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Abstract: Grass Elymus elongatus has a potential in phytoremediation and was used in this study in a
potted experiment, which was performed to determine the effect of polluting soil (Eutric Cambisol)
with diesel oil (DO) and unleaded petroleum (P) on the diversity of soil microorganisms, activity of
soil enzymes, physicochemical properties of soil, and on the resistance of Elymus elongatus to DO and
P, which altogether allowed evaluating soil health. Both petroleum products were administered in
doses of 0 and 7 cm3 kg−1 soil d.m. Vegetation of Elymus elongatus spanned for 105 days. Grasses were
harvested three times, i.e., on day 45, 75, and 105 of the experiment. The study results demonstrated
a stronger toxic effect of DO than of P on the growth and development of Elymus elongatus. Diesel oil
caused greater changes in soil microbiome compared to unleaded petroleum. This hypothesis was
additionally confirmed by Shannon and Simpson indices computed based on operational taxonomic
unit (OTU) abundance, whose values were the lowest in the DO-polluted soil. Soil pollution with
DO reduced the counts of all bacterial taxa and stimulated the activity of soil enzymes, whereas soil
pollution with P diminished the diversity of bacteria only at the phylum, class, order, and family
levels, but significantly suppressed the enzymatic activity. More polycyclic aromatic hydrocarbons
(PAHs) were degraded in the soil polluted with P compared to DO, which may be attributed to the
stimulating effect of Elymus elongatus on this process, as it grew better in the soil polluted with P than
in that polluted with DO.
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1. Introduction

Petroleum hydrocarbons represent the largest group of organic pollutants [1,2]. They are highly
resistant to biodegradation, capable of accumulating in plants as well as in human and animal
bodies [3,4], and exhibit carcinogenic and neurotoxic properties [3,5].

The growing pollution of the natural environment urges the search for effective remediation
methods. One of these is phytoremediation, which makes use of the natural capabilities of plants for
growth and development on polluted areas [5–8].

Interactions between plants, soil microbiome, and soil pollution with petroleum substances
are complex in character and require a variety of analyses, while little is known about the impact
of petroleum products on the biodiversity in agricultural ecosystems. Establishing links between
microbiological diversity and soil functions is not an easy task [9,10]. Changes in the stability of soils
and their ecological processes are affected by chemical pollutants [3,6,7,11], climate changes [12] or plant
root secretions [13]. According to Haney et al. [14], plants provide substrates to microorganisms and,
in exchange, rhizospheric microorganisms provide nutrients and phytohormones, increase immunity,
and inhibit the growth of phytopathogens.

Phytoremediation is deemed not only a promising technology for the treatment of polluted
soils, but also one of the most cost-effective ones in this respect [15–17]. It includes the following
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methods: phytoextraction, phytodegradation, phytotransformation, rhizofiltration, phytostabilization,
and phytovolatilization. Their use was reported to diminish the bioavailability of pollutants,
both the organic and inorganic ones, through their immobilization or their binding with soil matter,
their accumulation in biomass, degradation, or transformation by both roots and aerial parts of plants.
Alternatively, some substances were emitted to the atmosphere as a result of methylation [18]. Attempts
of phytoremediation of soils polluted with petroleum products have been undertaken with the following
herbaceous plants: Cyperus rotundus, Chloris babata, Pasparlum vaginatum, Paspalum scrobiculatum,
Euragrostis atrovilens [16], Cynodon dactylon, Digitaria sanguinalis, and Cyperus orthostachyus [19]; also with:
Acorus calamus [20], Chromolaena odorata, Aspilla africana, Bryophylum pinnatum [16], and Zea mays [21];
and with trees: Spondias mombim [16], Betula pendula [22], and Salix varieties [23].

Plants used in the phytoremediation process should be characterized by an intensive growth
in polluted soil, capability for pollutants accumulation (phytomining) [24], and a high calorific
value. One of the plants displaying a large phytoremediating potential is a perennial energy
grass Elymus elongatus (Agropyrum elengatum) of Bamar variety. Its common name is tall
wheatgrass. Elymus grows in abundant plant-colonizing meadows, areas alongside river banks,
and mountainsides—especially at high altitudes ranging from 1000 to 4000 m, on the Qinghai-Tibetan
plateau in western and northern China [25–27], regions of the Tibetan plateau, and interior Mongolian
plateau [28]. This species grows in the moderate, subtropical, and sub-Alp climates on acidic, salinated,
and alkaline soils, and is highly resistant to diseases and to biotic and abiotic stress. Interestingly, it is
closely related with a few important cereal species, like wheat, barley, and rye [27,28]. Its dry matter
yield ranges from 13 to 25 Mg ha−1 [29]. The high resistance of tall wheatgrass to the abiotic stress has
made it utile for the remediation of soil polluted with petroleum products.

Considering the above, this study aimed to determine the feasibility of using Elymus elongatus for
restoring the biological homeostasis of soil polluted with BP (British Petroleum Company) diesel oil
and unleaded petroleum with Active technology. This evaluation was made based on determinations
of grass biomass, activity of soil enzymes, genetic diversity of bacteria, and PAHs degradation.

