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Omics-based methods may provide new markers asso-
ciated to diabetic retinopathy (DR). We investigated
a wide omics panel of metabolites and lipids related to
DR in type 1 diabetes. Metabolomic analyses were per-
formed using two-dimensional gas chromatography with
time-of-flight mass spectrometry and lipidomic analyses
using an ultra-high-performance liquid chromatography
quadruple time-of-flight mass spectrometry method in
648 individuals with type 1 diabetes. Subjects were sub-
divided into no DR, mild nonproliferative DR (NPDR),
moderate NPDR, proliferative DR, and proliferative DR
with fibrosis. End points were any progression of DR,
onset of DR, and progression from mild to severe DR
tracked from standard ambulatory care and investigated
using Cox models. The cohort consisted of 648 partici-
pants aged a mean of 54.46 12.8 years, 55.5%were men,
and follow-up was 5.1–5.5 years. Cross-sectionally, 2,4-
dihydroxybutyric acid (DHBA), 3,4-DHBA, ribonic acid,
ribitol, and the triglycerides 50:1 and 50:2 significantly
correlated (P < 0.042) to DR stage. Longitudinally, higher
3,4-DHBA was a risk marker for progression of DR (n 5

133) after adjustment (P 5 0.033). We demonstrated mul-
tiple metabolites being positively correlated to a higher
grade of DR in type 1 diabetes and several triglycerides
being negatively correlated. Furthermore, higher 3,4-
DHBA was an independent risk marker for progression
of DR; however, confirmation is required.

One of the most frequent and debilitating complications of
diabetes is diabetic retinopathy (DR). Despite radical
improvements in diagnosis and treatment throughout the

last decades (1), DR is still the primary cause of blindness in
individuals with diabetes aged 20–74 years, and the prev-
alence was 34.6% in a large meta-analysis including 22,896
individuals with diabetes (2). The advances in diagnosis
and treatment have particularly been made for later stages
of the disease, and robust and specific risk markers for
onset and early progression of DR are still lacking.

Novel omics methods have been developed, allowing for
simultaneous evaluation of large panels of metabolites using
mass spectrometry–based approaches that allow for compre-
hensive study of metabolic pathways compared with more
traditional single-biomarker approaches. Omics facilitates
advanced and detailed analysis faster than standardmethods.
More specifically, metabolomics and lipidomics is the anal-
ysis and categorization of circulating metabolites and lipids
using this method and can provide a more comprehensive
view of the biological effects of various metabolites (3,4).

Applying this method to DR is an intriguing concept.
Omics allows for a unique ability to understand the bi-
ological pathways for DR as well as facilitate the discovery
of novel biomarkers associated to DR development and
progression. Few studies have evaluated the association
between circulating metabolites and the presence of DR. In
one cross-sectional study, several metabolites were asso-
ciated with DR in type 2 diabetes, among them, hydroxyl
fatty acids, such as 3,4 dihydroxybutyric acid (3,4-DHBA),
and sugar derivatives such as lactose, maltose, and ribose
(5). Likewise, other studies have identified plasma metab-
olites associated to arginine-, pyrimidine- and fatty acid-
related pathways, as well as several amino acids highly
related to insulin resistance, in relation to DR (6–8).
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In the current study, we investigated the predictive
qualities of a wide panel of metabolites and lipids in plasma
in relation to the presence, onset, and progression of DR
in individuals with type 1 diabetes (T1D).

RESEARCH DESIGN AND METHODS

Study Population
Between 2009 and 2011, 648 individuals with T1D and
a large range of albuminuria were recruited from the
outpatient clinic at Steno Diabetes Center Copenhagen.
The details of the cohort have previously been described
(9). Participants were subdivided by stages of albuminuria
(normo-, micro-, and macroalbuminuria). End-stage kid-
ney disease, defined as receiving dialysis, renal transplan-
tation, or an estimated glomerular filtration rate (eGFR)
,15 mL/min/1.73 m2 at baseline was an exclusion crite-
rion. In the current study, metabolomics and lipidomics
data along with information on retinopathy status was
available for 601 (serum metabolomics) and 648 (plasma
lipidomics) participants, respectively.

