frameshifting single base deletion edits (P = 1.5×10−8). Furthermore, enrichment 

scores for SNVs were inversely correlated with metrics of predicted deleteriousness like 

CADD22 (ρ = −0.295; P = 1.2×10−5; Extended Data Fig. 10a,b). Residues N84, H85 and 

E86 of DBR1 were edited to all 63 possible non-wild-type codons. Consistent with their 

predicted role in the active site of an essential enzyme23, only synonymous mutations and a 

few missense substitutions were tolerated (Fig. 3c).

Amino-acid level enrichment scores were well correlated between D11 biological replicates 

(R = 0.752; P = 2.6×10−40; Extended Data Fig. 10c), and were bimodally distributed in each 

replicate, allowing broad classification of changes as tolerated or deleterious. The small 

proportion of discordantly classified variants might be explained by Hap1 reversion to 

diploidy or off-target effects, highlighting the importance of biological replicates for this 

experimental design (Supplementary Note 1). Notably, there were no reproducibly tolerated 

nonsense or frameshifting edits. Overall, these data support the conclusion that our 

empirically derived enrichment scores reflect true biological effects of specific genomic 

point mutations within DBR1.

We demonstrate that it is feasible to generate and functionally analyze hundreds to 

thousands of programmed genome edits at a single locus in a single experiment. We 

emphasize three major limitations of the method as it stands. First, we only introduced 

programmed edits to the immediate vicinity of coordinates targeted by the endonuclease 

(Extended Data Figs. 5a, 9a), and the narrow window associated with HDR mechanisms in 

mammalian cells24 may fundamentally limit the size of the region that can be subjected to 

multiplex editing in one experiment. Saturation genome editing of a full gene – e.g. to 

measure functional consequences of all possible variants of uncertain significance – will 

require multiple experiments tiling along its exons.

Second, only a small proportion of cells were successfully edited in each experiment, 

bottlenecking complexity, limiting reproducibility (Supplementary Note 1), and 

necessitating the selective PCR site. Looking forward, a variety of techniques, e.g. transient 

hypothermia25 or oligonucleotide-based HDR26, can be used to improve editing efficiency. 

Consistent with this, we note that ZFNs and TALENs have demonstrated efficiencies up to 

50% in some studies27,28. Also, although the low editing efficiency necessitated using 

haploid cells for DBR1 mutagenesis, this could potentially have been performed in diploid 

cells by knocking out one allele via NHEJ and then knocking in the HDR library to the other 

allele.

Finally, the development of functional assays that are biologically relevant and technically 

viable remains a challenge. Here, we exploited strategies that directly linked genotype to 

phenotype –e.g. targeted RNA sequencing to measure transcript abundance or targeted DNA 

Findlay et al. Page 4

Nature. Author manuscript; available in PMC 2015 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequencing to measure reduced cellular fitness. Analogous approaches can be taken in other 

contexts – e.g. targeted ChIP-seq of co-activators to assay enhancers, increased cellular 

growth rate to assay cancer drivers or drug resistance29, or FACS-based phenotypic sorting 

for cellular assays more generally30 (Supplementary Note 2).

There is a strong demand for techniques that accurately and scalably measure mutational 

consequences, and a dearth of experimental data measuring distributions of effect sizes or 

corresponding to direct manipulation of the genome. By multiplexing both the introduction 

and assaying of mutations in their native context, we anticipate that saturation genome 

editing will accelerate our ability to measure and interpret the functional consequences of 

genetic variation.

METHODS

BRCA1 Experimental Design

As a proof-of-principle experiment, we chose to target an exon in a clinically relevant gene 

in which known mutations cause aberrant splicing. Previous molecular studies of a G to T 

nonsense mutation occurring naturally in cancer patients at chr17:41,215,963 suggested 

exon skipping12 was secondary to the creation of an exonic splicing silencer site31. From 

this, we hypothesized that saturation genome editing of this exon could result in a wide 

range of splicing outcomes.