2. Materials and Methods

2.1. Soil

This study was conducted with samples of soil, which are classified as Eutric Cambisol. Soil
samples were collected from the area located in north-east Poland (53.7161 N, 20.4167 E). This region is
characterized by the climate of the moderate warm transient zone, determined by natural conditions,
including lakes and forests located in the vicinity. According to the Institute of Meteorology and Water
Management State Research Institute (IMGW) in Poland, the average temperature in this region in the
period of June–September was ca. 17 ± 2 ◦C, ranging from min. 7 ◦C to max. 30 ◦C. Insolation ranged
from 280 h in July to 130 h in September, and the mean total precipitation was at ca. 152.50 mm.

The soil was composed of (in 1 kg d.m.): 74.93 g of sand fraction, 22.85 g of dust fraction,
and 2.22 g of clay fraction. It contained (in 1 kg d.m.): 0.62 g of total nitrogen (Ntot), 9.30 g of organic
carbon (Corg), 93.68 mg of phosphorus (P), 141.10 mg of available potassium (K+), 42.0 mg of available
magnesium (Mg2+), and the following exchangeable cations: 156.0 mg K+, 623.5 Ca2+, 59.5 Mg2+,
and Na+ 4.00. In addition (in 1 kg d.m.), its hydrolytic activity (Hh) reached 11.4 mM (H+); sum of its
total exchangeable base cation (S)—49.0 mM(+), and exchangeable capacity of the sorption complex
(T)—60.4 mmol(+). Soil saturation with cations (V) was at 81.1%, and its pH in 1 mol KCl dm−3 was 6.7.

2.2. Plant

Soils polluted with diesel oil and petroleum were phytoremediated using perennial grass
Elymus elongatus (Agropyrum elongatum) var. Bamar. This grass species is adapted to the Polish climate.
The first seeds of rare wild forms of var. Bamar originated from salinated, arid soil from the borderline
between Asia and south-east Europe. The study conducted by Martyniak et al. [29] demonstrated that
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Elymus elongatus seeds are highly capable of sprouting even on sandy, impoverished, and degraded
soils. This plant is characterized by intense tillering, the production of a high number of vegetative
shoots reaching up to 2 m in height, and a deep root system. Compared to other energy crops,
the biomass of Elymus elongatus var. Bamar has a high calorific value. After incineration, its dry matter
is characterized by a low ash content.

2.3. Petroleum Products

The study was conducted with diesel oil and petroleum purchased at a BP gas station. The BP
diesel oil with Active technology (DO) and BP 98 unleaded petroleum with Active technology (P)
are fuels that remove dirt from the engine and prevent power loss, increased consumption of fuel,
and wear of engine elements. According to information provided by the fuel distributor, both petroleum
substances meet criteria set in EC 1907/2006 (REACH). The BP diesel oil is an over 90% mixture of
hydrocarbons C10–C28, likely to contain fatty acid methyl esters (FAME). In turn, the BP 98 petroleum is
a mixture of volatile hydrocarbons; it contains, paraffins, napthenes, olephins, and aromatic compounds
with C4–C12. The BP fuels contain also small amounts of enriching substances and multiple molecules
that capture dirt, thereby protecting the engine and aiding its work [30].

2.4. Experimental Procedure

To avoid soil pollution in its natural ecosystem, the study was conducted under controlled
conditions of an ex situ experiment. The soil was sampled from a depth of 0–20 cm at the
Didactic-Experimental Station of the University of Warmia and Mazury in Olsztyn (north-eastern
Poland) and transported to a greenhouse, wherein it was mixed and sieved through a screen with a
mesh size of 1 cm, and then used to establish the pot experiment. The experiment was performed in
Kick-Brauckman pots in 4 replications, for 105 days. The experimental objects were: 1) unpolluted soil
sown with Elymus elongatus, 2) soil sown with Elymus elongatus and polluted with 7 cm3 of diesel oil BP
with Active technology (DO) kg−1 of soil d.m., and 3) soil sown with Elymus elongatus and polluted
with 7 cm3 of BP 98 unleaded petroleum with Active technology (P) kg−1 of soil d.m. Soil samples
(9 kg) were carefully mixed with 720 mg of N in the form of CO(NH2)2, 180 mg of P in the form of
KH2PO4, 360 mg of K in the form of KCl and KH2PO4, and with 90 mg of Mg in the form of MgSO4 ·

7H2O. Afterwards, the soil was mixed with DO or P in respective experimental series and packed into
polyethylene pots with the volume of 7.5 dm3. After 1 week, 24 seeds Elymus elongatus were sown to
each pot. Assumptions of the experiment performed under controlled conditions allowed monitoring
soil humidity that was kept at the level of 60% using distilled water. Day time ranged from 13 h 3 min
to 16 h 31 min. The average air temperature was 15.6 ◦C and air humidity was 76.5%. Grasses were
harvested 3 times, i.e., on day 45, 75, and 105 of the experiment.

