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significantly enriched for metabolites involved in specific 
biochemical pathways.
Conclusions Extensive genetic variation in metabolite 
abundance was uncovered. Numerous identified genetic 
regions that coordinate groups of metabolites were detected 
and these will contain plausible candidate genes. The com-
bined analysis of germination phenotypes and metabolite 
profiles provides a strong indication for the hypothesis that 
metabolic composition is related to germination phenotypes 
and thus to seed performance.
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1 Introduction

Genomic approaches have accelerated the study of the quan-
titative genetics that underlie phenotypic variation. The 
mutualistic relationship between metabolomics and genetics 
goes back to Mendel’s reliance upon metabolic phenotypes 
(anthocyanins and starch) to develop his basic genetic theory 
(Kliebenstein 2009). The understanding of DNA structure 
and metabolism was further enhanced as genetics has played 
an equally important role in the reconstruction of biochemi-
cal pathways eventually shaping our current understanding 
of gene regulation (Ruggieri et al. 2016). The combina-
tion of metabolomics and genetics has provided powerful 
insights into the origin and maintenance of natural varia-
tion (Keurentjes et al. 2006). Given their huge diversity, 
metabolites can be associated with specific genetic mark-
ers, mRNA transcripts, and enzyme activities, allowing a 
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linkage between variation from genetic to biochemical levels 
that is more complex for less-defined or more pleiotropic 
phenotypes, such as seed performance (Joosen et al. 2013a; 
Keurentjes and Sulpice 2009; Keurentjes et al. 2008; Koorn-
neef et al. 2004; Rosental et al. 2016).

Variations in plant growth, as well as in seed and meta-
bolic traits, have been detected for a series of natural acces-
sions and recombinant inbred lines (Joosen et al. 2013a, b; 
Meyer et al. 2007; Prinzenberg et al. 2010; Rosental et al. 
2016; Schauer et al. 2006; Skogerson et al. 2010; Toubiana 
et al. 2012, 2015). Although only weak relationships have 
been suggested between growth and the levels of individual 
metabolites (Meyer et al. 2007), highly significant links 
between biomass and specific combinations of metabolites 
have been demonstrated (Lisec et al. 2008; Prinzenberg 
et al. 2010). Metabolite profiling in Arabidopsis during seed 
development (Fait et al. 2006; Toubiana et al. 2012) identi-
fied major metabolic abundance switches associated with 
successive developmental stages. Although certain altera-
tions that impair cellular structures and metabolism have 
been implicated in seed deterioration, the molecular and bio-
chemical basis of seed performance is not well understood.

The combination of metabolomics with quantitative 
genetics is at the heart of our understanding of biochemical 
phenotypes (Reed et al. 2017). Correspondingly, the fitness 
consequences of these metabolic changes are an important 
component in the determination of the genetic architecture 
of species, making metabolomics unique in the quest for 
system-wide coverage of all metabolites (Kliebenstein 2009; 
Phillips 2008). Research has consistently shown that quan-
titative metabolomics data can directly be mapped onto the 
metabolic network, ultimately opening the door for iden-
tification of metabolic reactions, networks and biochemi-
cal pathways (Joosen et al. 2013a; Keurentjes 2009; Rowe 
et al. 2008; Sulpice et al. 2010; Toubiana et al. 2016). Sev-
eral studies have demonstrated the use of metabolic QTLs 
(mQTLs) in integration of different levels of genomic infor-
mation (sequence, transcript, and protein) to understand 
plant and seed phenotypes better, improve crop breeding and 
obtain ecological inference about the corresponding selec-
tive pressure acting on these QTLs (Alseekh et al. 2015; 
Basnet et al. 2016; Lisec et al. 2008, 2009; Matsuda et al. 
2012; Reed et al. 2017; Schauer et al. 2008, 2006; Toubiana 
et al. 2015).

Genetical genomics approach brings together traditional 
QTL mapping with gene expression, protein and metabolic 
profiling studies for a better understanding of the genetic 
mechanisms influencing complex traits (Jansen and Nap 
2001; Joosen et al. 2013b). This is a useful methodology 
in studying molecular perturbation in biological systems 
and several studies have used this approach, focusing on 
natural variation (Keurentjes et al. 2006), the connection 
between metabolism and yield-associated traits or biomass 

(Meyer et al. 2007; Schauer et al. 2006), and the identifica-
tion of metabolic quantitative trait loci (mQTL) (Alseekh 
et al. 2015; Lisec et al. 2008; Rosental et al. 2016; Toubiana 
et al. 2015). Most studies using genetical genomics have 
been carried out in Arabidopsis thaliana mainly due to the 
availability of high quality mapping populations and the 
commercially available genome-wide micro-arrays where 
several studies in various RIL populations have indicated 
extensive genetic regulation of gene expression (Cubillos 
et al. 2012; Keurentjes et al. 2007; Lowry et al. 2013; Snoek 
et al. 2012; West et al. 2007). However, little attention has 
been paid to tomato, in particular with respect to seed per-
formance evaluation. In addition to molecular networks, the 
genetic perturbations of biological systems also depend upon 
environmental conditions and, thus, a comprehensive under-
standing of biological systems requires studying them across 
multiple environments.

We applied a generalized genetical genomics (GGG) 
approach for metabolic profiling using GC-TOF/MS on 100 
recombinant inbred lines (RILs) of tomato to describe the 
genetic regulation of variation in the tomato seed metab-
olome. This new GGG model may prove to be useful in 
tomato seeds and allows the investigation of the mechanisms 
that contribute to complex variations in the tomato seed 
metabolome during germination by analyzing two different 
developmental stages in one study and it offers unique reduc-
tion of experimental load with minimal compromise in sta-
tistical power as has been shown for Arabidopsis seed ger-
mination and associated metabolites (Joosen et al. 2013a). 
Germination efficiency is affected by reserve accumulation 
during seed development or their mobilization during seed 
germination as well as several unknown factors (Fait et al. 
2006; Rosental et al. 2014). To elucidate the nature of such 
factors, we analyzed the metabolite content of tomato seeds 
at two developmental stages: dry mature and 6 h-imbibed 
seeds. Metabolic fluxes are arrested in the dry seed; how-
ever, upon imbibition the dry seed rapidly resumes meta-
bolic activity (Bewley et al. 2013; Rosental et al. 2014). We 
chose the 6 h stage for optimum synchronization of seed 
germination as full rehydration of dry seeds typically com-
pletes in less than 2 h, and assuming that many metabolic 
processes will have started after 6 h of imbibition. Thus, it 
was essential to make an intelligent selection of the time 
point for imbibed seeds as germination extends from the 
onset of imbibition in an environment meeting the normal 
physiological requirements for germination to the inception 
of cell division and elongation (Bewley et al. 2013).

