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Abstract

The basal ganglia have been hypothesized to be involved in action selection, i.e. resolving competition between simultaneously
activated motor programs. It has been shown that the direct pathway facilitates action execution whereas the indirect pathway
inhibits it. However, as the pathways are both active during an action, it remains unclear whether their role is co-operative or
competitive. In order to investigate this issue, we developed a striatal model consisting of D1 and D2 medium spiny neurons
(MSNs) and interfaced it to a simulated robot moving in an environment. We demonstrate that this model is able to reproduce
key behavioral features of several experiments involving optogenetic manipulation of the striatum, such as freezing and ambula-
tion. We then investigate the interaction of D1- and D2-MSNs. We find that their fundamental relationship is co-operative within a
channel and competitive between channels; this turns out to be crucial for action selection. However, individual pairs of D1- and
D2-MSNs may exhibit predominantly competition or co-operation depending on their distance, and D1- and D2-MSNs population
activity can alternate between co-operation and competition modes during a stimulation. Additionally, our results show that D2–D2
connectivity between channels is necessary for effective resolution of competition; in its absence, a conflict of two motor pro-
grams typically results in neither being selected.

Introduction

The classical firing rate model of basal ganglia by Albin et al.
(1995) suggests three functional pathways in basal ganglia: direct/go
pathway, indirect/no-go pathway, and hyperdirect/stop pathway. The
direct/go pathway is hypothesized to help in facilitating a move-
ment, whereas the indirect/no-go pathway is hypothesized to sup-
press a movement. The antagonistic nature of these pathways is
emphasized by the fact that these pathways originate from different
striatal sub-populations, namely D1 medium spiny neurons (D1-
MSNs) and D2 medium spiny neurons (D2-MSNs), so named based
on the dopamine receptor (D1 or D2) they express. The direct path-
way originates from D1-MSNs and inhibits GPi/SNr (globus pal-
lidus interna/substantia nigra pars reticulata), which forms the output
of basal ganglia. As the basal ganglia output maintains a strong

inhibition on the thalamic activity, an inhibition of GPi/SNr disin-
hibits thalamus, thereby facilitating an action. The indirect pathway
originates from D2-MSNs and inhibits GPe (globus pallidus
externa), which in turn can directly disinhibit GPi/SNr or excite
GPi/SNr by disinhibiting the STN (subthalamic nucleus).
Although there is evidence to show that these pathways overlap (Cal-

abresi et al., 2014), a strong proof of the concept of Go and No-Go
pathways was provided by Kravitz et al. (2010). They showed that
selective optogenetic stimulation of D1-MSNs in mice leads to
increased ambulation, whereas optogenetic stimulation of D2-MSNs
leads to freezing. This is consistent with the experimental observations
that D1-MSNs is indeed a ‘Go’ signal where optogenetic stimulation of
D1-MSNs can substitute whisker stimulation and reliably evoke licking
behavior in mice (Sippy et al., 2015). However, it has been shown that
D1- and D2-MSNs co-activate in freely moving mice during action ini-
tiation (Cui et al., 2013) as well as habitual behavior is correlated with
the strengthened output of both populations (O’Hare et al., 2016),
which suggests a co-operative rather than an antagonistic role.
Two recent studies have significantly contributed to our under-

standing of action encoding in striatum. Barbera et al. (2016)
showed that activity of D1- and D2-MSNs, when clustered on the
basis of their correlation coefficients, form compact and non-
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overlapping spatial clusters, i.e. neurons situated spatially close
together show high covariance in their activity, and the covariance
between clusters is significantly less than within clusters. Moreover,
the neural activity of the neurons in the clusters can predict the
behavioral states (ambulation, immobility etc.) with high accuracy in
comparison with randomly picked neurons or the total population
activity. This suggests that the actions might be encoded in striatum
in spatially compact and non-overlapping clusters. Klaus et al.
(2017) also showed that D1- and D2-MSNs located spatially close
together showed high covariance in their activity, however, high
covariance could also sometimes be detected between distant neu-
ronal pairs. A mapping between behavioral state and neuronal activ-
ity suggested a rather continuous encoding across the MSN activity
space, in contrast to the findings of Barbera et al. (2016).
In the above studies, the D1- and D2-MSNs were recorded in freely