The study was conducted in compliance with the Decla-
ration of Helsinki and was approved by the ethics committee
for the Capital Region of Denmark (Hillerød, Denmark).
All participants have given informed written consent.

Baseline Clinical Analyses
Serum creatinine, plasma LDL cholesterol, triglycerides,
and HbA1c were measured using standardized methods
from venous samples. The urinary albumin excretion rate
(UAER) was analyzed by enzyme immunoassay based on
three consecutive 24-h urine collections. eGFR was calcu-
lated based on serum creatinine using the Chronic Kidney
Disease Epidemiology Collaboration equation. An auto-
mated validated device was used to measure sitting bra-
chial blood pressure after a 10-min rest.

Baseline DR stage was classified using in-house algo-
rithms on a 0–4 scale based on regular retinopathy screen-
ings at Steno Diabetes Center Copenhagen performed by
specifically trained and certified nursing staff under the
supervision of ophthalmologists. Five mydriatic nonster-
eoscopic fundus photos are taken; one macula-centered
and four peripheral 45° fundus images. These are com-
bined into a mosaic, grading the macula and periphery
separately, according to a modified version of the inter-
national classification of DR disease severity scale (10). The
presence of microaneurysms, intraretinal hemorrhages,
hard or soft exudates, and proliferations are recorded and
quantified. Likewise, intraretinal microvascular abnormal-
ities and venous beading are recorded. A weighted quan-
titation of the distinct retinal pathologies was used to
perform staging. Overall stage was defined as the highest
stage diagnosed in either eye. Stage 0 is defined as no DR in
any eye, stage 1 as mild nonproliferative DR (NPDR), stage
2 as moderate NPDR, stage 3 as proliferative DR (PDR),
and stage 4 as PDR with fibrosis. Blind subjects are not
screened for retinopathy at Steno Diabetes Center Copen-
hagen and were therefore excluded. Blindness was defined

as visual acuity of less than 1/60, lack of ability to count
fingers in front of a white screen at 1 m distance, and lack
of ability to see hand motion in front of a white screen at
1 m distance.

Sample Quantification and Identification
The metabolomics analysis is detailed in Tofte et al (11),
and the lipidomics analysis is detailed in Tofte et al. (12).
For completeness, the analyses are outlined here as fol-
lows: Serum samples, stored at 280°C, were analyzed by
two different analytical methods. Metabolomics samples
were analyzed using a two-dimensional gas chromatogra-
phy with time-of-flight mass spectrometry. Peak-picking
from the raw data was performed with ChromaTOF, and
the resulting features were aligned with Guineu (13).

Lipidomics samples were prepared using a modified
Folch extraction procedure (14) and analyzed by a pre-
viously presented ultra-high-performance liquid chroma-
tography quadrupole time-of-flight mass spectrometry
method (15). The raw data were preprocessed with
MZmine 2 (16). A complete list of identified metabolites is
available in Tofte et al. (11). Finally, the metabolomics and
lipidomics data were postprocessed in R software, as de-
scribed previously (11,12). Lipid species are defined as the
number of carbon atoms (indicating total fatty acid chain
length) and number double-bonds for the specific species.
They are presented as “species (number of carbon atom-
s:number of double-bonds).”

Within the coverage of the two mass spectrometry plat-
forms, the inclusion of metabolites and lipids in subsequent
data analysis was solely based on the certainty of identifi-
cation and the level of technical precision, thereby not
restricting to any particular pathway or prior hypothesis.

Follow-up
Data regarding retinopathy were obtained using local
electronic records from Steno Diabetes Center Copenha-
gen up to 31 December 2016 and were available for
563 subjects. The end points were defined as 1) progres-
sion from any stage to any other stage of DR (any pro-
gression); 2) onset of DR; and 3) progression from stage
1–2 to stage 3–4 (progression from mild to severe DR). In
the case of participants experiencing multiple end points,
only the first occurrence was included.