A chief consideration when performing parallel functional analysis of complex allelic series 

is the challenge of associating each of many mutations with the biological effects they 

produce. This task is more difficult when attempting such approaches at the endogenous 

genomic locus, and with limited editing efficiencies. By performing these experiments in an 

exon and focusing on the effects of mutations on transcript abundance, we directly link 

genotype and phenotype by observing the frequency of each genome edit in the transcript 

pool, relative to its frequency in genomic DNA. This design is advantageous because it 

requires no specialized (i.e. gene-specific) functional assay, thus making it amenable to 

interrogation of transcribed variants’ effects on splicing/transcript abundance in any gene.

Rationale for Including Selective PCR Sites

Given the modest proportion of HDR-edited loci in a given experiment and the high number 

of variants that we set out to interrogate (i.e. hundreds to thousands), it would require a large 

amount of sequencing to sufficiently sample every variant in gDNA and cDNA pools from a 

population of cells that are predominantly unedited or harboring products of NHEJ. 

Furthermore, at such efficiencies, the rate of error in high-throughput sequencing is high 

enough to obscure signal from single nucleotide variants (SNVs) (unpublished 

observations). Therefore, until better methods exist to isolate populations of cells 

successfully edited with HDR, techniques to selectively sequence molecules derived from 

edited cells are likely to be advantageous.

To implement this, we designed our HDR libraries to include short, fixed edits to serve as 

unique priming sites in genomes that successfully undergo HDR. PCR reactions primed at 

this site, therefore, should only amplify material from edited cells, thus reducing both the 
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noise associated with error from sequencing unedited material and the cost of sequencing in 

each experiment. Additionally, we predicted that selective PCR sites that mutate the PAM 

and protospacer sequences would prevent Cas9 from re-cutting HDR-edited genomes. This 

should have the effect of increasing the proportion of cells bearing experimentally 

informative edits, and given the bottleneck imposed by limitations on how many 

successfully edited cells can be sampled, should result in more robust experimental signal.

DBR1 Experimental Design

To demonstrate that saturation genome editing can be used to explore effects of mutations 

on protein function and cellular fitness, we targeted DBR1, a well-conserved gene that 

scored highly in a human haploid cell genome-wide loss-of-function screen for 

essentiality18. Using haploid cells prevents gene compensation from an unedited copy21. Not 

knowing how sensitive the cells would be to mutations, we chose to target a region of exon 

2 that was highly conserved, included in all transcript annotations on the UCSC Genome 

Browser, and coded for at least 2 residues (N84, H85) predicted to participate at the 

enzyme’s active site23. Selection against edited cells in culture allows phenotype to be 

linked to genotype from sequencing of the gDNA pool over a series of time points. During 

HDR library construction, we designed a selective PCR site in a downstream intron to 

minimize any effect on gene function, and used two synonymous mutations to abrogate 

Cas9 re-cutting.

Given the lower transfection efficiency of Hap1 cells (~4% for the plasmids used here), we 

cloned a DBR1-targeting CRISPR construct that expressed EGFP with Cas9 and used FACS 

to sort a population of successfully transfected cells. The sgRNA was designed using the 

Zhang Lab tool [http://crispr.mit.edu/], and selected to minimize off-target effects that could 

potentially impair cellular fitness19.

HDR Library and Cas9-sgRNA Cloning

A homology-directed repair (HDR) library containing all possible 4,096 DNA hexamers 

substituted at positions +5 to +10 of BRCA1 exon 18 (chr17:41,215,962-41,215,967; 

CCDS11453.1) was constructed using a partially degenerate oligonucleotide (IDT DNA; 

“BRCA1ex18NNNNNN5_10selPCR”) containing a 7 bp selective PCR site / EcoRV 

restriction digest site at position +17 to +23 (Fig. 1a, Supplementary Table 1). The 

oligonucleotide was PCR amplified and cloned via the In-Fusion reaction (Clontech) into a 

PCR-linearized pUC19-BRCA1ex18 vector containing a pre-inserted 1,573 bp fragment 

amplified from the surrounding BRCA1ex18 locus in HEK293T cells 

(chr17:41,215,127-41,216,699) to serve as homologous arms. Additional libraries from a 

second degenerate oligonucleotide that was synthesized with a 3% mutation rate (97% wt, 