moving D1-cre and D2-cre mice respectively. However, in order to
systematically investigate the individual and interactive roles of D1-
and D2-MSNs in action selection, it is necessary to be able to both
record D1- and D2-MSNs in the same animal, and selectively record
and manipulate the action encoding neurons. As this is beyond present
experimental techniques, in this article we investigate this issue on the
basis of a hybrid neuronal network/virtual robot model.
There has been significant progress in the development of such

hybrid systems in the last years, so that several alternative experimen-
tal approaches could be considered. These systems interface a living
biological entity, tissue or in silico neuronal network with real or a vir-
tual robot. The robotic setup (real or virtual) provides the biological
entity with the means to interact with the environment, which is espe-
cially beneficial in the case where such a link has been severed, e.g.
patients suffering from locked-in syndrome or loss of a limb. The
hybrid systems, in addition, give useful insights about neural encoding
and decoding of signals especially in a closed loop setting, where, in
addition to the neuronal system controlling the robotic setup, the sen-
sory input as perceived by the robot is also fed back into the neuronal
system. Some of the important hybrid systems include brain-machine
interfaces (Carmena, 2013; Maharbiz et al., 2017), hybrid models
using cell cultures (Bontorin et al., 2007) or neurorobotics (Falotico
et al., 2017). For the question addressed in this study, we select a vir-
tual neuronal network and a virtual robot, as this provides us with a
behavioral manifestation of the striatal network activity that gives us
complete control over all parameters and greatest flexibility in terms
of measurements and manipulations.
The neuronal network part of our model (Sec. Network model of

the striatum) consists of two hemispheres of D1- and D2-MSNs
arranged on a grid of 36 non-overlapping channels, each represent-
ing an action. Connectivity within and between the channels is dis-
tance-dependent, based on experimental findings. Among the 36
channels, two neighboring channels encode for the actions ‘turn left’
and ‘turn right’, and are interfaced to a four wheeled virtual robot
(Sec. Virtual robot). The other channels have no effect on the
behavior of the robot, but allow us to examine the relationship of
D1- and D2-MSNs not only within a single channel but between
close and distant channels. To our knowledge, this is the first
attempt to understand the nature of the interactions between D1- and
D2-MSNs and their relationship to motor behavior using a combined
neuronal network and virtual robot setup.
In Sec. Network connectivity profile of the striatal network, we first

demonstrate that our choice of a non-monotonic connectivity kernel
can reproduce the distribution of distances between dis-inhibited neu-
rons under the influence of a GABA-antagonist reported by L�opez-
Huerta et al. (2013), in contrast to a monotonic kernel. We then vali-
date the combined neuronal network/virtual robotic framework by

demonstrating its ability to reproduce the main features of several key
motor studies employing optogenetic manipulation, such as freezing,
increased ambulation, and ipsilateral turning. In Sec. D1-MSNs and
D2-MSNs show concurrent activation on a single channel level, we
then evaluate the hypothesis that D1- and D2-MSNs are competitive
within a channel but cooperative on a population level. In contrast
with our initial assumption, we found that D1- and D2-MSNs do not
oppose each other on a single channel level, but show concurrent acti-
vation as a result of the distance dependent connectivity. Although this
result is very robust under different conditions, the increase in the
activity is not large enough to show an increase in the total population
activity, which is probably the closest approximation to the signal
measured in experiments. Further investigations on our model using
novel experimental paradigms reveal that an increase of D1 and D2
activity during action selection can indeed be seen if both D1-and D2-
MSNs receive sufficient external excitatory input.
In addition, we show that competing motor programs can lead to a

strong competition between neighboring channels, and that this com-
petition is induced by the D2–D2 connections between the channels
(Sec. Competition originates in D2–D2 connections). Finally, in Sec.
Relationship between D1- and D2-MSNs depends on spatial distance
and temporal scale, we show how the structure of correlation between
MSNs depends on the distance between neurons and the type of stim-
ulation, and that D1- and D2-MSNs can even alternate between co-
operativity and competition at different stages during a stimulation.