The application of a GGG model, which is a systems 
genetics approach, provides a broad overview of changes 
in primary metabolic processes that occur during dry 
and imbibed tomato seed developmental stages. In par-
ticular, it takes into account genetics and chosen envi-
ronmental perturbations (different seed developmental 
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stages, i.e. dry and imbibed seeds) in combination with 
the analysis of the genetic variation present in the studied 
RILs, to study the multiple environments and to identify 
genotype-by-environment interactions, offering a unique 
reduction of experimental load with minimal compromise 
of statistical power. Thus, the present approach reveals 
the plasticity of molecular networks in tomato for seed 
performance traits and forms a crucial step toward under-
standing different influences of genetic and developmen-
tal responses in tomato seeds. The present study attempts 
to link seed traits to metabolic signatures. Furthermore, 
it supports previous findings in other crops and provides 
additional evidence that relationships between a seed 
trait and a single metabolite is generally absent but that 
strong canonical correlation with a specific combination 
of metabolites illustrates the complexity of such quantita-
tive traits (Meyer et al. 2007).

2  Materials and methods

2.1  Growth conditions and seed collection

A Solanum lycopersicum × S. pimpinellifolium  F8 RIL 
population of 100 lines was used that has been genotyped 
with 5529 SNP markers of which 865 unique markers 
were used for mapping (Kazmi et al. 2011).The popula-
tion was grown twice under controlled conditions in the 
greenhouse facilities at Wageningen University, in the 
Netherlands from January to June 2009. Seeds were sown 
on soil and after 2 weeks two plants from each RIL were 
planted in a 100 × 100 mm Rockwool block (MM100/100, 
Grodan B.V.). The day and night temperatures were main-
tained at 25 and 15 °C, respectively, with 16 h light and 
8 h dark (long-day conditions). All the RILs were uni-
formly supplied with the basic dose of fertilizer (Supple-
mental Table 1). Seeds were extracted from healthy fruits 
and treated with 1% hydrochloric acid (HCl) to remove 
the pulp sticking onto the seeds. The solution of tomato 
seed extract with diluted HCl was passed through a fine 
mesh sieve and washed with water to remove the remain-
ing parts of the pulp and remnants of HCl. The seeds 
were processed and disinfected by soaking in a solution of 
trisodium phosphate  (Na3PO4·12H2O) for 1 h. Finally, the 
seeds were dried on clean filter paper at room tempera-
ture and were brushed to remove impurities with a seed 
brusher (Seed Processing Holland BV, Enkhuizen, The 
Netherlands, http://www.seedprocessing.nl). The cleaned 
seeds were dried for 3 days at 20 °C and were stored in a 
cool, dry storage room (13 °C and 30% RH) in paper bags 
until further use.

2.2  Generalized genetical genomics (GGG)

In this study the population of 100 RILs was intelligently 
allocated to two sub-populations optimized for the distribu-
tion of parental alleles in such a way that the allele distribu-
tion in the two sub-populations is as similar to each other 
and to the total population as possible using the R-proce-
dure DesignGG (Joosen et al. 2013a; Li et al. 2009); hence 
50 RIL lines were used for dry seeds and 50 lines for 6 h 
imbibed seeds (Supplemental Fig. 1). DesignGG is applica-
ble to linkage analysis of experimental crosses, e.g. recom-
binant inbred lines, as well as to association analysis of natu-
ral populations (Joosen et al. 2013a; Li et al. 2008, 2009). 
DesignGG allows users to intelligently select and allocate 
individuals to experimental units and conditions such as 
drug treatment (Li et al. 2009). The user can maximize the 
power and resolution of detecting genetic, environmental 
and interaction effects in a genome-wide or local mode by 
giving more weight to genome regions of special interest.

2.3  Extraction, derivatization, and analysis of seed 
metabolites using GC‑TOF/MS

In December 2009, a bulk of approximately 70–100 seeds 
(30 mg) were either immediately frozen in liquid nitrogen 
or imbibed for 6 h in the dark on pre-wetted filter paper 
(ft-30303-85, Sartorius) with demineralized water, after 
which seeds were frozen in liquid nitrogen. The extraction 
method is modified from the method previously described 
by Roessner et al. (2000). A bulk of approximately 70–100 
seeds (30 mg) was homogenized in 2 ml tubes (Eppendorf) 
with two iron balls (2.5 mm), pre-cooled in liquid nitrogen. 
For the homogenization the micro-dismembrator (Sarto-
rius) was used at 1500 rpm. A solution of 700 µl metha-
nol/chloroform (4:3, Biosolve) with a standard (0.2 mg/
ml ribitol) was added and mixed thoroughly. After 10 min 
sonication, 200 µl double distilled and filtered water (Mil-
liQ, Millipore) was added to the mixture followed by vor-
texing and centrifuging (5 min 13,500 rpm). The methanol 
phase was collected in a glass vial (98213, Grace) and 
500 µl methanol/chloroform was added to the remaining 
organic phase and kept on ice for 10 min. 200 µl MilliQ 
was added followed by vortexing and centrifuging (5 min 
13,500 rpm). Again, the methanol phase was collected and 
mixed with the other collected phase. 100 µl, applied to a 
vial with an insert (06090357, Grace) was dried overnight 
in a speedvac (35 °C Savant SPD121). The GC-TOF/MS 
method was previously described by Carreno-Quintero 
et al. (2012). Briefly, dried samples were crimp capped 
with a magnetic cap (8618261, Grace) in the presence of 
argon to prevent reaction with  H2O. Samples were derivat-
ized online using a Combi PAL auto sampler (CTC Ana-
lytics). 12.5 µL of O-methylhydroxylamine hydrochloride 