1% each non-wt base) across the 78 bp exon were cloned similarly, such that one end of the 

exon would be fixed and contain either missense (as above) or synonymous mutations for 

selective PCR. Complete oligonucleotide and HDR library exon sequences are listed in 

Supplementary Table 1. All PCR reactions were performed with the KAPA HiFi HotStart 

ReadyMix PCR Kit.
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The DBR1 HDR library was cloned as above except with the following differences. HDR 

library variants were derived from 388 oligonucleotides synthesized on a microarray 

(CustomArray) to include all possible single base pair changes in a 75 bp region comprising 

part of DBR1 exon 2 (chr3:137,892,342-137,892,416), all codon variants at the first three 

residues of the 75 bp region (chr3:137,892,408-137,892,416), and the reference 75 bp 

sequence. All DBR1 HDR library sequences also included two synonymous mutations 

designed to prevent re-cutting of edited genomes by disrupting PAM and protospacer 

sequences (chr3:137,892,424 and chr3:137,892,421), and a 6 bp selective PCR site in intron 

2 of DBR1 (chr3:137,892,331-137,892,336). The library was cloned into a pUC19-

DBR1ex2 backbone, a vector containing the surrounding DBR1 sequence cloned from Hap1 

gDNA (chr3:137,891,573-137,893,293).

A bicistronic Cas9-sgRNA vector designed to cleave within BRCA1 exon 18 (“pCas9-

sgBRCA1x18”) was cloned according to a published protocol20 by ligating annealed 

oligonucleotides into a human codon-optimized S. pyogenous Cas9-sgRNA vector from the 

lab of Feng Zhang (pX330-U6-Chimeric_BB-CBh-hSpCas9; Addgene plasmid #42230). 

The same protocol was followed to create pCas9-EGFP-sgDbr1x2 from a similar Zhang lab 

vector that allows for fluorescent identification of Cas9-expressing cells (pSpCas9(BB)-2A-

GFP (pX458); Addgene plasmid #48138).

Cell Culture and Transfection

For BRCA1 experiments, HEK293T cells were cultured in Dulbecco’s Modified Eagle 

Medium (Life Technologies) supplemented with 10% FBS (AATC) and 100 U/ml penicillin 

+ 100 ug/ml streptomycin (Life Technologies). One day prior to transfection, cells were split 

to ~40% confluency in 12-well plates with antibiotic-free media. The next day, 0.5–1.0 ug 

of each library was co-transfected (Lipofectamine 2000, Invitrogen) with an equivalent 

amount of pCas9-sgBRCA1x18. Cells were expanded to 6-well plates, then split 1:4 on day 

3 into two pools, and DNA and RNA were harvested on D5 (AllPrep DNA/RNA Mini Kit, 

Qiagen). Biological replicates of each transfection and negative control transfections of each 

library without pCas9-sgBRCA1x18 were also performed.

For the DBR1 experiment, Hap1 cells (Haplogen) were cultured in Iscove’s Modified 

Dulbecco’s Medium supplemented with 10% FBS and 100 U/ml penicillin + 100 ug/ml 

streptomycin. ~3×106 Hap1 cells were passaged to a 60 mm dish in antibiotic-free media 

one day prior to co-transfection with 3 ug each of pCas9-EGFP-sgDbr1X2 and the DBR1 

HDR library via Turbofectin 8.0 (OriGene) according to protocol. On D2, FACS was 

performed (BD FACSAria III) to isolate ~250,000 EGFP+ cells, which were then expanded 

in culture with samples taken of ~1×106 cells on D5, and 4–8×106 on D8 and D11. gDNA 

was isolated according to protocol with the QiaAmp Kit (Qiagen). A biological replicate 

was performed, as well as negative controls in which the HDR library was transfected with 

the empty pSpCas9(BB)-2A-GFP construct (to enable FACS of transfected cells without 

editing).
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RT, Selective PCR and Sequencing

For BRCA1 experiments, reverse transcription (RT) was performed using SuperScriptIII 