Material and methods

Network model of the striatum

Network composition

Our network model of the striatal MSNs, shown in Fig. 1, consists
of 36 channels, or striatal functional units, arranged in a (6,6) edge-
wrapped grid per hemisphere. Each channel contains 40 D1- and 40
D2-MSNs. The size of the channel is consistent with the size of
neuronal ensembles that were found to be disinhibited by a localized
application of GABA antagonist or co-activated by cortical stimula-
tion of a corticostriatal slice (Carrillo-reid et al., 2008; L�opez-Huerta
et al., 2013).
The neurons are realized by a leaky integrate-and-fire model with

conductance-based synapses. The neuron parameters (Table 1) were
tuned to generate F-I curves qualitatively similar to experimentally
measured F-I curves for D1- and D2-MSNs (Gertler et al., 2008,
see Fig. S1A).

Network connectivity

The neurons are connected randomly according to the connection densi-
ties and connection strengths listed in Table 1. Notably, the recurrent
network connectivity between D1- and D2-MSNs is asymmetrical, i.e.
D2-MSNs make more connections to D1-MSNs than vice versa (Tav-
erna et al., 2008; Planert et al., 2010). The synaptic conductances
between D1-MSNs and D2-MSNs were tuned to yield postsynaptic
potentials in the range reported by Planert et al. (2010).
The connection probabilities listed in Table 1 are average connec-

tion probabilities between neuronal pairs, as reported by Planert et al.
(2010). These connectivities are then scaled depending on whether the
connecting neurons are in the same channel, near channels or far chan-
nels, in order to achieve distance dependent connectivity on the chan-
nel level. For neurons situated within the same channel, all
connectivities are scaled by a factor of 1.2 (kwithin). Between
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neighboring channels, connection probabilities are scaled by a factor
of 3.4 (knear), indicating high connectivity. Between channels at
greater distance, all connection probabilities are scaled by a factor of
0.3 (kfar), indicating sparse connectivity. This connectivity profile,
illustrated in Fig. 1, is inspired by the experimental data that suggest
that connectivities between the MSNs peak at �40–60 lm, implying
that closely located MSNs may be more sparsely connected to each
other than to neurons in neighboring channels. Hence, the connectivity
changes non-monotonically as a function of distance (Fujiyama et al.,

2011; L�opez-Huerta et al., 2013). The delays between the channels
increase monotonically, i.e., 1.0 ms within the channel, 2.5 ms for
neighboring channels and 4.5 ms for channels situated far away.

Background input

To achieve reasonable firing activity in the absence of specific experi-
mental stimulation, neurons were provided with background noise
in the form of independent excitatory poissonian spike trains. As

Fig. 1. Left: Striatal network in one hemisphere. Three connectivity strengths are used: the connectivity within the channel is scaled to be medium (1.2, light
gray), connectivity with the channels in the immediate neighborhood (near connectivity) is scaled to be high (3.4, dark gray) and the connectivity with the chan-
nels far away is scaled to be sparse (0.3, medium gray). Right: Two channels are connected to the robot representing the two basic actions ‘turn left’ and ‘turn
right’. The hemispheres implement a contralateral encoding of an action (i.e. ‘turn left’ is implemented in the right hemisphere). Within a channel D1-MSN rep-
resent ‘Go’ (positive input to the motor) and D2-MSN represent ‘No-Go’ (negative input to the motor).

Table 1. Network and neuron parameters for D1-MSNs and D2-MSNs

Parameters Description D1-MSNs D2-MSNs

Neuron parameters
Vrest Resting voltage �87.2 mV (Gertler et al., 2008) �85.4 mV (Gertler et al., 2008)
Vthresh Threshold voltage �50 mV �50 mV
Cm Capacitance 195 pF (Gertler et al., 2008) 159 pF (Gertler et al., 2008)
gL Leak conductance 9 nS 4.5 nS
ssyn-ex Excitatory synaptic time constant 5 ms 5 ms
ssyn-in Inhibitory synaptic time constant 10 ms 10 ms

Connectivity
qD1,D2?D1 Connection probability to D1-MSNs 0.07 (Planert et al., 2010) 0.13 (Planert et al., 2010)
qD1,D2?D2 Connection probability to D2-MSNs 0.05 (Planert et al., 2010) 0.23 (Planert et al., 2010)