http://www.seedprocessing.nl
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(20 mg  ml− 1 pyridine) was added to the dried samples 
an incubated for 30 min. Then the samples were derivat-
ized with 17.5 µL N-methyl-N-trimethylsilyltrifluoroacet-
icamide (69479, Sigma) for 60 min. An alkane mixture of 
C10–C34 was added to calculate the retention indices of 
metabolites. 2 µL of the derivatized samples were injected 
into an Optic three high-performance injector (ATAS) at 
70 °C at a spilt ratio of 19:1 and the injector was heated to 
240 °C at 6 °C/s− 1. Chromatography was performed on a 
Agilent 6890 gas chromatograph (Agilent Technologies) 
coupled to a Pegasus III time-of-flight mass spectrometer 
(Leco Instruments) using a VF-5 ms capillary column 
(30 m × 0.25 mm × 0.25 µM, Varian) including a 10 m 
guardian column with helium as carrier gas with a flow 
rate of 1 ml/min− 1. The oven was isothermal for 2 min 
at 70 °C followed by a 10 °C/min− 1 ramp to 310 °C. The 
transfer line was set at 270 °C and the column effluent was 
ionized by electron impact at 70 eV. Solvent delay was set 
at 300 s. Detector voltage at 1600 V.

2.4  Data processing

Raw data was processed using the ChromaTOF software 
2.0 to obtain netCDF files. Signal to noise ratio was set to 5. 
Further processing was done by Metalign software (Lommen 
2009), to extract and align the mass signals. Baseline correc-
tion was done with a, peak slope factor (x Noise) set to 1, a 
peak threshold factor (x Noise) of 2 and a peak threshold of 
25 with an average peak width at half height of 25 (scans). 
Peaks were aligned with a maximum shift of 50 scans. This 
resulted in 60,745 different mass signals. This output was 
loaded in Metalign Output Transformer (METOT; Plant 
Research International, Wageningen) and the mass signals 
that were present in less than three RILs or lower than 35 
were discarded. Remaining peaks below background were 
randomized from 50 to 100%. Out of all the remaining mass 
signals (5601), centrotypes were formed using the MSclust 
program (Tikunov et al. 2011) with the following param-
eters: correlation threshold at 0.9 with 0.01 margin soft-
ness; PDF correlation of 0.8 with margin of 0.02; a peak 
width of 20 with a margin of 4 and Criterion was stopped at 
two masses. This resulted in 167 unique centrotypes (rep-
resentative masses). The mass spectra of these centrotypes 
were used for identification by matching to an in-house 
constructed library and the NIST05 [National Institute of 
Standards and Technology, Gaithersburg, MD, USA; http://
www.nist.gov/srd/mslist.htm) and Golm libraries (http://
csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html)]. This 
identification is based on similarity of spectra and compari-
son with retention indices calculated by using a third order 
polynomial function (Strehmel et al. 2008). Details can be 
found in Supplemental Tables 2 and 3.

2.5  Statistical analysis of GC‑TOF/MS data

Metabolomics data were log2 transformed and then statis-
tically analyzed using the rank product method (Breitling 
et  al. 2004) to identify differentially changed metabo-
lites with the Bioconductor ‘RankProd’ package. Signifi-
cantly changed metabolites showed a false discovery rate 
(FDR) < 0.05. The FDR value in the rank product was 
obtained with 1000 random permutations. Principal com-
ponent analysis was performed on the data sets obtained 
from metabolite profiling with the R “prcomp” package. The 
data were log transformed and normalized to the median of 
the entire sample set for each metabolite before analysis. 
This transformation reduces the influence of outliers. Heat 
map presentation and clustering were performed with Spear-
man correlation coefficient matrices. R-packages “MASS”, 
“Hmisc”, “VGAM” and their presentation as heat maps 
using R-packages “gplots” and “graphics” were used. Also 
ANOVA was performed using R statistics (http://www.r-
project.org/) with 5% FDR correction.

2.6  QTL analysis

For QTL analysis a previously developed R script (Joosen 
et al. 2013a) was used, which uses functions and data struc-
tures from the R/qtl package (Arends et al. 2010; Broman 
et al. 2003) to enable mapping of the observed trait vari-
ation while taking the different developmental stages into 
consideration. The developed R script uses a linear model 
to calculate the likelihood of genotype-to-phenotype linkage 
for each marker with the following model: 

where  yi is the  ith observation of the studied phenotype, vari-
able  gi is the genotype,  ei is a vector with seed conditions, 
and  gi:ei the interaction term. The values βj represent param-
eters to be estimated, and εi is the error term. The simplified 
description (Y = E + G + G:E + ε) of this linear model will 
be used henceforward. Separate likelihood estimates [− log 
probability, henceforth log of the odds (LOD) scores] are 
generated for the E, G, and G:E effects.

Data was pre-processed using a log2 transforma-
tion and per phenotype outliers were removed after 
Z-transformation (Z-scores > 3). With the open source 
statistical package R (version 2.14.1) we fitted a basic 
linear model  (yi = β0 + β1gi + εi) on the two conditions 
separately. This was followed by a combined mapping 
allowing for a developmental co-variate and interaction 
term between the genetic marker and the developmen-
tal stage  (yi = β0 + β1ei + β2gi + β3ei:gi + εi) (Joosen et al. 
2013a). P-values from all mappings were transformed into 
LOD scores by taking the –log10. Additionally, raw and 

yi = �0 + �1ei + �2gi + �3ei ∶ gi + �i

http://www.nist.gov/srd/mslist.htm
http://www.nist.gov/srd/mslist.htm
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
http://www.r-project.org/
http://www.r-project.org/


Metabolomic analysis of tomato seed germination  

1 3

Page 5 of 17 145

normalized effects were calculated for each individual envi-
ronment. Normalized effects were calculated by dividing the 
difference between the maximum and minimum values for 
that trait by the mean effect at the marker. LOD significance 
was determined using permutations for the combined map-
ping of the two environments: a LOD score of 3.0 was found 
to be significant (Breitling et al. 2008).