(Invitrogen) with a gene-specific primer located in either BRCA1 exon 19 (hexamer 

experiments) or exon 21 (whole exon experiments). Initial rounds of PCR were performed 

on large quantities of sample gDNA (8–12 ug gDNA, 100–150 ng/reaction) and cDNA (25 

ug total RNA reverse transcribed and split into 45–47 reactions) using the KAPA HiFi 

HotStart ReadyMix PCR kit. In the first gDNA PCR, a primer external to the HDR library 

was used to prevent amplification of plasmid DNA. cDNA reactions were either primed 

from exons 16 and 18 (hexamer experiment; Library L) or exons 18 and 20 (Libraries R, 

R2). After the initial gDNA and cDNA reactions, all PCR products from a single sample 

were pooled and purified using the QIAquick PCR Purification Kit (Qiagen).

For both cDNA and gDNA reactions, a primer designed to selectively amplify edited 

molecules bearing the selective PCR site was used either in the first or second reaction. 

Optimal annealing temperatures for each primer pair were determined via gradient PCR, and 

negative control reactions were performed using input from HDR library-only transfections 

to ensure products were derived from edited genomes as opposed to the HDR library. 

Negative controls failed to amplify for all experiments. Two subsequent PCRs were 

performed to add sequencing adaptors (“PU1L” and “PU1R”), sample indices, and flow cell 

adaptors.

For the DBR1 experiment, 30 cycles of selective PCR were performed on gDNA (300 ng per 

reaction) from D5 (3 ug), D8 and D11 (27 ug each). Wells from each sample were pooled, 

PCR purified, and then re-amplified for 15 additional cycles. The 1,055 bp product was gel-

purified (QIAquick Gel Extraction Kit, Qiagen), and two subsequent PCRs were performed 

to incorporate sequencing and flow cell adaptors prior to sequencing as above.

After final reactions were purified (AMPure XP beads, Agencourt), paired-end sequencing 

was performed on all samples with the Illumina MiSeq to quantify gDNA and/or cDNA 

abundances for each edited haplotype. All primer sequences for RT, selective PCR, and 

sequencing library preparation are provided in Supplementary Table 1.

HDR efficiencies were estimated for all experiments via deep sequencing of target loci by 

performing PCR on 150–300 ng of gDNA using primers external to the region of editing and 

the selective PCR site. Reported HDR efficiencies were conservatively calculated as the 

fraction of sequencing reads containing the selective PCR site and bearing at least one 

variant represented in the HDR library.

Analysis of Sequencing Data

For quality control, fully overlapping paired-end reads were merged with PEAR32 (Paired-

End reAd mergeR) and discordant pairs were eliminated. By design, the mutagenized region 

is covered by both the forward and reverse reads on the Illumina platform, resulting in high-

confidence calls per site.

For BRCA1 hexamer reads to be included, the six bases on either side of the hexamer were 

required to match the reference sequence, and every base call in the hexamer required a 
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quality score of at least Q30. For BRCA1 whole-exon mutagenesis, the full read was 

required to be the correct length and match the library consensus sequence outside of the 

mutagenized region, every base quality score inside the mutagenized region was required to 

be at least Q30, and no indels were tolerated in alignment with BWA-MEM33. cDNA reads 

not matching any gDNA haplotype with at least 10 reads were eliminated. After normalizing 

for sequencing coverage, enrichment scores were calculated as cDNA read counts 

incremented by one pseudocount divided by gDNA reads, calibrated to the wild-type 

hexamer.

For DBR1 mutagenesis, reads were subjected to the same requirements of the sequence 

outside the mutagenized bases matching the consensus and every quality score in the 

mutagenized region exceeding Q30. Only reads matching programmed haplotypes were 

analyzed, and haplotypes below a D5 relative abundance of 5E-5 of were excluded from 

analysis. After incrementing all read counts by one pseudocount and dividing by the total 

number of reads, the abundance of each haplotype on D8 or D11 was divided by the 

corresponding abundance on D5, and the fold change relative to the wild type sequence was 

taken to calculate an enrichment score. Based on the bimodal distribution observed in each 

replicate, mutations with log2-transformed enrichment scores less than −2 were considered 

“deleterious”; otherwise, mutations were considered “tolerated”. Discordant effects between 

replicates were defined as mutations “tolerated” in one replicate but “deleterious” in the 

other. Amino acid level enrichment scores were calculated as the median of SNV 

enrichment scores for programmed edits resulting in the same change (or lack of change, for 

synonymous edits).