2.5. Methodology of Microbiological Analyses

2.5.1. Bacterial and Fungal Counts

Once the experiment had been terminated, soil samples from each pot were determined for counts
of organotrophs (Org), Actinobacteria (Act), and fungi (Fun) with the serial dilutions method acc. to
the procedure described in the work by Borowik et al. [10]. Soil samples (10 g) were weighed to a
sterile physiological saline solution (90 cm3 of 0.85% NaCl) and shaken for 30 min at 120 rpm. The tests
were carried out in four repetitions. The composition of microbiological media were as follows: for the
organotrophic bacteria (Bunt and Rovira medium): agar medium (peptone 1.0 g, yeast extract 1.0 g,
(NH4)2SO4 0.5 g, CaCl2, K2HPO4 0.4 g, MgCl2 0,2 g, MgSO4 7H2O 0.5 g, Mo salt 0.03 g, FeCl2 0.01 g,
agar 20.0 g, soil extract 250 cm3, distilled water 750 cm3, pH 6.6–7.0; for Actinobacteria (Parkinson
medium): soluble starch 10.0 g; casein 0.3 g; KNO3 2.0 g; NaCl 2.0 g; K2HPO4 2.0 g; MgSO4·7H2O
0.05 g; CaCO3 0.02 g; FeSO4 0.01 g; agar 20.0 g; H2O 1 dm3; 50 cm3 aqueous solution of nystatin 0.05%;
50 cm3 aqueous solution of actidione 0.05%; pH 7.0; and for fungi (Martin medium): peptone 5 g;
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K2HPO4 1.0 g; glucose 10 g; MgSO4·7H2O 0.5 g; agar 20.0 g; H2O 1 dm3; 3.3 cm3 aqueous solution of
bengal rose 1%; 25 cm3 aqueous solution of aureomycin 0.01%; pH 5.9. Microorganisms were cultured
on Petri dishes at a temperature of 28 ◦C, within a period of 10 days.

The number of colony-forming units (cfu) was established using a colony counter. Microbial
counts determined for 10 subsequent days were used to compute the colony development index (CD)
and the ecophysiological diversity index (EP) of microorganisms acc. to De Leij et al. [31] based on the
following formulas:

CD = [N1/1 + N2/2 + N3/3 . . . .. N10/10] · 100 (1)

where: N1, N2, N3, . . . , N10—the sum of ratios of the number of colonies of microorganisms identified
in particular days (1, 2, 3, . . . , 10) to the total number of colonies identified throughout the study
period, and:

EP = −Σ(pi·log10 pi) (2)

where: pi—the ratio of the number of colonies of microorganisms identified in particular days to the
total number of colonies identified throughout the study period.

2.5.2. DNA Extraction and Bioinformatic Analysis of Specific Bacterial Taxa

DNA was extracted from 1 g of soil with a “Genomic Mini AX Soil+” kit. The presence of
bacterial DNA in the soil samples was confirmed with the Real-Time PCR, which was performed in an
Mx3000P thermocycler (Stratagene), using an SYBR Green dye (A&A Biotechnology) as a fluorochrome.
The reaction was conducted with 1055F primer (5′-ATGGCTGTCGTCAGCT-3′) and 1392R primer
(5’-ACGGGCGGTGTGTAC-3’) which amplify the fragment of bacterial 16SrDNA gene. Sequencing
was performed by an external company (Genomed S.A. Warsaw, Poland) on an MiSeq sequencer
in the paired-end (PE) technology, 2 x 250 bp, using v2 Illumina kit. The metagenomic analysis of
bacteria and archeons was carried out based on hypervariable region V3-V4 of the 16S rRNA gene.
The bioinformatic analysis, enabling classification of the read out to the species level, was conducted
using QIIME package based on GreenGenes v13_8 database of reference sequences.

2.6. Methodology of Biochemical Analyses

Once the experiment had been completed, soil samples from each pot were determined for the
activity of seven soil enzymes, including two from the class of oxidoreductases: dehydrogenases
(EC 1.1) and catalase (EC 1.11.1.6), and five classified to hydrolases: urease (EC 3.5.1.5), acid
phosphatase (EC 3.1.3.2), alkaline phosphatase (EC 3.1.3.1), arylsulfatase (EC 3.1.6.1), and β-glucosidase
(EC 3.2.1.21). The activity of dehydrogenases was determined acc. to Öhlinger [32], that of
catalase with the titration method using potassium permanganate [33], whereas activities of
the other enzymes acc. to Alef and Nannpieri [34]. Substrates used for enzymatic activity
determinations included aqueous solutions of the following chemical compounds: 2,3,5-triphenyl
tetrazolium chloride (TTC) for dehydrogenases, urea for urease, disodium 4-nitrophenyl phosphate
hexahydrate (PNP) for phosphatases, potassium-4-nitrophenylsulfate (PNS) for arylsulfatase,
and 4-nitrophenyl-β-D-glucopyranoside (PNG) for β-glucosidase. Activities of all enzymes except
for catalase were determined using a Perkin-Elmer Lambda 25 spectrophotometer (Massachusets,
USA). They were converted into the amount of product obtained within 1 h by 1 kg soil d.m. and
expressed in the following units: dehydrogenases—µmol TFF (tri-phenylformazan); catalase—mol O2;
acid phosphatase, alkaline phosphatase, arylsulfatase, and β-glucosidase—mmol PN (p-nitrophenol);
and urease—mmol N-NH4.

2.7. Methodology of Chemical and Physiochemical Analyses of Soil

The fraction composition of soil was determined with a laser meter, the pH of soil in 1 mol
KCl dm−3 [35], hydrolytic acidity (HAS) and sum of exchangeable base cations (EBC) acc. to Carter
and Gregorich [36], organic carbon acc. to Tiurin [37], total nitrogen with the Kjeldahl method [38],
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available phosphorus and potassium with the Egner et al. method [39], and magnesium with atomic
absorption spectrometry (AAS) [40]. Exchangeable cations: K+, Ca2+, Mg2+, and Na+ were determined
following the procedure described in PN-EN ISO 11260 [41].