Distance-dependent connectivity
kwithin Scaling factor for within channel connectivities 1.2 1.2
knear Scaling factor for near channel connectivities 3.4 3.4
kfar Scaling factor for far channel connectivities 0.3 0.3

Synaptic strengths
JD1,D2?D1 Synaptic strength of incoming projections to D1-MSNs �0.75 nS �1.7 nS
JD1,D2?D2 Synaptic strength of incoming projections to D2-MSNs �0.85 nS �1.35 nS

Background noise
kBckgrnd?D1,D2 Background noise rate for poisson generator 80 spks/s 57 spks/s
JBckgrnd?D1,D2 Synaptic strength of background 2.5 nS 2.5 nS
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D1-MSNs receive a higher number of stronger inhibitory synapses from
D2-MSNs than vice versa (Taverna et al., 2008; Planert et al., 2010)
and have lower intrinsic excitability (Gertler et al., 2008), applying the
same background input to both populations would lead to a silent D1-
MSN population. To avoid this, we apply a higher background input to
D1-MSNs (Bahuguna et al., 2015), but tuned such that the average fir-
ing rate of D1-MSNs is less than that of the D2-MSN population. The
firing rates of the Poisson processes and the synaptic strength of the
spikes arriving at D1- and D2-MSNs are listed in Table 1.

Simulation

All the simulations were carried out using NEST version 2.12.0 (Kun-
kel et al., 2017) with a simulation resolution of 1 ms.

Virtual robot

The robotic simulation was carried out using the robotic simulator
Gazebo (http://www.gazebosim.org) and the Robotic Operating Sys-
tem (ROS) (http://www.ros.org/) on the Pioneer3AT (http://www.mo
bilerobots.com/ResearchRobots/P3AT.aspx) robotic platform. To
interface the neural network simulation in NEST with the robotic
simulation in Gazebo, we used the ROS-MUSIC Toolchain (Djur-
feldt et al., 2010; Weidel et al., 2016).
In the striatal model, two specific neighboring channels in each

hemisphere were chosen to represent the basic movements ‘turn left’
and ‘turn right’. All other channels have no behavioral effect in this
study, but enable us to investigate the effects of distance dependent
connectivity. The Pioneer3AT platform can be steered by applying a
linear velocity v (m/s) and an angular velocity h (rad/s). ROS and
Gazebo automatically transform the linear velocity and angular
velocity into torques which are applied to the four motors of the
robot. However, the angular velocity must be chosen in the range
[�p, p] rad/s, and to ensure a stable movement of the robot we
decided to limit the maximal linear velocity to 2 m/s. In order to
transform the spiking neural activity of the regarding channels to a
valid command for the Pioneer3AT, we first estimate the instanta-
neous population firing rate f D1 and f D2 of the corresponding neu-
rons by convolving their spike trains with an exponential filter
(s = 200 ms). In a second step we defined the two basic actions of
turning left and right, a1 and ar, respectively.

al ¼ Sig
SD1
ND1

f D1r � SD2
ND2

f D2r

� �
ð1Þ

ar ¼ Sig
SD1
ND1

f D1l � SD2
ND2

f D2l

� �
ð2Þ

where ND1 and ND2 are the number of D1 and D2 neurons,
Sig(x) = 2/(1 + e�4x+4) is a sigmoid function limiting the variables
to the allowed range, and S (2.0 for D1 and 0.4 for D2) are scaling
constants giving more weight to D1 neurons to compensate for their
low firing rate. The velocity and rotation applied to the robot are

v ¼ al þ ar
2

ð3Þ

h ¼ al � ar ð4Þ

Experimental paradigms

We perform two kinds of experiments with this neuronal network/vir-
tual robotic set-up. Firstly, we validate the use of non-monotonic

distance dependent connectivity profile as used in Table 1 by repro-
ducing an experiment carried out by L�opez-Huerta et al. (2013). The
details of this experiment are described in the following subsection
Validating the network connectivity profile. Secondly, we examine the
behavior of our robotic setup by emulating key optogenetic experi-
ments that unilaterally or bilaterally inhibit/excite D1- and/or D2-
MSNs (Kravitz et al., 2010; Tecuapetla et al., 2014). Additionally,
we perform further experiments with novel stimuli that can currently
only be carried out in our virtual set-up. We describe the details of
these experimental parameters in Behavioral experiments.