2.7  Integrated analysis of phenotypic and metabolite 
data

The relationship between seed performance phenotypes and 
metabolite profiles was measured by simple Spearman cor-
relation between the seed performance phenotypes and rela-
tive abundances of all metabolites, and by a more complex 
multiplicative model (Meyer et al. 2007). Missing values in 
the metabolite matrix were imputed with a self-organizing 
map (SOM) algorithm using R package “SeqKnn”.

2.8  Canonical correlation analysis (CCA)

Canonical correlation analysis calculates the highest pos-
sible correlation between linear combinations of the col-
umns from two matrices with the same number of rows. 
The R function “cancor” was used to calculate the canoni-
cal correlation between metabolites and seed performance 
phenotypes. For cross validation a partial least square (PLS) 
regression was performed. To carry out the procedure the R 
package “pls” implementing partial least squares regression 
(PLSR) was used (http://www.r-project.org). All procedures 
were applied after the missing value estimation followed by 
normalization of the metabolic matrix.

2.9  Network analysis and graph clustering

A matrix of correlation between all trait pairs was generated. 
Initially the R-package “igraph” was used to visualize the 
network and then we exported the graph to a file which can 
be read by DPClus (Altaf-Ul-Amin et al. 2006; Csardi and 
Nepusz 2006; Fukushima and Nishida 2016). Essentially, 
this algorithm divides the network into modules or groups 
of vertices that are more connected between themselves than 
to nodes from others and extract densely connected nodes as 
a cluster. In this study, we used the overlapping-mode with 
the DPClus settings since the overlapping-mode is consist-
ent with the overlap of many of the metabolic pathways and 
protein complexes. The algorithm of DPClus receives three 
inputs: the network, a value of minimum density we allow 
for the generated clusters  (din) and a minimum value for clus-
ter property that determines the nature of periphery tracking 
 (cpin). The values for density and cluster properties should 
be within the following range: 0 < din ≤1, and 0 < cpin ≤1 
(Altaf-Ul-Amin et al. 2006). We set the parameter settings of 

cluster property cp; density values were set to 0.5 as it gives 
the best performance in a graph clustering.

3  Results and discussion

Approaches employing transcriptomics, proteomics, and 
metabolomics have yielded vast data sets, allowing the cor-
relation of physiological states with patterns of gene expres-
sion, protein levels, and metabolite abundance. Omics stud-
ies in general are often expensive and laborious, particularly 
to incorporate developmental and environmental perturba-
tion. To address this challenge, generalized genetical genom-
ics (GGG) as an alternative experimental setup using bal-
anced fractions of a RIL population has been used recently 
for genetic and environmental perturbation (Joosen et al. 
2013a; Li et al. 2008). This enables a cost-effective experi-
mental setup for hypothesis-generating research in multiple 
environments (Joosen et al. 2013a; Li et al. 2008). Further-
more, analysis and interpretation of omics data at multiple 
layers and delivering models of causation is also cumber-
some. Progress made in analytical and statistical techniques 
now enables the construction of regulatory networks that 
integrate the various levels of biological information, includ-
ing transcriptional and (post) translational regulation, as well 
as metabolic signalling pathways (Serin et al. 2016).

3.1  Metabolite distribution and detection

We utilized an in-house gas chromatography–time of 
flight–mass spectrometry (GC-TOF/MS) metabolomics 
platform to measure metabolite accumulation in the seeds 
of a S. lycopersicum (Moneymaker ‘MM’) × Solanum pimpi-
nellifolium (‘Pimp’) RIL population (Voorrips et al. 2000). 
This GC-TOF/MS platform detects predominantly primary 
metabolites, and metabolites are identified based on com-
parison with reference spectra [an in-house constructed 
library and the NIST (National Institute of Standards and 
Technology, Gaithersburg, MD, USA; http://www.nist.gov/
srd/mslist.htm) and Golm libraries (http://csbdb.mpimp-
golm.mpg.de/csbdb/gmd/gmd.html)]. In total, 167 metabo-
lites were detected in this study and the chemical nature was 
identified for 66 of these metabolites. The known metabo-
lites included central metabolism derived compounds, such 
as glucose-6-phosphate, members of the tricarboxylic acid 
(TCA) cycle, such as succinate, citrate and malate, members 
of the membrane/phospholipid biosynthesis, such as glyc-
erol-3-phosphate, ethanolamine, amino acids and precur-
sors thereof, sugars, and some other common metabolic end 
products (Supplemental Table 2). This list was compiled to 
encompass the different classes of intermediates in primary 
metabolism. These metabolites are ubiquitously present 
in living organisms and are at the core of the biochemical 

http://www.r-project.org
http://www.nist.gov/srd/mslist.htm
http://www.nist.gov/srd/mslist.htm
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
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reaction networks with the largest fluxes and largest number 
of regulatory circuits.

The majority of the metabolites were detected in both par-
ents and in more than 90% of the RILs. Transgressive segre-
gation for metabolite presence was manifested in a signifi-
cant fraction of the metabolites found in the RIL population. 
Analysis of the RILs for 167 metabolites identified positive 
and negative transgressive segregation for metabolite accu-
mulation (Supplemental Fig. S2). Thus, S. lycopersicum and 
S. pimpinellifolium possess significant genetic variation for 
metabolite accumulation.

The data set obtained by GC-TOF/MS for the RIL pop-
ulation was examined by principal component analysis 
(Fig. 1). Principal component analysis of the metabolic 
profiles revealed the internal structure in the data, show-
ing that the first component clearly separates dry seeds and 
6-hour imbibed seeds, explaining 24.1% of the total varia-
tion (Fig. 1). To confirm the most important principal com-
ponents (PCs) of these samples we prepared score plots for 
the dataset. The loading plots highlighted and visualized 
metabolites with a significant role in seed developmental 
stage separation (Fig. 1).