Both before the experiment had been established and after its completion, soil samples
were determined for the contents of: benzines (C6–C12), mineral oils (C12–C35), volatile aromatic
hydrocarbons (BETX), and PAHs with 2 rings (naphthalene), 3 rings (anthracene), 4 rings
(chrysene, benzo(a)anthracene), 5 rings (dibenz(ah)anthracene, benzo(a)pyrene, benzo(b)fluoranthene,
benzo(k)fluoranthene), and 6 rings (benzo(ghi)perylene, indo(123-cd)pyrene), and for

∑
10 PAHs. Soil

samples collected from pots for GC analyses were sieved through a screen with mesh size of 2 mm,
then immediately packed to special containers by Wessling company, and delivered for analyses on the
same day. Contents of PAHs were determined at Wessling (Kraków, Poland) on a gas chromatograph
with an Agilent 7890A-5975C mass spectrometer equipped in EI/CI ion source acc. to the following
standards: ISO 18287 [42], EN ISO 16703 [43], and EN ISO 22155 [44]. A methanolic extract of soil
samples was prepared for determinations of volatile compounds (benzines, BTEX). A weighted portion
of soil with the addition of methanol was shaken, sonicated, and centrifuged. The resultant methanolic
extract was transferred to a headspace type vial that was incubated in a thermostatic mixer. Once the
equilibrium was settled between the liquid and gaseous phases, the amount of the gaseous phase was
determined and the phase was transferred to an injector of a gas chromatograph. The quantitative and
qualitative composition of the sample was determined using a mass detector based on the internal
standard added.

To determine the contents of mineral oils (C12–C35) and polycyclic aromatic hydrocarbons
(PAHs), anhydrous sodium sulfate (VI) was added to weighted portions of soil, then the sample was
homogenized with acetone and shaken in a horizontal shaker. Afterwards, it was double extracted
with hexane in an ultrasound bath. The resultant extract was dried with anhydrous sodium sulfate (VI),
transferred to a test tube, and concentrated to the volume of 5 cm3 using a concentrator at a temperature
of 40 ◦C. Afterwards, 1 cm3 of the extract was collected and filtered through a column filled with 2 g of
silica gel. Fractions of aliphatic hydrocarbons were eluted with 9 cm3 of hexane (for determinations
of C12–C36), whereas PAHs were eluted with 18 cm3 of dichloromethane. The collected eluates were
concentrated to the volume of 1 cm3 and analyzed.

2.8. Statistical Analysis

Results were processed in the Statistica 13.1 package (StatSoft, Tulsa, OK, USA) [45], using Principal
Component Analysis (PCA). Homogenous groups were calculated with the Tukey’s test, at P = 0.05.
In addition, the index of plants and enzymes resistance (RS) to effects of petroleum products and the
index of plant adaptation (RL) to pollution were calculated using formulas proposed by Orwin and
Wardle [46]. Relative abundance was visualized by means of STAMP 2.1.3 software, using a two-sided
test of statistical hypotheses: G-test (w/Yates’) + Fisher’s, with the method of intervals confidence
Asymptotic with CC [47]. In turn, the Circos 0.68 package [48] was used to present genomic data
in the circular system. The visualization of relative abundance was performed only with sequences
with a contribution that exceeded 1%. In addition, to determine bacterial diversity, all metagenomic
data were analyzed with the use of Shannon–Wiener (H) and Simpson (D) indices at the level of each
taxonomic group.

3. Results

3.1. Counts and Diversity of Microorganisms in the Soil

The proliferation of all microorganisms in the soil was significantly stimulated by the BP diesel
oil with Active technology (DO), whereas the BP 98 unleaded petroleum with Active technology (P)
caused no changes in the population numbers of organotrophic bacteria and fungi (Figure 1a), while it
enhanced the proliferation of actinobacteria. Despite the positive effect of DO on the proliferation of
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organotrophic bacteria, it contributed to their ecophysiological diversity index (EP) decrease from 0.85
to 0.76 (Figure 1b). Values of this index decreased also in the case of Actinobacteria and fungi. In the
series with soil pollution with P, its value did not change significantly in the case of organotrophic
bacteria and fungi but decreased significantly in the case of Actinobacteria. In turn, values of the colony
development (CD) index of microorganisms indicated the slowest development of actinobacteria and
the fastest development of organotrophic bacteria in the soil (Figure 1c). Effects of the petroleum
products on the development of microorganism colonies varied. DO inhibited the development of
organotrophic bacteria and actinobacteria colonies and enhanced that of fungi. Petroleum decreased
the CD value only for Actinobacteria.
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Figure 1. Microbiological properties of uncontaminated soil (C), soil contaminated with diesel
oil (DO) and unleaded petroleum (P); (a) count of soil microorganism presented by the Principal
Component Analysis (PCA) method; (b) physiological diversity index of microorganisms (EP); (c) colony
development index (CD). Homogeneous groups denoted with letters (a, b, c) were calculated separately
for each of microorganism. Org—organotrophic bacteria, Act—Actinobacteria, Fun—fungi.