Statistical Analysis
Continuous variables are presented as mean (SD), if nor-
mally distributed, and as median (interquartile range
[IQR]) if skewed. Before all analyses, skewed variables were
log2 transformed, including all metabolites, to achieve
normal distribution. Categorical variables are presented as
total number (%). Baseline clinical characteristics were
compared across baseline DR status using ANOVA and
the x2 test for continuous and categorical variables,
respectively.

Metabolites and lipid species were analyzed using
a narrowing-down approach in relation to DR stages and
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outcomes as follows: Cross-sectional relationships be-
tween single metabolites or lipid species and baseline DR
stages were assessed using multivariate linear regression
models adjusted for relevant clinical variables. Thereafter,
the single measures were cross-sectionally associated to
categories of DR stage and tested using ANCOVA. The
Benjamini-Hochberg (BH) method (PBH) (17,18) was used
to correct for multiple testing for presented P values
throughout the analysis. Metabolites with PBH , 0.05
and lipids with PBH , 0.1 in the adjusted cross-sectional
model were included in survival analysis with the Cox
proportional hazards model for end points. All hazard
ratios (HRs) are reported per doubling of the metabolite
or lipid.

Clinical variables in the adjusted models were age, sex,
HbA1c, systolic blood pressure, smoking, BMI, statin treat-
ment, triglycerides, LDL cholesterol, and prescribed anti-
hypertensive medication.

Partial correlation network analysis was done with the
R package “huge” (19) using the graphical lasso algorithm
(20) coupled with the extended Bayesian information
criterion (21). All metabolites were included in inferring
the network. Subsequently, the subnetwork of metabo-
lites, which were immediately connected to the four ret-
inopathy-associated metabolites, was visualized with the R
package qgraph (22). Edges or the network were colored by
the respective partial correlation in the graphical lasso
model, and nodes were colored with respective Spearman
correlation to the top candidate biomarkers. In both color
annotations, red and blue refer to positive and negative
correlation, respectively. Size of nodes refers to the re-
spective degree (i.e., the number of associations to other
nodes). Statistical analysis and data visualization were
performed using R (version 3.4.2).

Data and Resource Availability
The data sets generated during and/or analyzed during the
current study are available from the corresponding authors
on reasonable request.

RESULTS

Baseline Characteristics
Baseline characteristics for the participants divided accord-
ing to baseline DR stages are summarized in Table 1. Most
had no DR (n 5 141 [22%]) or moderate NPDR (n 5
186 [29%]). Compared with no DR, participants with PDR
with fibrosis had higher mean (SD) BMI (24.7 [3.5] vs. 26.8
[11.2] kg/m2), UAER (11.5 [IQR 7.6–22.4] vs. 49.0 [IQR
14.9–231.8] mg/24 h), and systolic blood pressure
(127 [(46.1] vs. 135 [20.3] mmHg), and lower eGFR
(94.8 [24.7] vs. 64.5 [30.6] mL/min/1.73 m2). Across
groups, age, systolic blood pressure, and UAER were higher
with higher DR stage, and the eGFR was lower. Also, the
frequency of treatment with antihypertensive drugs and
statins was higher with higher DR stage.

Metabolomic Cross-sectional Analyses
A total of 75 metabolite species were identified and passed
quality control (Supplementary Table 1). These metabo-
lites were included in the multivariate linear regression
models. Four metabolites were positively correlated to
baseline DR stage after adjustment for clinical variables
and correction for multiple testing: 2,4-DHBA (PBH ,
0.001), ribonic acid (PBH 5 0.017), ribitol (PBH 5 0.032),
and 3,4-DHBA (PBH 5 0.036). Thereafter, all 75 metabo-
lites were included in ANCOVA for baseline DR stages. The
same four metabolite levels were significantly increased by
higher DR stage after adjustment (ribonic acid, PBH ,
0.001; 2,4-DHBA, PBH , 0.001; ribitol, PBH 5 0.013; and
3,4-DHBA, PBH 5 0.041) (Table 2). Figure 1 illustrates
the distribution and relative levels of these four metab-
olites. It is apparent that the levels of all four metab-
olites increase with higher DR stage. Both 2,4-DHBA and
3,4-DHBA (Fig. 1B and D) follow the same pattern of
lower levels of the metabolite for no DR and NPDR and
a nonlinear increase toward higher DR stages and PDR
with fibrosis, in particular. In contrast, the levels of ribonic
acid and ribitol (Fig. 1A and C) increase linearly with
increasing DR stage.