3.2  Coordinated changes of metabolites in dry and 6 h 
tomato seeds

Quantitative changes in the amounts of major metabolites 
in the two different stages are presented in Fig.  2. The 

progression of seeds from the dry to the imbibed stage was 
associated with changes in levels of the majority of amino 
acids and their precursors, alcohols, sugars, organic acids 
and fatty acid compounds (Fig. 2, Supplemental Table 2). 
In the dry stage we observed higher levels of many metabo-
lites, including organic acids, sugars, and levels of alcohols 
such as alpha-hydroxybutyrate, as compared to 6 h imbibed 
seeds (Fig. 2, Supplemental Table 2). Most prominent were 
oxalic acid, glycolate, threonate, glycerate and erthyryonic 
acid. Synthesis of oxalic acid is accomplished via several 
pathways. Glucose, acetate and some acids of the TCA cycle 
have been implied in oxalate synthesis (Chang and Beevers 
1968). Moreover, glycolic and isocitric acids (Millerd et al. 
1963a, b) and oxaloacetic acid (Chang and Beevers 1968) 
are known to donate carbon to oxalic acid in plants. The 
observed transient accumulation of oxalate in seed tissues 
could be associated with ureide degradation and subsequent 
amino acid synthesis, which is required for seed storage pro-
tein synthesis in developing seeds. It has been hypothesized 
that degradation of organic acids in seed development may 
provide the energy needed for metabolic activity in this 
period (Ilarslan et al. 1997).

Concentration of organic acids, namely, galactonate, gly-
colate, glycerate, erythronic acid, phosphoric acid, quinate 
and threonate, decreased dramatically upon imbibition. The 
levels of amino acid and their precursors were invariant 
between dry and 6 h imbibed seeds. The levels of alpha-
hydroxybutyrate and the sugars xylofuranose and sucrose 

Fig. 1  Principal component analyses of all detected metabolites 
for dry and 6  h imbibed tomato seeds. Symbols: green rectangles, 
dry seeds; red rectangles, imbibed. Each data point corresponds to 
the analysis of one of 100 genotypes. Scores of principal compo-

nent analysis are presented for dry and 6 h based on a combination 
of 2 components (PC1 and 2) (left). Variances of 24.1% for PC1 and 
10.3% for PC2 were recorded in each component. Loading scores of 
metabolites are presented for PC1 and PC2 (right)
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also exhibited considerable decrease upon imbibition. The 
levels of the TCA-cycle intermediate oxalate showed sig-
nificant decrease while the other TCA-cycle metabolites 
declined even further on imbibition. The imbibed seed 
stage was associated with a general increase in concentra-
tions of monomethyl phosphate, the organic acids, parbanic 
acid and pentonic acid, and the TCA-cycle intermediates 
citrate and fumarate. In contrast, the levels of gluconate, 

quinate, shikimate and succinate were significantly reduced. 
While the levels of most amino acids and their precursors 
were reduced to different extents, the levels of Gly, Asp, 
Asn and hypotaurine significantly increased. Similarly, the 
levels of most sugars declined but the levels of the sugar 
phosphates, glucose-6-phosphate and glycerol-3-phosphate 
were elevated significantly. This general observation sug-
gests that the transition from dry to 6 h imbibed is associated 

Fig. 2  Metabolite profiles in dry and 6  h imbibed seeds of tomato. 
Metabolite levels between dry and 6  h seed developmental stages 
were compared. The vertical Green and Red bar colors represent vari-
ability of metabolite abundance between  F8 recombinant inbred lines 
(RILs) for dry and 6  h. The relative abundance of each metabolite 
represent the mean of all genotypes (n = 100). A hierarchical clas-

sification of metabolites was done according to a dissimilarity scale 
using the distance function 1-correlation. The dissimilarity index is 
employed for cluster analysis to arrange different metabolites accord-
ing to their similarity. Z-values of measurements are color-coded as 
indicated in the scale on the bottom of the heat map, from blue to red
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with the activation of initially important metabolic processes 
needed for seed germination. It is also likely that germina-
tion is associated with a follow up of additional metabolic 
processes, which occur later during germination and there-
fore were not observed by our metabolic profiling. The major 
metabolic changes observed after 6 h of imbibition were sig-
nificant reductions in the levels of the majority of different 
metabolites, which had accumulated in the dry seeds (Fig. 2, 
Supplemental Table 2). Yet, our present finding suggests 
that metabolism during the 6 h seed stage has an additional 
function, namely to render certain metabolites rapidly avail-
able to support metabolic recovery during imbibition. This 
implies that primary metabolites might be rapidly consumed 
to support the metabolic switch toward the enhancement of 
biosynthetic processes needed for early germination. The 
Asp-family pathway results in the synthesis of the essential 
amino acids Lys, Thr, Meth and Ile through several differ-
ent branches (Galili 2011; Rosental et al. 2016). In addition, 
Thr is also metabolized to Gly, which is involved in plant 
photorespiration whereas Ile is a kinase well-documented 
donor metabolite that feeds the TCA cycle in plants. This 
general expression behavior of amino acid metabolism oper-
ates as part of a comprehensive program to suppress biosyn-
thetic pathways in order to preserve the existing energy and 
stimulate catabolic pathways to generate additional energy, 
and exposes a significant regulatory metabolic link between 
the Asp-family pathway and the TCA cycle, whose biologi-
cal function may have a major impact on the physiologi-
cal response of plants to various abiotic stresses that cause 
energy deprivation (Baena-González and Sheen 2008). This 
general observation suggests that the transition from dry to 
6 h imbibed is associated with the activation of initially 
important metabolic processes needed for seed germina-
tion. It is also likely that germination is associated with a 
follow up of additional metabolic processes, which occur 
later during germination and therefore were not observed 
by our metabolic profiling. In our study we show that early 
germination (imbibition) events are characterized by the 
efficient reactivation of metabolic pathways via the avail-
ability of key precursors as well as coordination of energy 
metabolism. Several conserved features are apparent in both 
seed stages analyzed, thus confirming a high biological rel-
evance of these changes in the process of seed and seedling 
development (Rosental et al. 2014).