In all soil samples, the prevailing Phylum was Proteobacteria (Figure 2). They accounted for 36.2%
in the control soil (unpolluted), for 48.1% in the soil polluted with P, and for 71.5% in the soil exposed
to DO contamination. The OTU number of Proteobacteria in the DO-polluted soil was higher by 35.3%,
and in the P-polluted soil by 11.9%. Actinobacteria in the control soil and P-polluted soil (accounting
for 15.6 and 9.8%) and Acidobacteria in the DO-polluted soil (8.0%) were the second highest after the
Phylum Proteobacteria. The pollution of soil with petroleum products elicited significant changes in its
microbiome. The OTU number of Actinobacteria in the control soil was higher by 12.5% than in the soil
polluted with DO and by 5.8% than in the soil polluted with P.
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The greatest changes were caused by the petroleum products in the class Gammaproteobacteria
(Figure 3). Compared to the control soil, an increase in OTU number induced by DO reached 31.3%,
while when induced by P it reached 9.9%. DO had a negative effect on Actinobacteria class bacteria
(OTU number decrease by 6.7%), whereas P on Thermoleophilia (OTU number decrease by 3.1%).
Differences were also found between DO and P in their effects on Gammaproteobacteria, because OTU
number increased upon soil pollution with DO by 21.4% compared to soil pollution with P. Differences
in the other analyzed classes were considerably smaller and ranged from −4.1% (Actinobacteria) to
4.9% (Holophagae).

Differences in effects of the petroleum products were also noticeable at the order level (Figure 4).
OTU abundance in the order rank was affected to a greater extent by DO than by P. Soil pollution
with DO evoked the greatest changes in Alteromonadales classified to the Gammaproteobacteria class as it
increased its OTU number by 19.0%, compared to an increase by 5.4% caused by soil exposure to P.
A comparative analysis of the effects of both petroleum products allowed concluding that DO had a
more beneficial effect on OTU abundance of Rhizobiales (class: Alphaproteobacteria), Xanthomonadales
(class: Gammaproteobacteria), and Burkholderiales (class: Betaproteobacteria), but a negative effect on
Actinomycetales (class: Actinobacteria).

Differences in OTU abundance in particular pots were also observed at the family level (Figure 5a).
In the unpolluted soil, the highest number of OTUs was determined for the families: Sphingomonadaceae
(7.4%), Hyphomicrobiaceae (5.3%), Rhodospirillaceae (4.0%), and Xanthomonadaceae (3.1%). In the
DO-polluted soil, the order of families acc. to OTUs number was as follows: Alteromonadaceae
(24.1%), Xanthomonadaceae (10.2%), Comamonadaceae (8.1%), and Sphingomonadaceae (6.1%), whereas
in the P-polluted soil, it was: Alteromonadaceae (10.0%), Sphingomonadaceae (6.8%), Xanthomonadaceae
(6.0%), Rhodospirillaceae (5.7%), and Comamonadaceae (4.3%).
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Diesel oil and unleaded petroleum also disturbed the soil microbiome at the genus level (Figure 5b),
which was indicated by the preponderance of the genus Kaistobacter in the control soil, and of HB2-32-21
in the soil polluted with DO and P.

Considering the OTU numbers of individual bacterial species (OTUs higher than 1%), it is
noteworthy that a higher number of species were classified in the soil polluted with petroleum products
than in the control soil. The prevailing species in the unpolluted soil and in the soil polluted with
P were Nevskia ramosa, which accounted for 5.9 and 7.0% respectively, whereas Lysobacter brunescens
prevailed in the soil polluted with DO (29.9%) (Figure 6a). In total, 4951 OTUs were classified to the
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species. However, 146 OTUs were common for all soil types were examined (Figure 6b). In addition,
194 OTUs were typical only of the control soil, 1895 OTUs only for the DO-polluted soil, and 808 OTUs
only for the P-polluted soil.Int. J. Environ. Res. Public Health 2019, 16, x 9 of 21 
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To recapitulate the above considerations about the effect of petroleum products on soil health,
it may be concluded that diesel oil caused greater changes in the soil microbiome than the unleaded
petroleum. This was corroborated by the Shannon and Simpson (Table 1) indices computed based on
OTU abundance, whose values were the lowest in the soil polluted with DO.

Table 1. Shannon and Simpson indices calculated from the abundance of operational taxonomic
unit OTU.

Object Phylum Class Order Family Genus Species

Shannon Index

C 2.13 a 3.34 a 3.87 a 4.21 a 4.13 a 2.75 b

DO 1.23 c 2.26 c 3.06 c 3.04 c 2.82 b 1.68 c

P 2.00 b 3.16 b 3.75 b 3.99 b 4.06 a 2.87 a

Simpson Index

C 0.81 a 0.94 a 0.96 a 0.98 a 0.97 a 0.90 a

DO 0.48 c 0.79 b 0.91 a 0.90 b 0.84 b 0.61 b

P 0.74 b 0.92 a 0.96 b 0.97 a 0.95 a 0.92 a

C—uncontaminated soil, DO—soil contaminated with diesel oil, P—soil contaminated with unleaded petroleum.
Homogeneous groups denoted with letters (a, b, c) were calculated separately for each of taxon.

3.2. Activity of Soil Enzymes

The activity of soil enzymes was significantly negatively correlated with the first principal
component (PCA1) (Figure 7a). DO effect on soil enzymes was similar to its effect on microorganisms—it
significantly stimulated their activity. Greater activity enhancement was observed in the case of
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oxidoreductases than in the case of hydrolases. The impact of P on soil enzymes was significantly lesser
and explicitly negative in the case of urease (activity suppression by 63%), dehydrogenases (activity
suppression by 36%), and arylsulfatase (activity suppression by 28%). The change in the biochemical
properties of soil due to its pollution with petroleum products was reflected in the resistance (RS index)
of individual enzymes to the effects of DO and P (Figure 7b). Enzymes resistance to diesel oil may be
ordered as follows (in a descending order from the most to the least resistant ones): Glu > Pac > Aryl >

Pal > Ure > Cat > Deh, while to unleaded petroleum—as follows: Pac > Glu > Cat > Aryl > Deh > Pal
> Ure.
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Aryl—arylsulfatase. Homogeneous groups denoted with letters (a,b) were calculated separately for 
each of enzyme. 
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Figure 7. Activity of soil enzymes (a) presented with the PCA method; (b) enzyme resistance indices
(RS) to soil contamination with diesel oil (DO) and unleaded petroleum (P). Deh—dehydrogenases;
Cat—catalase, Ure—urease; Pac—acid phosphatase; Pal—alkaline phosphatase; Glu—β-glucosidase;
Aryl—arylsulfatase. Homogeneous groups denoted with letters (a,b) were calculated separately for
each of enzyme.