The partial correlation network of the metabolome
connected to the four metabolites is shown in Fig. 2. This
network included kidney function–related metabolites
(e.g., creatinine and myo-inositol), glucose metabolism–
related compounds (e.g., citric acid and glycine), fatty acids
(e.g., fumaric acid and malic acid), and amino acids (e.g.,
alanine and serine). Particularly, creatinine and myo-
inositol, but also glyceryl-glycoside, 4-hydroxybenzeneacetic
acid, and fumaric acid, were highly associated with the
hub of the four retinopathy-associated metabolites. Ex-
cept for the amino acids, most of the compounds in
the network were positively correlated with the four
highlighted metabolites, as indicated by the red color in
Fig. 2.

Lipidomic Cross-sectional Analyses
After identification and quality control, 104 lipid species
from the following five major lipid classes were included in
the analyses: diacyl-phosphatidylcholines (PCs), alkyl-acyl-
phosphatidylcholines, lyso-phosphatidylcholines (LPCs),
triacylglycerols (TGs), and sphingomyelins. Lipid species
are defined as number of carbon atoms (indicating total
fatty acid chain length) and number double-bonds for the
specific species. They are presented as “species (number of
carbon atoms:number of double-bonds).” The investigated
lipids are listed in Supplementary Table 2.

TG(50:1) and TG(50:2) were inversely associated with
DR grade at baseline after adjustment for clinical cova-
riates, when testing with linear regression analysis (PBH ,
0.05). Furthermore, LPC(16:1), PC(32:1), TG(14:0/16:0/
18:1), TG(50:3), and PC(32:2) were inversely associated
with baseline DR grade at a higher false discovery rate of
10%.
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When investigating with ANOVA, a difference in the
lipid level between the DR grades was detected in
LPC(16:0) (PBH , 0.1). This association was lost after
adjustment for the clinical covariates (ANCOVA). In
addition to LPC(16:0), medium-sized unsaturated TGs
and small LPCs had stronger indicative associations with
DR grade than other lipids, as shown in the lipidome-
wide heatmap of the ANCOVA F statistics (Fig. 3). In
particular, LPCs(16:1), as well as TG(49:3), TG(50:1), and
TG(50:2), emerged with an indicative association with the
DR grade.

Longitudinal Analyses
Metabolites and lipids identified in cross-sectional anal-
yses were thereafter analyzed with compound-specific

Cox proportional hazards models for association to any
progression, onset of DR, and progression from mild to
severe DR. Median follow-up ranged between 5.1 and 5.5
years depending on the end point. The number of events
was 133, 47, and 29 for any progression, onset of DR,
and progression from mild to severe DR, respectively.
For the any progression end point, higher 3,4-DHBA
exhibited significance after adjustment for clinical cova-
riates and multiple testing (HR 1.55, 95% CI 1.12–2.15,
P 5 0.033). The other metabolites were not associated
with any of the end points neither before nor after
adjustment. Although not statistically significant, 2,4-
DHBA showed a high HR for progression from mild to
severe DR (HR 1.92, 95% CI 0.94–3.93, P 5 0.290).
Unadjusted and adjusted HRs for the metabolites are
presented as a forest plot in Fig. 4.

Unlike the metabolites, no lipids were independent risk
factors for any of the end points (P . 0.05).