Validating the network connectivity profile

To validate our choice of network connectivity profile, we reproduce
an experiment carried out by L�opez-Huerta et al. (2013), in which a
striatal slice is subjected to antidromic stimulation in control condi-
tions and in the presence of GABA antagonist. The analysis of dis-
tances between the neurons stimulated during the two conditions
can be used to estimate the underlying network connectivity profile.
Here, we compare the distance distribution of stimulated neurons for
two possible network connectivity profiles: monotonic and non-
monotonic with respect to distance.
All the neurons were stimulated with a current injection of

140 pA in control conditions (at 5 s) and in the presence of a simu-
lated GABA antagonist (at 15 s) for 200 ms. The effect of the
GABA antagonist was implemented by reducing the strength of all
the inhibitory connections (JD1 ? D1, JD1 ? D2, JD2 ? D1, JD2 ? D2)
to 20% of their initial values. The neurons in the in-vitro experiment
by L�opez-Huerta et al. (2013) exhibit a very low spontaneous acti-
vation. We simulate this condition by reducing the background input
to 25% of its original value, leading to a very reduced population
firing rate.
The monotonically decreasing distance dependent kernel is imple-

mented by scaling the average connectivities listed in Table 1 as fol-
lows: kwithin = 3.4, knear = 1.2, and kfar = 0.3. The non-
monotonically decreasing distance dependent kernel is implemented
by scaling the average connectivities as shown in Table 1:
kwithin = 1.2, knear = 3.4, and kfar = 0.3. To enable comparison with
the data presented in L�opez-Huerta et al. (2013), we assume a dis-
tance between channels in our model of 40 lm.

Behavioral experiments

We defined a series of manipulations, listed in Table 2, to perform
on our neuronal network/virtual robotic set-up to emulate key opto-
genetic experiments carried out by Kravitz et al. (2010) and Tecua-
petla et al. (2014). The ‘No stim’ condition, in which the network
receives only the background noise as described in Sec. Background
input, is used as a control; all other experiments are implemented as
current injections to specific neuron populations in addition to the
background noise. If not stated otherwise, all experiments have a
duration of 20 s with the current injection starting at second 5 and
lasting for a duration of 10 s.
The bilateral D1 stimulation as used in Kravitz et al. (2010) is

implemented by injecting an excitatory current into D1 neurons of
all 36 channels as well as both the hemispheres. Similarly bilateral
D2 stimulation Kravitz et al. (2010) was simulated by injecting an
excitatory current into D2 neurons of all channels and both the
hemispheres. In paradigm ‘Unilateral D1D2 inh’, the whole left
hemisphere was inhibited by inhibiting both D1 and D2 neurons of
all channels in the left hemisphere (Tecuapetla et al., 2014). In
‘Unilateral D1 inh’, an inhibitory current was injected into D1
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neurons of all channels of the left hemisphere (Tecuapetla et al.,
2014). Similarly in ‘Unilateral D2 Inh’, an inhibitory current was
injected into D2 neurons of all channels in the left hemisphere
(Tecuapetla et al., 2014). Kravitz et al. (2010) also reports unilateral
excitation of D1- or D2-MSNs. In order to implement ‘Unilateral
D1 Exc’, an excitatory current was injected in D1-MSNs of the left
hemisphere. Similarly, in ‘Unilateral D2 Exc’, an excitatory current
was injected in D2-MSNs of the left hemisphere.
In contrast to the global stimulation in the experiments mentioned