3.3  Metabolites of similar function are highly 
correlated across the RIL population

We created a correlation matrix of all pairwise compari-
sons among individual metabolites by performing Spear-
man rank correlation analysis for all pairs of measured traits 
across the whole population. Spearman’s rank correlation 
coefficients (Rs) and accompanying false discovery rate 

(FDR)-corrected P values  (pBH; Benjamini-Hochberg) are 
provided in Supplemental Table 4. Unsupervised hierarchi-
cal clustering revealed several ‘‘hot spots’’ of highly corre-
lated metabolites (Fig. 3, Supplemental Fig. 3). It is remark-
able that several hot spots corresponded to the biochemical 
pathways to which the metabolites belong. For example, 
11 of the 15 amino acids cluster in this matrix. Moreover, 
when we consider pairwise correlations between all amino 
acids, 75% had absolute correlation coefficients greater than 
 Rs 0.38  (pBH = 0.0001)(Supplemental Table 4). In another 
cluster, glycine clustered most highly with pyroglutamate 
 (Rs = + 0.64;  pBH = 1.36E−11), but also with glycerol-
3-phosphate and urea. Glucose correlated most highly with 
myo-inositol  (Rs = + 0.68;  pBH = 9.06E−05), and GABA 
with glutamate  (Rs = + 0.58;  pBH = 1.25E−09). Also, in the 
same cluster ethanolamine, glutamine, shikimate and its 
precursor quinate, as well as TCA intermediates malate and 
succinate, grouped together.

The inter-dependence of biosynthetically unrelated amino 
acids observed in our study concurred with that of biosyn-
thetic related amino acids, such as Gly, Ser, Thr, Ile and 
Val, of which Thr, Gly, and Ile are directly associated with 
the Asp family (Less et al. 2010; Less and Galili 2009). 
Ser is closely related to Gly, and Val biosynthesis is ini-
tiated by Thr (KEGG pathway database) (Kanehisa et al. 
2009). Amino acids closely related by a biochemical path-
way exhibited even stronger correlations than the average in 
the amino acid module. The significant positive correlations 
between amino acids imply that ratios between amino acid 
levels within a seed “must” be maintained, and they reflect 
a highly regulated amino acid metabolism that includes both 
protein and non-protein amino acids (i.e. GABA), both aro-
matic and aliphatic, likely to occur at the post-transcriptional 
level in the regulation of N allocation (Toubiana et al. 2012). 
That said, we cannot rule out the possibility that integration 
of induced changes at the transcriptional level accounts for 
the intragenotypic correlation of amino acid metabolism. 
The vast number of highly significant associations between 
the amino acids and carbon metabolites in the seed is indica-
tive of considerable crosstalk between C and N networks, 
as is exemplified by the correlation between pyruvate-nic-
otinate (niacin, precursor of NAD), on the one hand, and 
amino acids and glycolytic intermediates, on the other hand. 
Our results support previous suggestions of an extensively 
overlapping regulatory basis for central pathways in N and 
C metabolism (Gutiérrez et al. 2007; Nunes-Nesi et al. 2010; 
Stitt and Fernie 2003).

3.4  Metabolic profiling of seeds in a tomato RIL 
population identifies mQTLs

The purpose of the current study was to explore the possi-
bility that the levels of metabolites in tissues are sufficiently 
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heritable in an F8 population to provide significant link-
age signals, leading to metabolic QTLs. Given that many 
pathways converge upon common metabolites and that these 
pathways have multiple controllers, any single genetic locus 

may not alter metabolite levels significantly, and therefore 
may not be identified as a metabolite QTL. Nonetheless, 
in our study, we found significant linkage signals, includ-
ing some that are quite strong (Fig. 4, Supplemental Fig. 4). 

Fig. 3  Heat map of correlations between metabolites. Each square 
represents the Spearman correlation coefficient between the meta-
bolic phenotypes of the column with that of the row. Metabolic phe-
notype order is determined as in hierarchical clustering using the 
distance function 1-correlation. The dissimilarity index is employed 

for cluster analysis to arrange different seed phenotypes according 
to their similarity (Legendre and Legendre 1998). Self–self correla-
tions are identified in black. Individual correlation coefficients can be 
found in Supplemental Table 4. Supplemental Fig. 3 displays the cor-
relation heat map for all 167 metabolites found in our analysis
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Fig. 4  a Genomic locations of genetic mQTLs identified for metabo-
lite accumulation. b Genomic locations of G × E mQTLs identified 
for metabolite accumulation. Tomato chromosomes are identified by 
arabic numerals (1–12), with centimorgans ascending from left to 
right; chromosomes are separated by white lines. Colored cells indi-
cate QTL significant. Significant thresholds were defined with per-
mutation analysis (n = 1000, p < 0.01) by randomizing the genotypes 

over each metabolite and was set to LOD > 3 accordingly. The LOD 
color scale is indicated, showing blue and light blue when the Sola-
num pimpinellifolium (‘Pimp’) allele, and yellow and red when the 
S. lycopersicum (Money ‘MM’) allele, at that marker results in an 
elevated level of metabolic phenotype. Supplemental Fig. 4a, b shows 
genomic locations of genetic mQTLs identified for all 167 metabo-
lites
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In our experimental set-up the environmental variation is 
defined as variation observed between the two developmen-
tal stages (dry and 6 h). A large fraction of the observed 
variation is due to genetic effects among concentrations 
of metabolites, although we also found metabolites with 

variation in the genetic × environmental component (Fig. 4b, 
Supplemental Fig.  4b). Co-location of the QTLs was 
expected, as there was strong correlation among metabo-
lites, which is an indication of possibly shared mQTLs. Four 
of the total of eleven amino acids that clustered based on 

Fig. 4  (continued)
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correlation (Ala, Phe were the exceptions) map to a similar 
position on chromosome 9 (Fig. 4, Supplemental Fig. 4). 
Similarly, glutamate and GABA have a QTL profile with 
a shared mQTL on chromosome 4. The foregoing results 
demonstrate that metabolites of a functional class often are 
correlated with one another and have common mQTLs.

Our results reveal that metabolites can be mapped to dis-
tinct genetic regions, much like mRNA transcripts. Although 
QTL mapping in an  F8 population does not provide sufficient 
resolution to identify individual genes with high certainty, 
it can yield novel information about regulatory networks. 
Phenotypes mapping to the same locus can be hypothesized 
to be co-regulated by that locus. With our definition of “phe-
notype” including metabolites and physiological traits, we 
can begin to devise relationships between these phenotypes 
and genetic regions.