DISCUSSION

The current study illustrates an exciting new avenue in
characterizing individuals with T1D with DR. In the
present cohort we have investigated individuals with long
diabetes duration and a broad range of albuminuria,
leading to a high proportion of subjects with more severe
DR than would be expected in a general clinical population
with T1D. We identified four metabolites associated with
presence of DR as well as higher 3,4-DHBA as an in-
dependent risk marker for progression of DR. Our results
were independent of a panel of metabolic risk factors
traditionally used for risk stratification of DR in T1D.
Therefore, we now argue for the need for further inves-
tigation of omics-based risk stratification of DR. Using
omics in relation to DR is a relatively new venture, and
clinical studies assessing its viability are sparse, especially
in subpopulations such as individuals with T1D, and using
longitudinal data.

The metabolites identified in this study mainly stem
from two etiopathogenic factors, namely, hyperglycemia
(ribitol and ribonic acid) and dyslipidemia (2,4- and 3,4-
DHBA) (23). Ribitol and ribonic acid are derivatives
from ribose, which is highly active in the pentose
phosphate pathway and in the production of nucleo-
tides and nucleic acids. Furthermore, sugar alcohols,
such as sorbitol, are active in the polyol pathway, which
has been identified as a crucial insulin-independent
pathway relevant in the onset of DR, and have been
suggested as a possible therapeutic target in the treatment
of DR (24). The fructose created in this pathway becomes
further phosphorylated, resulting in the formation of
advanced glycation end products (AGEs), which in turn
bind to receptors for AGEs (RAGE)—a known facilitator of
DR (25).

DHBAs, on the other hand, which are closely related to
the ketone body hydroxybutyric acid, have not been
directly associated with any major pathways implicated
in the onset of DR or T1D. Other diseases, such as

Table 2—Cross-sectional association between metabolites
and lipids and baseline DR grade

Association to
DR grade (MLR) Effect 95% CI P PBH

Metabolites
2,4-DHBA 0.097 0.058; 0.135 ,0.001 ,0.001
Ribonic acid 0.109 0.049; 0.170 ,0.001 0.017
Ribitol 0.072 0.028; 0.116 0.001 0.032
3,4-DHBA 0.059 0.022; 0.097 0.002 0.036

Lipids
TG(50:2) 20.066 20.104; 20.028 ,0.001 0.042
TG(50:1) 20.074 20.118; 20.030 0.001 0.042
PC(32:2) 20.085 20.140; 20.029 0.003 0.083
LPC(16:1) 20.087 20.146; 20.028 0.004 0.084
TG(14:0/16:0/18:1) 20.065 20.109; 20.021 0.004 0.084
TG(50:3) 20.053 20.091; 20.016 0.006 0.092
PC(32:1) 20.080 20.137; 20.023 0.006 0.092

Association to
DR grade (ANCOVA) F P PBH

Metabolites
Ribonic acid 7.44 ,0.001 ,0.001
2,4-DHBA 6.58 ,0.001 0.001
Ribitol 4.98 ,0.001 0.013
3,4-DHBA 4.18 ,0.001 0.041

Lipids
TG(50:1) 3.97 0.003 0.223
TG(50:2) 3.55 0.007 0.257
TG(49:3) 3.44 0.009 0.257
LPC(16:1) 3.12 0.015 0.354
LPC(16:0) 2.71 0.030 0.544
TG(52:2) 2.62 0.034 0.544
TG(14:0/16:0/18:1) 2.58 0.036 0.544
PC(32:1) 2.44 0.046 0.547
TG(16:0/18:0/18:1) 2.37 0.052 0.547
PC(32:2) 2.29 0.059 0.547

Presented in the top half are multivariate linear regression model
effect sizes per increase in DR grade for each metabolite or lipid
to baseline DR grade with 95% CI and crude and BH-adjusted
P values. In the bottom half of the table are ANCOVA F values
presented for eachmetabolite and lipid to baseline DR gradewith
crude and adjusted P values. All presented models include the
following baseline covariates: age, sex, HbA1c, systolic blood
pressure, smoking, BMI, statin treatment, triglycerides, LDL
cholesterol, and prescribed antihypertensive medication. MLR,
multivariable linear regression.
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succinic semialdehyde dehydrogenase deficiency, an au-
tosomal recessive genetic disease, leads to 4-DHBA
aggregation, and, in turn, is associated to severe neu-
rological complications and symptoms (26). In general,
ketone bodies are associated with dyslipidemia and
high-fat diets (27), which are highly relevant risk factors
in the development of diabetic complications. A theory
that has drawn recent attention is that DHBAs could be
implicated in the butyrate metabolism by the gut micro-
biota (28), although at present this still calls for more
investigation. Similarly, Sumarriva et al. (6) demon-
strated that higher plasma carnitine, a metabolite highly
present in food that contains meat, was associated to
the presence of PDR compared with NPDR. Carnitine
is further metabolized by the gut microbiota into

trimethylamine-N-oxide, which has been associated to car-
diovascular and metabolic diseases (29).