SNV Effect Size Linear Modeling and Replicate Pooling

To determine effects of SNVs in the BRCA1 whole-exon experiments, cDNA and gDNA 

read counts were converted into percentages (number of reads for a given haplotype divided 

by the total number of reads for a given replicate) after discarding haplotypes with fewer 

than 10 gDNA reads. Because we had variance in the number of reads for each haplotype, 

the null expectation of equal variance (σ2) for each cDNA/gDNA ratio was violated. 

Because each effect size (yij) was the average of nij observations (reads), then var(yij) = var 

εij = σ2/nij, suggesting that the weight for each variable should be nij. To predict single 

nucleotide effect size across exon 18 of BRCA1, we then fit the weighted linear model:

where yij is the log2 enrichment score for a given haplotype, wij is the number of gDNA 

reads for a given haplotype, βij is the effect of nucleotide i at position j relative to the wild-

type allele, and Xij is a dummy variable indicating the presence or absence of a particular 

nucleotide change i at position j relative to the wild type allele. Regression analyses were 

performed in R 3.0.0 using the lm() function. The resulting coefficients of the model 

adjusted for the model intercepts (β0 + βij) were taken as effect sizes of the individual SNVs 

on exon splicing/stability. To merge data across replicates, effect sizes were averaged 

(including across overlapping bases between libraries L and R in BRCA1 exon).
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Comparisons to other metrics of functional impact

For comparison to plasmid studies, ESR-seq scores were taken from Ke et al. (2011)14. 

Hexamers with positive ESR-seq scores are deemed exonic splicing enhancers, whereas 

negative ESR-seq scores denote exonic splicing silencers. For comparison of BRCA1 exon 

18’s SNV effect sizes to an in silico method, all SNVs were queried on MutPredSplice’s 

web server (http://mutdb.org/mutpredsplice/submit.htm). MutPredSplice reports a single 

score estimating the likelihood that a variant will disrupt splicing at any genomic locus. 

Absolute values of BRCA1 exon 18 splicing effect sizes were then correlated with 

MutPredSplice scores to determine concordance between our data and predicted effects on 

splicing.

For DBR1, calculated enrichment scores were compared to BLOSUM62 substitution 

scores34 (obtained from NCBI), PolyPhen-235, and CADD22 (PolyPhen-2 and CADD scores 

obtained from querying genomic coordinates from CADD’s precomputed genomic 

annotations (http://cadd.gs.washington.edu/download). Whereas BLOSUM62 is derived 

from evolutionary conservation and PolyPhen-2 predicts changes in protein function, CADD 

is an integrated measure of deleteriousness that incorporates many functional annotations 

(including PolyPhen-2).
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Extended Data

Extended Data Figure 1. Distributions and pair-wise correlations of hexamer abundances
(a) The relative abundance of hexamers within the HDR library (red), gDNA (blue), cDNA 

data (green) are shown for a single experiment. The vertical black line represents our 

threshold of 10 gDNA reads. (b–d) Scatterplots from a single replicate show pair-wise 

correlations between sequencing counts for the HDR library, gDNA, and cDNA for 

hexamers with at least 10 observations in the gDNA library, excluding wild type and control 

hexamers (n = 3,633). The HDR library and the gDNA data are most highly correlated (R 
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95% CI: 0.596–0.636), followed by the gDNA and cDNA (R 95% CI: 0.419–0.471) and the 

HDR library and cDNA (R 95% CI: 0.341–0.394).