so far, we also designed novel paradigms in which only specific
channels are stimulated (see Table 3). Whereas the previously
described experiments model optogenetic stimulation, for the specific
channel stimulation we consider a scenario in which the striatum is
receiving a sequence of commands from cortex. Thus, we model the
input as excitatory Poissonian spike trains rather than the direct cur-
rent used above. In the experiment ‘Sequences D1’ we activated the
D1-MSNs of channel ‘turn right’ in the left hemisphere followed by
an activation of D1-MSNs of channel ‘turn left’ in the right hemi-
sphere (both for 5 s). In ‘Sequences D2’, we performed an equivalent
experiment where we stimulated D2-MSNs instead of D1-MSNs. In
the experiment ‘Sequences D1D2’ we proceeded similarly to
‘Sequences D1’ but targeted both cell types. These experiments allow
the D1- and D2-MSNs firing rates to be calculated during stimulation
and without stimulation. All three ‘Sequences’ are repeated five times
for different random seeds to average the results across different net-
work instances as well as different initial conditions of the network
dynamics. Lastly, in the experiment ‘Competing Actions’ we stimu-
lated channels ‘turn left’ and ‘turn right’ of both hemispheres simul-
taneously between seconds 2 and 18.

Analysis of neural activity and trajectories

For each of the behavioral experimental paradigms detailed above,
the spiking activity of the network and the ROS odometry data of
the virtual robot were recorded, and analyzed as follows.

Time dependent activity

The instantaneous firing rate for D1- and D2-MSNs was calculated
by binning their activity with a bin size of 200 ms, individually for
each channel as well as for the activity pooled over all D1-MSNs
(D2-MSNs) for a hemisphere.

Simulation times

All the mean rate activity and trajectories were recorded from simu-
lations of 20 s duration. The correlation measures, unless specified,
were calculated on a longer simulation time of 200 s.

Correlations

The spike trains were convolved with an exponential filter of
300 ms and the correlations were calculated between the filtered
spike trains. The time constant of 300 ms corresponds to the decay
dynamics of the intracellular calcium transients for GCaMP6f as
measured by Klaus et al. (2017). To calculate correlation his-
tograms with respect to spatial distances, 500 neurons were ran-
domly chosen and their filtered spike trains were correlated
(250 000 neuronal pairs) with Pearson’s correlation coefficient mea-
sure. The distances between the neurons are taken to be the distance
between their originating channels and were calculated as the Eucli-
dean distance between channel co-ordinates in a (6,6) grid with
wrapped edges. We divided the correlations into three categories: (i)
Within channel: neuronal pairs that belong to the same channel. (ii)
Near channel: neuronal pairs that belong to neighboring channels.
(iii) Far channel: neuronal pairs exceeding the distance of neighbor-
ing channels.
For some experiments, the filtered spike train of every 5th neuron

was correlated to show the correlation coefficients for individual
neurons within and between channels. Correlation coefficients were
calculated during two phases: (i) no stimulation, i.e. when the net-
work did not receive any external stimulation except the background
noise (ii) stimulation determined by the experimental paradigm e.g.,
bilateral D1 stimulation (see Sec. Experimental paradigms).

Instantaneous correlation of population average trace

The population activity of D1- and D2-MSNs was filtered using an
exponential kernel with a time constant of 300 ms. The instanta-
neous correlation coefficient between the filtered activities was cal-
culated within a sliding window. Two window sizes were used: (i)
A window size shorter than the stimulation time (0.3 9 stimulation
time) (ii) A window size longer than the stimulation time (1.2 9

stimulation time). This analysis was performed for a simulation of
20 s.

Table 2. Experimental paradigms

Paradigm
Left-hemis
(D1)

Left-hemis
(D2)

Right-
hemis (D1)

Right-
hemis (D2)

No stim – – – –
Bilateral D1 115 pA – 115 pA –
Bilateral D2 – 160 pA – 160 pA
Unilateral D1D2 inh �175 pA �100 pA – –
Unilateral D1 inh �175 pA – – –
Unilateral D2 inh – �100 pA – –
Unilateral D1 Exc 125 pA – – –
Unilateral D2 Exc – 110 pA – –

Table 3. Novel experimental paradigms and behaviors

Paradigm Left-hemis (D1) Left-hemis (D2) Right-hemis (D1) Right-hemis (D2)