Interestingly, visualized in Fig. 2, the subnetwork of
metabolites associated with DR shows that all metabolites
that correlated significantly with DR in this study all seem
strongly associated to myo-inositol. Despite myo-inositol
itself not being associated to DR, in this study, the
association to the other metabolites could propose another
pathway of DR etiology.myo-Inositol is a sugar alcohol, the
gastrointestinal absorption and intracellular transport of
which has been shown to be impaired in individuals with
diabetes (during hyperglycemia) (33). Furthermore, while
previously thought mainly to be expressed in renal tissue,
recent studies show evidence of myo-inositol activity in
extrarenal tissue, such as retinal and lens epithelium as

Figure 1—Violin plots showmetabolite levels across baseline DR stages for four metabolites—ribonic acid (A), 2,4-DHBA (B), ribitol (C), and
3,4-DHBA (D)—where a difference between the stages was detected using ANCOVA. Observations are shown as dots, and their distribution
in each of the stages of retinopathy as a violin geom. Pairwise differences between the stages are indicated with P values at the top of the
figure. The results are frommodels with adjustment for age, sex, HbA1c, systolic blood pressure, smoking, BMI, statin treatment, triglycerides,
LDL cholesterol, and prescribed antihypertensive medication.
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well (34,35), and has additionally been associated to
existing DR in individuals with type 2 diabetes (36).

Our metabolomic results stand well in relation to
a study by Chen et al. (5), describing similar metabolites
associated to DR in a cross-sectional study including
individuals with type 2 diabetes with DR (n 5 40) or
without DR (n 5 40) in the Singapore Indian Eye Study.
They demonstrated that 3,4-DHBA as well as ribose were
significantly higher in the DR group compared with the
group without DR. Furthermore, similar results were
found for 2-deoxyribonic acid as well as for several other
sugars and sugar derivates (5). As such, we can partly
validate these results in our larger population of individ-
uals with T1D, and additionally, we have shown that 3,4-
DHBA was a risk marker for progression of DR during
follow-up. The inherent issue with omics discovery studies
being explorative is that replication of results is necessary
across populations and cohorts, but is often difficult,
especially due to platform heterogeneity. The study by

Chen et al. (5) strengthens the findings in our study
suggesting that 3,4-DHBA and ribose derivatives are valid
risk markers of DR. However, Lin et al. (8) showed that
branched-chain, aromatic, and glucogenic amino acids,
such as leucine, valine, tyrosine, and alanine, were pos-
itively associated with diabetic microangiopathy in type
2 diabetes. These amino acids were also investigated in
our study; however, we could not confirm the results,
possibly due to the heterogeneity between type 1 and
type 2 diabetes.

In the case of lipids, some, such as LDL cholesterol and
TGs, have throughout many years been comprehensively
studied and have proved to be robust risk markers for
vascular disease in T1D. In addition, studies targeting
dyslipidemia with fibrates have found beneficial effects
on retinopathy (37,38). Therefore, the concept of applying
lipidomic strategies into finding novel markers to strengthen
the identification and prediction of vascular risk is not
implausible. In our panel of lipids, we were only able to

Figure 2—Partial correlation network shows associations in the measured metabolome. Metabolites with cross-sectional association to
retinopathy (ribitol, ribonic acid, 2,4-DHBA and 3,4-DHBA) are indicated as diamond-shaped nodes. The node color of the other metabolites
(circular nodes) indicates the Spearman correlation to ribonic acid. Partial correlations (i.e., independent associations) are indicated by lines
between the metabolites, where thickness and color of the line, respectively, indicate the strength and the sign of the association (red:
positive, blue: inverse). Additionally, the size of the node indicates the degree of the node (i.e., the number of associations with the
metabolite).
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identify three TGs negatively correlated with DR stage in
our linear models using a 5% a-level, adjusted for, among
others, baseline LDL cholesterol, triglycerides, and BMI.
However, these associations could not be replicated in

ANCOVA models, arguably in part due to nonlinear trends
for different lipids across DR stages.