Extended Data Figure 2. Correlations for hexamer genome editing efficiency and enrichment 
scores between biological replicates
(a) gDNA counts for all hexamers with at least ten reads in each of two gDNA preps from 

separate transfections with the same HDR library (n = 2,980) exhibited moderate correlation 

(R 95% CI: 0.355–0.416). (b) However, hexamer editing rates, defined as gDNA counts 

normalized to HDR library counts, were substantially less correlated (R 95% CI: 0.084–

0.155), consistent with a hexamer’s HDR library abundance contributing more to its gDNA 

abundance than systematic differences in HDR efficiency secondary to the hexamer 

sequence itself. (c) Hexamer enrichment scores for two pools of cells from a single 

transfection split on D3 were well-correlated (R 95% CI: 0.643–0.681). (d) Pooling data 
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from cells split on D3 replicates from a single transfection yielded an improved correlation 

between biological replicates (i.e. independent transfections; R 95% CI: 0.690–0.722).

Extended Data Figure 3. Comparison of genome-based hexamer enrichment scores to plasmid-
based hexamer scores
(a) There was a modest correlation between ESS and ESE hexamers defined by a previous 

study14 (x-axis) and the enrichment scores calculated here (y-axis; Spearman ρ = 0.524). 

The previous study also interrogated hexamers positioned +5 to +10 nucelotides relative to a 

splice junction, but was plasmid-based rather than genome-based and in the context of 

different exons. (b) To reveal effects of GC content on hexamer abundance, histograms 

display the distribution of enrichment scores for each possible GC level (0–6). Hexamers 

containing two or fewer GC base pairs exhibited broadly lower enrichment scores than 

hexamers containing three or more GC base pairs.
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Extended Data Figure 4. Experimental schematic for genome editing and functional analysis of 
BRCA1 exon 18
Cultured cells were co-transfected with a single Cas9-sgRNA construct (CRISPR) and an 

HDR library. Each HDR library was generated from cloning of an oligonucleotide 

synthesized with 3% nucleotide degeneracy (97wt:1:1:1) for approximately half of the exon 

and a selective PCR site introduced to the other (fixed) half of the exon (red). CRISPR-

induced HDR integrates mutant exons into the genome. Cells were cultured for five days 

post-transfection, and then harvested for gDNA and total RNA. After reverse transcription, 

selective PCR was performed prior to sequencing the edited pools of gDNA and cDNA. 

Each exon haplotype’s enrichment score was measured by dividing cDNA reads by gDNA 

reads, and effect sizes for each SNV were calculated via weighted linear regression.
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Extended Data Figure 5. Positional SNV editing rates and replication of effect sizes
(a) Editing rates for each SNV in BRCA1 exon 18 were calculated by dividing each SNV’s 

gDNA sequencing abundance by its HDR library abundance. Editing rates were then plotted 

across the exon for each library (red = L, blue = R, green = R2) with locations of their 

selective PCR sites and the CRISPR-targeted PAM illustrated below. For HDR libraries R 

and R2, there was a subtle decrease in editing rate with increasing distance from the Cas9 

cleavage site (rhoR = −0.264, pR = 4.1×10−3; rhoR2 = −0.361, pR2 = 4.8×10−5). For library 

L, which allowed re-cutting by not destroying the PAM, there was a sharp peak of editing 

centered on the Cas9 cleavage site, and a rapid decline in efficiencies in the 5′ direction 

(further from the 3′ selective PCR handle). (b–c) SNV effect sizes were concordant across 

biological replicates for libraries R2 (b) and L (c) (library R shown in Figure 2). Notably, 

variants of high effect size scored similarly across independent transfections.
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Extended Data Figure 6. Biological replicate effect size reproducibility for all libraries
Three separate HDR libraries (R, R2, and L) containing 3% nucleotide degeneracy in either 

half of BRCA1 exon 18 were introduced to the genome via co-transfection with pCas9-

sgBRCA1x18. Enrichment scores were calculated for each haplotype observed at least ten 

times in the gDNA, and effect sizes of SNVs were determined by weighted linear 

regression. Effect sizes of individual variants for libraries R2 (left), R (middle), and L (right) 

were well correlated between biological replicates. Dashed lines represent SNVs that 

introduce nonsense codons.