3.3. Physicochemical Properties of Soil

Apart from the direct impact on the microbiome of soil, the petroleum products affected its
physicochemical properties (Table 2). Contrary to unleaded petroleum, soil pollution with diesel oil
increased organic carbon content in the soil. In addition, both petroleum products contributed to a
decrease in the total exchangeable base cations, soil saturation with bases, and sorption complex capacity.

Table 2. Physicochemical properties of uncontaminated soil (C) and polluted with diesel oil (DO) and
unleaded petroleum (P).

Object
Corg EBC HAC CEC BS

pHKCl
g kg−1 mmol(+) kg−1 %

C 26.9 b 69.3 a 11.3 b 80.6 a 86.0 a 6.7 c

DO 28.3 a 62.0 b 11.3 b 70.3 b 84.6 b 7.0 a

P 26.3 b 58.7 c 12.0 a 70.7 b 83.0 c 6.9 a,b

C—uncontaminated soil, DO—soil contaminated with diesel oil, P—soil contaminated with unleaded petroleum.
Corg—organic carbon content; EBC—exchangeable base cations; HAC—hydrolytic acidity; CEC—cation exchange
capacity; BS—base saturation. Homogeneous groups denoted with letters (a, b, c) were calculated separately for
each of physicochemical properties.

3.4. Degradation of Hydrocarbons

The rate of degradation of individual hydrocarbons contained in diesel oil and petroleum varied
(Table 3). In the case of both studied petroleum products, the fastest degradation was observed
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for ethylbenzene; m-, p-, and o-xylenes; toluene, and 2-ring PAHs. Degradation of the remaining
pollutants was significantly affected by pollutant type. After 105 days, the soil exposed to the pressure
of petroleum contained by 99.9% less benzines (C6-C12), by 98.1% less benzene, by 81.3% less mineral
oil (C12-C35), by 97.6% less 3-ring PAHs, by 80.3% less 4-ring PAHs, by 76.8% less 5-ring PAHs, and by
60.6% less 6-ring PAHs, whereas contents of the respective compounds in the soil polluted with
petroleum were lower by: 89.1%, 75.0%, 63.0%, 87.6%, 45.2%, 25.0%, and 13.3%.

Table 3. Degradation of hydrocarbons in soil contaminated with diesel oil (DO) and unleaded petroleum
(P). %.

Object C6–C12 C12–C35 Ben EtB Tol Xyl Sty
∑

BTEX Nap Ant

DO 89.1 b 63.0 b 75.0 b 99.4 a 98.6 b 99.6 a 0.0 b 99.3 a 99.2 b 87.6 b

P 99.9 a 81.3 a 98.1 a 99.9 a 100.0 a 99.9 a 96.7 a 99.9 a 99.8 a 66.6 a

Object Chr BaA DahA BaP BbF BkF BghiP IP 9PAHs 10PAHs

DO 47.8 b 37.5 b 0.0 b 44.4 b 25.0 b 20.0 b 0.0 b 25.0 b 95.3 b 95.8 a

P 82.4 a 77.6 a 50.0 a 76.5 a 77.6 a 80.6 a 97.3 a 97.9 a 99.0 a 95.6 a

C6–C12—gasoline fractions ; C12–C35—mineral oil; Ben—benzene; EtB—ethylbenzene; Tol—toluene; X—xylene;
Sty—styrene;

∑
BTEX—

∑
volatile hydrocarbons BTEX; Nap—naphthalene; Ant—anthracene; Chr—chrysene;

BaA—benzo[a]anthracene; DahA—dibenz(a,h)anthracene; BaP—benzo(a)pyrene; BbF—benzo[b]fluoranthene;
BkF—benzo(k)fluoranthene; BghiP—benzo(ghi)perylene; IP—indeno(1,2,3-cd)pyrene; 9 PAHs—

∑
9 polycyclic

aromatic hydrocarbons; 10 PAHs—
∑

10 polycyclic aromatic hydrocarbons. C—uncontaminated soil, DO—soil
contaminated with diesel oil, P—soil contaminated with unleaded petroleum. Homogeneous groups denoted with
letters (a, b) were calculated separately for each of hydrocarbons.

3.5. Response of Elymus Elongatus

Soil pollution with petroleum products disturbed the growth and development of Elymus elongatus
in the entire growing season (Figure 8). This was confirmed by its yield obtained in particular
swaths. A stronger toxic effect was observed for DO than for P, as DO decreased the total yield of
Elymus elongatus by as much as 82%, whereas P by 38%. The RS value of Elymus elongatus was lower
under soil exposure to DO than to P, but the adverse effect of both products on the test plant sustained
throughout the study period, which was indicated by low RL values (Figure 8, Table 4).
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Figure 8. Yields of Elymus elongatus in cuts number 1, 2 and 3 (g DM pot−1). Homogeneous groups 
denoted with letters (a–h) were calculated for yield. 
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Figure 8. Yields of Elymus elongatus in cuts number 1, 2 and 3 (g DM pot−1). Homogeneous groups
denoted with letters (a–h) were calculated for yield.
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Table 4. Elymus elongatus resistance index (RS) and adaptation (RL) index to contamination with diesel
oil (DO) and unleaded petroleum (P).