3.5  Integration of metabolic and seed phenotypic traits

Using an analogous approach to that taken previously for 
metabolites (Buscher et al. 2009; Lisec et al. 2008; Meyer 
et al. 2007; Sulpice et al. 2010), we were also interested 
in unravelling possible links between previously studied 
seed performance phenotypes and a specific combination 
of metabolites. The first 20 metabolites with significant cor-
relations under oxidative stress condition  (Gmax) are listed 
in Supplemental Table 7 as an example, whereas details 
concerning connection between metabolites and different 
germination traits are provided in Supplemental Table 5. 
The highest absolute correlation found was for an unknown 
metabolite (RI_2442), which yielded a value of 0.406. 
Although the correlation is statistically highly significant (P 
value of 3.35E−05), it can only explain 16.48% of the vari-
ance. Other significantly correlated compounds are allan-
toin, alpha-hydroxybutyrate, C16:1, fructose, gluconate, 
glucuronate, guanosine, hexonic acid, hypotaurine, shiki-
mate, xylofuranose and a number of unknown metabolites 
(Supplemental Table 5). Their individual contribution to the 
explained variance ranges from 5 to 15%. In contrast to the 
aforementioned pairwise correlation analysis, CCA yielded 
a much stronger correlation of 0.60. This value corresponds 
to 36% of variance explained by the linear combination 
of metabolites, almost 1–5 times more than explained by 
any individual metabolite. Comparing the results obtained 
from a combination of different metabolites and germina-
tion traits which showed significant associations, it can be 
seen that strongly represented metabolites are compounds of 
central metabolism, such as glucose and fructose, members 
of the tricarboxylic acid (TCA) cycle, such as succinate, 
citrate and fumarate, amino acid and precursors, members 
of the membrane/phospholipid biosynthetic pathways, such 
as glycerol-3-phosphate, ethanolamine and myo-insitol, or 
sucrose (Supplemental Table 5). Interestingly, with regard 

to different germination traits  (Gmax,  t10 − 1,  t50 − 1, MGR, and 
AUC), in particular under stress conditions, the predomi-
nantly represented metabolites are well known for abiotic 
stress responses. The single most remarkable observation to 
emerge from the data comparison was that of those stress-
related metabolites, most were ominously present in the 
correlation with salt- and osmotically-stressed seeds for 
 Gmax as well as unprecedentedly for  t10 − 1,  t50 − 1, MGR and 
AUC, including myo-insitol, Pro, fumarate and succinate. 
High temperature stress was associated with Ile, Leu and 
Val; again their response to abiotic and biotic stresses and 
heat is well known, whereas strong representation of sugars 
(xylofurnose, fructose), organic acids (gluconate, glucor-
nate, hexonate, shikimate etc.) and some bases and alcohols 
was evident in the case of  Gmax and some additional metabo-
lites in the case of AUC under oxidative stress conditions. 
The overall association of metabolites with phenotypic traits 
across different conditions provides an indication of possible 
cross-talk between different abiotic stresses (e.g. salt and 
osmotic). It also provides insight into the nature and conse-
quences of the genetic variation of metabolic function and 
its relationship with seed performance phenotypes.

3.6  Combination of the levels of a large number 
of metabolites show a close correlation with seed 
germination

The present study shows the levels of a large number of 
metabolites, rather than a few individual metabolites, show 
a close correlation with germination parameters. It indicates 
that variation in the germination parameters coincides with 
characteristic combinatorial changes of metabolite levels, 
whereas individual metabolites may fluctuate largely inde-
pendently of alterations in germination. CCA provided 
highly-ranked clusters in which metabolites of central met-
abolic pathways are strongly represented. Sugars of high 
relevance are the three metabolic hexose intermediates: 
glucose, sucrose and fructose. Sugars play an important 
role in overriding developmental regulation of seeds at a 
given point in time in a given cell or tissue. Previous studies 
have provided correlative evidence that certain sugar levels 
and/or the resulting changes in osmotic values are neces-
sary within defined tissues or cells to maintain a distinct 
stage of differentiation or to proceed with the developmental 
program. Metabolites of the TCA cycle, such as succinate 
and fumarate are highly ranked. Also highly ranked is myo-
inositol. Other metabolites, such as glycerol-3-phosphate 
play a major role in membrane/phospholipid biosynthesis. 
Other highly-ranked metabolites are the amino acids Ala, 
Ile, Leu, Met, Ser, Phe, Pro, Asp, Trp, Tyr, Val, as well as 
the sugar alcohols myo-inositol and galactinol, and the fatty 
acids palmitate and linoleate and alpha-hydroxybutyrate.
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Our data display the occurrence of both positive and 
negative correlations between metabolites and different 
seed quality phenotypes. These findings corroborate the 
ideas of (Meyer et al. 2007) who found known metabo-
lites displaying a negative correlation to biomass. These 
metabolites are the aforementioned intermediates of cen-
tral metabolic pathways including sucrose, glucose and 
the TCA cycle members succinate and fumarate, as well 
as the amino acids Ala, Ile, Leu, Met, Ser, Phe, Pro, Asp, 
Trp, Tyr and Val. Although we have found both positively 
and negatively correlating metabolites amongst different 
seed quality phenotypes, the majority of the positively-
correlated metabolites is a substantial fraction of metab-
olites related to stress responses, such as Ala, Ile, Leu, 
Meth, Ser, Phe, Pro and Val, as well as some unknown 
metabolites. Thus, a link between the metabolites ranking 
high in the CCA and seed quality phenotypes is plausible 
because central metabolism and stress responses are of 
the utmost importance to seed germination, and thus, to 
seed quality. The observed scenario depicts the fact that 
positively-correlated metabolites could be an attribute to 
plant defense against abiotic and biotic stresses. Thus, 
these results suggest that higher concentrations of these 
metabolites coincide with better-armed plants. Another 
possible explanation for this is that positively correlated 
metabolites are positive signals regulating plant growth 
and the contrary would be true for negatively-correlated 
metabolites.