Extended Data Figure 7. Correlation between effect sizes and predicted disruption of splicing 
motifs and indel effects
(a) MutPred Splice17 was used to predict the functional impact of all 234 single nucleotide 

substitutions on splicing in BRCA1 exon 18 (x-axis), and these scores were compared to 

absolute values of our empirically measured effect sizes (y-axis; ρ = 0.322). Although 

nonsense variants contributed to this trend, the sense variants with the largest effect sizes 

generally had high MutPred Splice scores. (b) For indels observed in gDNA from library 2 

(virtually all of which occur at the Cas9 cleavage site), size frequencies are plotted. Indel 

size = 0 includes all haplotypes with wild type length. (c) For each indel size, enrichment 
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scores were calculated and normalized to that of the average full length exon. As predicted 

by nonsense-mediated decay, indels that shift the coding frame were associated with low 

transcript abundance.

Extended Data Figure 8. Experimental schematic for saturation genome editing and multiplex 
functional analysis of DBR1 exon 2
Hap1 cells were co-transfected with a single Cas9-2A-EGFP-sgRNA construct (CRISPR) 

and an HDR library cloned from array-synthesized oligonucleotides containing programmed 

SNVs (orange, blue) and active site codon substitutions (green). The HDR library exon 

haplotypes also included two synonymous mutations (red) to disrupt PAM and protospacer 

sequences to prevent Cas9 re-cutting, and a 6 bp selective PCR site (light blue) substituted 

in the downstream intron. Successfully transfected cells (EGFP+) were selected on D2 by 

FACS, and cultured. On D5, D8, and D11, samples of cells were taken and selective PCR 

was performed prior to targeted sequencing of gDNA. Each haplotype’s enrichment score, a 

measure of the haplotype’s fitness in cell culture, was calculated by dividing D8 or D11 

abundance by D5 abundance.
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Extended Data Figure 9. DBR1 editing rates by position and comparison of haplotype 
abundances between D5 and the HDR library, D8, and D11
(a) Editing rates for programmed SNVs represented in the DBR1 gDNA library above 

threshold (n = 216) were calculated by normalizing each SNV’s gDNA abundance by its 

HDR library abundance. Rates are plotted by position, with the locations of the targeted 

PAM (orange) and selective PCR site (purple) indicated below. The editing rate did not 

significantly change with position (P > 0.05), consistent with positional effects being 

negated by eliminating re-cutting and performing selective PCR from a distal site. (b) 
Scatterplots display the frequencies at which each haplotype was observed in the D5 sample 

vs. the HDR library, D8, and D11 samples. To account for bottlenecking from editing of a 

limited number of cells in this representative experiment, analysis of individual haplotypes 

was restricted to those present at frequencies above 5E-5 in the D5 sample (n = 377; 

represented by the vertical line). Selection was evident by the depletion of many haplotypes 

in D8 and D11 samples.
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Extended Data Figure 10. Performance of computational predictions of deleterious DBR1 
mutations and reproducibility between biological replicates
(a) D11 enrichment scores from a single experiment were used to empirically define 

deleterious mutations as those with scores four-fold below wild type (vertical line). (b) 
Three in silico metrics of functional impairment were tested for their ability to anticipate the 

deleteriousness of these mutations as indicated by the area under the receiver operating 

characteristic curve (AUC): BLOSUM6234 (AUC = 0.672, 214 SNVs), PolyPhen-235 (AUC 

= 0.671, 155 non-synonymous SNVs), and CADD22 (AUC = 0.701, 214 SNVs). Despite the 

different approaches of these algorithms, all three exhibited comparably moderate predictive 

power. (c) A biological replicate of the DBR1 experiment was performed and D11 

enrichment scores for amino acid substitutions were well correlated (gray lines on 

scatterplot indicate the “deleteriousness” threshold of four-fold depletion). The distribution 

of amino-acid level enrichment scores for each experiment is displayed along each axis, 

reflecting bimodality. Notably, unexpected effects (i.e. nonsense mutations scoring as 

tolerated) were among the relatively small percentage of effects not consistent between 