Comparing the present results in relation to other
studies is difficult because very few have investigated DR.

Figure 3—Heatmaps of the ANCOVAmodel F statistics across the entire lipidomic panel in relation to DR stage. The results are frommodels
with adjustment for age, sex, HbA1c, systolic blood pressure, smoking, BMI, statin treatment, triglycerides, LDL cholesterol, and prescribed
antihypertensive medication. Lipid species are grouped according to the lipid classes in each panel. Each cell represents one lipid species.
On the y-axis is number of double-bonds for the specific species (indicating level of saturation), and on the x-axis is the number of carbon
atoms (indicating total fatty acid chain length). PC-O/P, alkyl-acyl-phosphatidylcholines; SM, sphingomyelins.

Figure 4—Forest plot of multiple testing–corrected HRs of the selected metabolites for three retinopathy events: any retinopathy, onset of
retinopathy, and progression from mild to severe retinopathy (top, middle, and bottom panels, respectively). Adjusted model (right) is
adjusted for age, sex, HbA1c, systolic blood pressure, smoking, BMI, statin treatment, triglycerides, LDL cholesterol, and prescribed
antihypertensive medication. The crude model (left) is without these adjustments.
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One study found stearic acid, trans oleic acid, linoleic acid,
arachidonic acid, and free cholesterol in circulation to be
significant differentiators between preclinical DR, NPDR,
and PDR (39). Likewise, Schwartzman et al. (40) identified
several free-fatty acid autacoids in vitreous humor as
markers of PDR in T1D.

PDR is demonstrated to be associated to an impaired
blood-brain barrier (BBB), and early damage to the BBB is
hypothesized to be a predictor of progression to more
advanced stages of DR (41). However, the mechanisms for
the association surrounding BBB impairment and DR are
not understood, and the association to circulating bio-
markers has not been described. Hogan et al. (42) dem-
onstrated that various polyunsaturated fatty acids and
sphingolipids were associated with impaired BBB in trau-
matic brain injury in rats, but our results do not support
the association between these and DR.

Moving outside of purely metabolomic and lipidomic
studies, a substantial amount of research has been per-
formed on the proteome and its effect on DR risk and risk
progression, however, primarily in small samples with
largely nonreplicated results (43).

This study is not without limitations. The DR staging
during follow-up did not take laser surgery or vascular
endothelial growth factor injections into account, because
it was based only on changes in DR stage from baseline.
Furthermore, no data on concomitant medication through-
out the follow-up were available, and as such, there are no
data on how treatment with statins, antihypertensive med-
ication, or insulin has changed during follow-up. In addition,
no information on lifestyle parameters, which could have
influence on lipid composition, was available at baseline.
Finally, the lack of a validation population is another limiting
factor. Nonetheless, the sizable strengths of this study are,
firstly, the large, well-defined cohort of individuals with T1D,
including 7 years of longitudinal data, and secondly, a com-
prehensive metabolomic and lipidomic analysis regarding
presence of and changes in DR in T1D.

In summary, we identified fourmetabolites and three lipids
with an association to the DR stage: ribonic acid, ribitol, and
two DHBAs were associated with DR stage, and three trigly-
cerides were negatively correlated with the DR stage. Further-
more, we have identified 3,4-DHBA as an independent risk
marker for progression in DR stage. Our results may serve as
a basis for further studies regarding sugar metabolism, hy-
droxy acids, and lipids in relation to diabetic complications
such as retinopathy, because more investigative studies are
needed before these markers can be clinically applied.
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