Sequences D1 300 spks/s to channel ‘turn right’
for 5 s

– 300 spks/s to channel ‘turn left’
for 5 s

–

Sequences D2 – 120 spks/s to channel ‘turn right’
for 5 s

– 120 spks/s to channel ‘turn left’
for 5 s

Sequences
D1D2

300 spks/s to channel ‘turn right’
for 5 s

150 spks/s to channel ‘turn right’
for 5 s

300 spks/s to channel ‘turn left’
for 5 s

150 spks/s to channel ‘turn left’
for 5 s

Competing
actions

250 spks/s to channel ‘turn left’
and ‘turn right’ for 16 s

200 spks/s to channel ‘turn left’
and ‘turn right’ for 16 s

250 spks/s to channel ‘turn left’
and ‘turn right’ for 16 s

200 spks/s to channel ‘turn left’
and ‘turn right’ for 16 s
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Results

Network connectivity profile of the striatal network

Our striatal model incorporates a non-monotonic connectivity pro-
file. There is already empirical evidence for this, see for example
Fujiyama et al. (2011), which is a Sholl analysis of dendrites of the
striatal neurons. To check that this is an appropriate profile for our
modeling work, we perform an additional experiment based on the
findings reported by L�opez-Huerta et al. (2013). In this study, a stri-
atal slice was antidromically stimulated via the striatofugal axons in
control conditions and in the presence of a GABA antagonist. In the
presence of a GABA antagonist, the same stimulus recruited more
neurons due to the decrease in striato-striatal lateral inhibition.
Moreover, the distribution of distances between the neurons
recruited by the stimulus after the application of the GABA antago-
nist and their nearest neighbors during control conditions displays a
non-monotonic distribution (L�opez-Huerta et al. (2013 - Fig. 6).
We hypothesize that this is an indirect measure of the striatal dis-

tance dependent connectivity. We therefore replicate the above
experiment with two connectivity profiles: (i) connectivity decreas-
ing monotonically with distance. (ii) connectivity peaking at some
non-zero distance from the center, according to the kernel shown in
Fig. 1, as described in Sec. Network model of the striatum.
To evaluate the choices of connectivity kernel, we first define co-

active neurons as all the neurons that are active during the bout of
stimulation. The neurons that are recruited by stimulus only after
the application of GABA antagonist (and not during the control) are
isolated and the distance to their nearest neighbors under control
conditions (neurons that were recruited by stimulation without the
GABA antagonist) are calculated. This experiment is repeated for
five trials with different random seeds, hence averaging the results
over five different network instances.

The results of the experiment are shown in Fig. 2. The network
activity, shown in Fig. 2A for the non-monotonic kernel, is quali-
tatively similar for both profiles: the stimulus after GABA antago-
nist application recruits more neurons than it did during the
control, due to the decrease in lateral inhibition. This is also
reflected in the relative number of co-active neurons during the
two states (Fig. 2B), which is similarly insensitive to the choice of
connectivity profile.
However, the distribution of the distances between the neurons

recruited by the stimulus after GABA antagonist application and
their nearest neighbors in control condition follow the corresponding
connectivity profiles for monotonic and non-monotonic connectivity
kernels. In order to improve the comparability to L�opez-Huerta
et al. (2013) we down-sampled the recorded neural data to 500 neu-
rons per trial. For the monotonic kernel, the nearest neighbors are
most likely to be within the channels, as the connectivity is highest
there, yielding a peak at channel distance zero and decreasing with
increasing channel distance (Fig. 2C). In contrast, for the non-mono-
tonic kernel, because the neurons that were released from inhibition
after GABA antagonist application most likely belong to the nearby
channels (due to the highest connectivity), the peak is shifted to the
channel distance 1.0 (�40 lm). This distribution bears a close
resemblance to the distribution shown in L�opez-Huerta et al. (2013),
suggesting that the coarse distance dependent connectivity in the
striatum is non-monotonically shaped.
Moreover, this non-monotonic connectivity profile has also been

shown to exhibit a larger repertoire of spatio-temporal dynamics
ranging from spatially homogenous asynchronous irregular (AI) to
spatially localized stable activity bumps as compared to the mono-
tonically shaped kernel (Spreizer et al., 2017). Consequently, we
use the non-monotonic connectivity kernel detailed in Table 1 for
the rest of our study.