Object
RS

RL
Cut 1 Cut 2 Cut 3

DO 0.026 c 0.116 b,c 0.176 b 0.213 a

P 0.442 a 0.476 a 0.436 a 0.056 b

Homogeneous groups denoted with letters (a, b, c) were calculated separately for RS and RL.

4. Discussion

4.1. Counts and Diversity of Microorganisms in the Soil

The pollution of soil with petroleum products leads to their successive degradation, which results
in productivity decrease [49], and to soil microbiome changes [4,50,51]. Also, in the present study
were the DO and P observed to destabilize the microbiological life of soil. Namely, DO significantly
stimulated the proliferation of all microorganisms, whereas P caused no changes in the population
numbers of organotrophic bacteria and fungi. Earlier investigations [6,52–55] have indicated that diesel
oil usually causes greater changes in the proliferation of soil microorganisms than petroleum. DO
decreased values of the ecophysiological diversity index (EP) of organotrophic bacteria, Actinobacteria,
and fungi, whereas P decreased EP of Actinobacteria. This is due to the succession of microorganisms
utilizing various chemical compounds of DO and P [56,57], which is accompanied by changes in soil
properties, i.e., disruption of trophic and aerobic conditions, and excess of active forms of organic
carbon [58–61].

The results of the present study concerning the genetic diversity of bacteria proved Proteobacteria
to be the prevailing Phylum in the unpolluted soil. After its contamination with petroleum
products, higher OTU numbers were demonstrated for Actinobacteria and Acidobacteria. According
to Gałązka et al. [50], soil samples collected 0.5 to 3 m away from oil wells were colonized mainly
by Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, which were strongly correlated
with the biological activity of these soils. The prevailing classes included also Actinobacteria and
Acidobacteria. The high counts of bacteria classified to Proteobacteria, Bacteroidetes, and Actinobacteria
in the soils polluted with petroleum products were also confirmed by results of investigations
conducted by Yan et al. [20], Hou et al. [62], and Jung et al. [63]. These taxa, potentially
capable of degrading alkanes, being major components of diesel oil, diminished the diversity
of microorganisms [63]. Soil pollution with petroleum substances induces far-reaching changes
noticeable also at the lower taxonomic levels [50]. In the present study, diesel oil increased the OTU
abundance of Alteromonadaceae, Xanthomonadaceae, Comamonadaceae, and Sphingomonadaceae, whereas
unleaded petroleum of: Alteromonadaceae, Sphingomonadaceae, Xanthomonadaceae, Rhodospirillaceae,
and Comamonadaceae. Gałązka et al. [50] demonstrated Bradyrhizobiaceae, Rhizobiaceae, Rhodobacteraceae,
Acetobacteraceae, Hyphomicrobiaceae, and Sphingomonadaceae classified to Alphaproteobacteria to be the
prevailing species of the soil located directly near an oil well. In turn, Feng et al. [64] and Afzal et al. [65]
reported that the soils polluted with petroleum products were colonized mainly by Pseudomonaceae,
Burkholderiaceae, Bacillaceae, and Enterobacteriaceae. The petroleum products modify the genus and
species abundance of microorganisms [20]. In the soils polluted with DO and P, the greatest OTU
abundance was found for HB2-32-21. According to Mukherjee et al. [66], these bacteria are effective in
the remediation of areas polluted with petroleum products, and Czarny et al. [67] claims they adapt
very fast to conditions occurring in such soils. This may be due to the availability of an alternative
source of carbon [63].
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4.2. Activity of Soil Enzymes

Petroleum products which have pervaded the soil cause changes not only in the diversity of
microorganisms but also in the enzymatic activity of soil [68]. These changes lead to modifications of
protein conformation associated with membranes and of proton pumps [69]. The enzymatic activity
of soil is a reliable indicator of its health status, because changes in the soil are reflected faster in
its enzymatic activity than in its other properties [56,57]. Dehydrogenases, β-glucosidase, urease,
acidic and alkaline phosphomonoesterase, and arylsulfatase are claimed to be common indicators of
C, N, P, and S metabolism [26,70,71]. In the present study, the response of soil enzymes to diesel oil
was coincident with microorganism response to these compounds, i.e., diesel oil increased counts of
microorganisms and also activity of soil enzymes. This is logical, because microorganisms represent
the major source of soil enzymes [56,57,70]. In particular, almost a 6-fold enhancement of the activity
of dehydrogenases in the soil exposed to the pressure of diesel oil and its 0.6-fold suppression in
the soil polluted with unleaded petroleum compared to the control soil may be due to the fact that
dehydrogenases are intracellular enzymes which are strongly associated with the number and biomass
of microorganisms [68]. Opposite effects of both tested substances on the enzymatic activity are
attributable to significant differences in their physical and chemical properties [72].