replicates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Saturation genome editing and multiplex functional analysis of a hexamer region 
influencing BRCA1 splicing
(a) Experimental schematic. Cultured cells were co-transfected with a single Cas9-sgRNA 

construct (CRISPR) and a complex homology-directed repair (HDR) library containing an 

edited exon that harbors a random hexamer (blue, green, orange) and a fixed selective PCR 

site (red). CRISPR-induced cutting stimulated homologous recombination with the HDR 

library, inserting mutant exons into the genomes of many cells. At five days post-

transfection, cells were harvested for gDNA and RNA. After reverse transcription, selective 

PCR was performed followed by sequencing of gDNA and cDNA derived amplicons. 

Hexamer enrichment scores were calculated by dividing cDNA counts normalized by gDNA 

counts. (b) Correlation of enrichment scores between biological replicates for hexamers 

observed in each experiment with positions of previously identified14 exonic splicing 

enhancers (ESEs), exonic splicing silencers (ESSs) and stop codons indicated. (c) Rank-

ordered plot of enrichment scores with positions of ESEs, ESSs, and stop codons indicated.

Findlay et al. Page 22

Nature. Author manuscript; available in PMC 2015 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Multiplex homology-directed repair reveals effects of single nucleotide variants on 
transcript abundance
Three separate HDR libraries (R, R2, and L) containing a 3% mutation rate (97% wt, 1% 

each non-wt base) in either half of BRCA1 exon 18 were introduced to the genome via co-

transfection with pCas9-sgBRCA1x18. Enrichment scores were calculated for each 

haplotype observed at least 10 times in the gDNA, and effect sizes of SNVs were 

determined by weighted linear regression modeling. ‘Sense’ includes both missense and 

synonymous SNVs. (a) Effect sizes calculated from replicate transfections of HDR library 

R, consisting of a 3% per-nucleotide mutation rate in the 3′-most 39 bases and the same 

selective PCR site used in Fig. 1, were highly correlated (R = 0.846). (b) Library R2 

harbored a selective PCR site composed of 5 synonymous changes, none of which are 

present in Library R. When effect sizes derived from experiments with library R2 were 

plotted against those from library R, there was a strong correlation (R = 0.847), indicating 

reproducibility and demonstrating that differences between selective PCR sites did not 

strongly influence scores. (c) Effect sizes for SNVs across the exon are displayed. Datasets 

from libraries R and L were combined to span the entire exon. Dashed lines represent SNVs 

that introduce nonsense codons.
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Figure 3. Saturation genome editing and multiplex functional analysis at an essential gene, 
DBR1, in Hap1 cells
An HDR library targeting a highly conserved region of DBR1 exon 2 was used with pCas9-

EGFP-sgDbr1x2 to introduce point mutations across 75 bp and all possible codon 

substitutions at three residues believed to participate at the enzyme’s active site. (a) 
Sequencing of gDNA from the HDR library and populations of edited cells at D5, D8, and 

D11 reveals selection for synonymous mutations, and depletion of frameshift, nonsense, and 

missense variants. (b) Mean D11 enrichment scores are plotted as line segments for SNVs in 

the 3′-most 73 bases of exon 2 and two bases of intron 2. Above the enrichment scores in 

ascending order are the wt nucleotide at each position, each one bp genome edit, the wild-

type amino acid (AA), and the AA derived from each genome edit (asterisk indicates a stop 

codon). Segment color indicates mutation type, faded segments indicate discordant effects 

between replicates, and AAs are colored according to the Lesk color scheme (small nonpolar 

– orange, hydrophobic – green, polar – magenta, negatively-charged – red, and positively 

charged – blue). The first nine bases shown correspond to the active site residues. (c), D8 

and D11 amino acid level enrichment scores were calculated for active site residues N84, 

H85, E86 after excluding discordant observations between replicates (Extended Data Figure 

10c). On both D8 and D11 we observe strong selective effects and tolerance of only 

synonymous (green boxes) and a few missense variants.

Findlay et al. Page 24

Nature. Author manuscript; available in PMC 2015 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