3.7  Comparative overview of QTLs for known 
metabolites and germination phenotypes

Furthermore, we also show that the combined use of 
mQTL and phQTL, with correlations allows one to derive 
a network and establish data-driven hypotheses about 
metabolite and phenotype relationships. For example, 
inspection of the overlap showed that several QTLs con-
trolling primary metabolites were co-located with different 
seed performance phenotypes. A comprehensive overview 
of all overlapping mQTLs with phQTLs observed in the 
RIL population for known metabolites and the chromo-
somal localization is shown in Supplemental Fig. 5 with 
the number of overlapping mQTLs per phQTL ranging 
from 3 to 9. This indicates that there is strong genetic 
regulation of the metabolic and phenotypic traits investi-
gated in this study and also points at possible cross-talk 
in different seed germination condition. In further support 
of this hypothesis some metabolites (allantoin, pentonic 
acid, monomethyl phosphate, melezitose etc.) display up 
to two QTLs co-localizing with any of the phQTL (Sup-
plemental Fig. 5).

3.8  Metabolomic correlation‑network modules in  f8 
based on a graph‑clustering approach

A complementary overview of the metabolomic correla-
tions network was obtained by extracting all significant 
trait–trait correlations (Rs ≥ 0.5) and visualizing them 
using DPClus (Altaf-Ul-Amin et al. 2006) that identifies 
clusters in the metabolomic correlation network. Graph 
clustering using DPClus yielded densely-connected 
metabolites on the metabolomic correlation networks. 
KEGG enrichment analysis, used to assess the statistical 
significance of the detected clusters, demonstrated spe-
cific differences in the clusters in the enriched pathways. 
We postulate that the assigned KEGG pathways for each 
cluster reflect differences in underlying genetic properties 
of biochemical regulation of stage specific pathways. The 
largest cluster was ‘Glyoxylate and dicarboxylate metabo-
lism’ (Fig. 5). This cluster contained metabolites asso-
ciated with the biosynthetic pathways of carbohydrates 
from fatty acids or precursors which enter the system as 
acetyl-coenzyme A. Its crucial enzymes are isocitrate 
lyase and malate synthase and they have a relationship 
with several other metabolic processes: Gly, Ser, and Thr, 
purine metabolism, carbon fixation, ascorbate and aldarate 
metabolism, nitrogen metabolism, pyruvate metabolism 
and the citrate cycle.

Although there were no significant enriched KEGG 
pathways in clusters 3 and 5 (Fig. 5), these clusters may 
represent the extensive coordination among biosynthetic 
pathways involved in fatty acids biosynthesis in tomato 
seeds. We followed an approach that may yield new 
insights into the organization of metabolites in the func-
tional pathways of a given organism (Fukushima et al. 
2011). Taken together, our observations demonstrate that 
variations in the topology of correlation networks reflect 
at least partially-known biochemical pathways in tomato 
(Camacho et al. 2005; Fukushima et al. 2011; Steuer 2006; 
Toubiana et al. 2015). Our findings are in agreement with 
Fukushima et al. (2011) showing that graph clustering can 
be used to gather metabolites belonging to the metabolic 
pathways that change in response to different regulations. 
It is therefore likely that statistical KEGG enrichment 
analysis of such densely-connected metabolites in the 
correlation network is of more relevance than network 
similarity or proximity (Müller-Linow et al. 2007). Other 
studies support the idea of graph clustering approaches 
(Freeman et al. 2007; Fukushima et al. 2009, 2011). The 
aforementioned approaches have been applied effectively 
to gene co-expression networks for extracting functional, 
densely-connected genes. The present findings are consist-
ent with a previous study which showed that the approach 
is also effective for metabolomic correlations (Fukushima 
et al. 2011).
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4  Conclusions

Our study shows that dry and imbibed seed developmen-
tal stages are associated with programmed metabolic 
switches. Specific sets of metabolic components, distrib-
uted across the metabolic network, are synthesized during 
seed development according to need and possible utiliza-
tion of certain metabolites. These primers can be used 
concomitantly to predict increases in the flux of specific 
metabolites throughout the course of germination. Metab-
olite profiling in combination with significant genetic vari-
ability can reveal important regulatory mechanisms in seed 
metabolism and behaviour. Network analysis, coupled with 
our definition of “phenotype” including metabolites and 
physiological traits highlighted the inherent differences 

between developmental seed stages as well as hierarchy 
of regulation between physiological-related and metabo-
lite traits. Our approach contributes to the generation of 
new testable hypotheses and may expand our fundamental 
understanding of metabolic behavior affected by genetic 
and/or environmental perturbations. The application of 
the GGG model allowed us to study the genetic basis of 
natural variation as well as environmental perturbations, 
i.e. differences between dry and imbibed seed profiles 
with a huge reduction in experimental load and minimal 
compromise in statistical power (Joosen et al. 2013a). 
The uniqueness of this study presents a number of impor-
tant implications for future practice for the characteriza-
tion of unknown gene function(s) and helps in the high-
throughput screening of metabolic phenotypes (Albinsky 

Fig. 5  Graph clustering of correlated metabolomic modules in 
tomato seeds (threshold r ≥ 0.5). Using the DPClus algorithm we 
extracted six clusters in tomato seeds. The significant metabolic path-
ways were assigned by KEGG enrichment analysis (see “Methods”). 
The central graph consisting of six blue clusters and ten red edges 

was extracted by DPClus. Each blue cluster contains densely con-
nected metabolites (see Clus1–6). Small white nodes in the clusters 
indicate metabolites. The internal nodes of the clusters are connected 
by green edges; neighboring clusters are connected by red edges
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et al. 2010; Zampieri et al. 2017). Being applied on data 
from heterogeneous sources, correlation-based network 
analysis has proven successful—from the simple under-
standing of topology in the metabolic correlation network 
through a comprehensive understanding of seed-metabo-
lite responses to genetic alteration, to the identification of 
modules and metabolites with significant structural roles, 
which are worthy of further research (Ligterink et  al. 
2012). In particular, the analysis of the seed metabolic 
response to genetic alteration highlighted the relevance 
to keeping specific areas of metabolism balanced. As 
such, metabolic network analysis combined with genetic 
resources can lead to the development of significant sup-
portive approaches in defining broader strategies for crop 
quality improvement. The uniqueness of this study pre-
sents a number of important implications for future prac-
tice for the characterization of unknown gene function(s) 
and helps in the high-throughput screening of metabolic 
phenotypes (Albinsky et al. 2010; Zampieri et al. 2017).
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