4.3. Degradation of Hydrocarbons

A mixture of hydrocarbons, like that in the petroleum products, is especially hazardous to soil
health [51]. Hence, these compounds should be removed from polluted soils as fast as possible.
The rate of PAHs degradation in the soil is largely affected by the type of petroleum pollutant [6,7,73]
and by plant species used for phytoremediation [16,22,74]. In the present study, the degradation of
hydrocarbons was significantly affected by the petroleum product. After 105 days, significantly more
PAHs were degraded in the soil polluted with unleaded petroleum than with diesel oil, which is
consistent with Elymus elongatus response to these substances. This is due to the greater resistance
of these plants to P than to DO and to a better developed root system of tall wheatgrass on the soil
exposed to petroleum, and by this means offering more favorable water-air conditions for more rapid
degradation of PAHs [29].

Both, results from our study and literature data [10,75] indicate that some groups of organic
compounds being constituents of petroleum products exert long-lasting effects on the soil environment.
According to Xu and Lu [76], from 26% to 61% of petroleum hydrocarbons may be degraded in barely
90 days. A pot experiment conducted by Liu et al. [74] with 14 species of grasses and ornamental
plants has demonstrated that PHAs degradation rate ranges from 37% do 49%. In turn, the present
study proves that degradation of PAHs within 105 days may range from 13% to 99% depending on
their chemical properties. Likewise, in the study conducted by García-Sánchez et al. [75], the fastest
degradation rate was observed for the 2–3-ring PAHs, and the slowest one for the 5–6-ring ones. This is
probably due to the fact that PAHs with a simpler chemical structure are easier sources of carbon and
electron donors for autochthonous microorganisms of soil. Nanekar et al. [77] emphasized also that 2-
and 3-ring hydrocarbons are more susceptible to evaporation and photoxidation than these with a
higher number of rings.

4.4. Physicochemical Properties of Soil

The effect of petroleum products on the physicochemical properties of soil is affected, to a great
extent, by soil quality [78], petroleum product type [79], and pollution magnitude [80,81]. In the
present study, the sum of exchangeable cations, exchangeable capacity, and soil saturation with base
cations were significantly diminished by DO and P. This effect was due to the negative impact of these
products on, i.a., air-water properties [73,82,83]. According to Rasheed et al. [84], soil pollution with
DO and P may cause the loss of their elasticity and viscosity. In turn, Prasanna and Manoharan [85]
ascribe this unfavorable effect to a greater pool of physical and chemical parameters changing in soil
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upon its pollution with these products. This is also reflected in the modified microbiological and
biochemical properties of soil.

4.5. Plants Response

Petroleum products disturb the growth and development of plants [16,17,73]. Nevertheless,
plant response to soil pollution with these products depends on pollutant type [73,86] and plant
species [5,26,87]. The proper choice of plant species for the phytoremediation process is of the
outmost significance [15,17]. A prerequisite for effective degradation of organic pollutants is a
well-developed root system of plants [16,21,23], because it prevents organic pollutants migration across
the environment. One of such plants meeting these criteria is Elymus elongatus which was used in
our study. Tall wheatgrass was more resistant to soil pollution with unleaded petroleum than with
diesel oil, which was indicated by indices of Elymus elongatus resistance to soil pollution with these
petroleum products.

The results of the present study prove that DO exerted a stronger toxic effect on Elymus elongatus
than P did. Also, investigations conducted by other authors [5,6,73,86,88] have demonstrated that
petroleum products negatively affect the growth and development of plants such as Zea mays,
Avena sativa, Lupinus luteus, Vulpia myuros, and Phalaris arundinacea. Although in our study the negative
impact of DO diminished with time (since soil contamination) and that of P remained stable throughout
the growing season, the soil polluted with these substances was characterized by a low capability of
returning to the equilibrium state. The mean value of RL index computed based on Elymus elongatus
yield in the soil exposed to the pressure of diesel oil was 0.213 and that computed in the soil polluted
with unleaded petroleum was 0.056.

5. Conclusions

The correct risk assessment of soils polluted with petroleum products is indispensable to
identifying possibilities for the management of such ecosystems. Hence, the accurate evaluation
of changes proceeding in real time in soils under the pressure of petroleum substances is of great
significance. The analysis of microbiological, biochemical, physicochemical, and chemical indices of
soil coupled with the Elymus elongatus response allowed for the complex assessment of changes in
the microbiome of soil exposed to the effects of BP diesel oil and unleaded petroleum with Active
technology. Soil pollution with these petroleum products upset the soil metabolic profile, whereas
their hydrocarbons were relatively resistant to biodegradation. The study results enable concluding
that the quality of soil polluted with these products may be improved through adjusting plant
species used for phytoremediation to pollutant type. By showing greater resistance to the effects of
petroleum than to these of diesel oil, Elymus elongatus contributed to dynamic degradation of PAHs
from the soil. Soil contamination with diesel oil (DO) and unleaded petroleum (P) in the amount of
7 cm3 kg−1 soil significantly impaired the growth and development of Elymus elongatus throughout
its growing season. A significantly greater decrease in its biomass was caused by DO than by P.
The usability of Elymus elongatus for the remediation of soil contaminated with the tested pollutants is
unquestionable in the case of soil contamination with unleaded petroleum, and relatively low in the
case of soil contaminated with diesel oil, which was indicated by the significantly higher degradation
of hydrocarbons in the soil polluted with P than with DO. The petroleum products also disturbed
the stability of the soil microbiome. Under conditions of the conducted experiment, greater negative
effects were caused by DO than by P. This is a feedback between the effects of these pollutants on soil
microorganisms and on the growth and development of Elymus elongatus.
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