Fig. 2. Distribution of distances between neurons recruited by stimulus and their nearest neighbors in control conditions and after application of GABA antago-
nist. (A) More neurons (marked as red dots) are recruited by the stimulus after application of GABA antagonist (stimulus at 15 s) as compared to control condi-
tions (stimulus at 5 s). (B) Number of co-active neurons for monotonic (blue) and non-monotonic connectivity kernel (red) in control conditions and in the
presence of GABA antagonist. (C) The distribution of distances between the neurons recruited after GABA antagonist and their nearest neighbors in control
conditions for monotonic (blue) and non-monotonic (red) connectivity kernels. These results are averaged over five trials, shaded areas indicate one standard
deviation.
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Unilateral and bilateral stimulation

In order to use our neuronal network/virtual robot model to investi-
gate co-operation and competition in the striatum, it is first neces-
sary to establish whether it adequately reproduces experimental
findings on the behavioral level. We therefore repeated, using our
model, all the experimental paradigms reported in Kravitz et al.
(2010) and Tecuapetla et al. (2014) (see Table 2 and Sec. Experi-
mental paradigms), in which either D1- or D2-MSNs were optoge-
netically activated or inhibited. Additionally, we performed one
control experiment ‘No stim’ where the network only received back-
ground stimulation.
For each paradigm, we recorded the average population activity

of D1- and D2-MSNs in left and right hemispheres and the trajec-
tory of the robot. These results are displayed in Fig. 3. We also
recorded the activity of every channel in both hemispheres and for
all stimulation paradigms (data not shown). The trajectory in
Fig. 3A is the reference trajectory for the control experiment, where
the network only received background stimulation. Note the varying
speed of the virtual robot: each section between two circular mark-
ers represents one biological second. The inset in the trajectory
shows the time dependent angular velocity of the robot which are
marked as ‘L’ (left turns) for positive values and ‘R’ (right turns)
for negative values, note these insets are not shown to the same
scale.
In all other experiments, optogenetic stimulations were simulated

as current injection to specific populations of neurons (see Sec.
Experimental paradigms and Table 2) starting at t = 5 s with a
duration of 10 s. Within this duration, the stimulated neurons of the
targeted hemisphere show higher or lower activity, depending on
whether the stimulation paradigm was excitatory or inhibitory in nat-
ure. This can be clearly observed in the total population activity,
which we assume to be representative of the signal recorded during
experiments, as it is currently difficult to localize the relevant func-
tional unit for a specific behavior and record it in a targeted fashion.
The total population activity during all global stimulation paradigms
qualitatively match the activity shown in the corresponding experi-
ments (Kravitz et al., 2010; Tecuapetla et al., 2014).
Figure 3B shows the robot trajectory for bilateral D1 stimulation,

for which Kravitz et al. (2010) reports increased, non-specific ambu-
lation. In this condition, all D1 neurons of both the hemispheres
receive external stimulation, resulting in an increased input to both
the motors of the robot. Correspondingly, the robot trajectory indi-
cates increased rotation and movement – the distance between red
circular markers (stimulation present) is greater than between gray
circular markers (stimulation absent). Note also the differing scales
between Fig. 3A and B.
A bilateral D2 stimulation was reported to induce freezing by

Kravitz et al. (2010). In contrast with the previous condition, in our
model this stimulation blocks input to both the motors, thereby
restraining any kind of movement. Figure 3C illustrates the halting
behavior of the robot – distances between the red circular markers
are short, or the markers are on top of each other. A video of the
robot trajectory for this experiment can be seen in Video S1 in the
Supporting information. Tecuapetla et al. (2014) showed that both
unilateral inhibition of the left hemisphere and inhibition of D1-
MSNs in the left hemisphere result in ipsilateral rotations. In our
set-up, we reproduce the former condition by applying an inhibitory
current to both D1- and D2-MSNs of the left hemisphere, and the
latter by inhibiting just the left D1-MSNs. Both manipulations have
the effect that there is no input from D1-MSNs to the left motor
during stimulation; the robot trajectory is modulated by right motor

only. The robot trajectories, shown in Fig. 3D and E, respectively,
exhibit corresponding turns to the left.
According to observations from the same study, a strong unilat-

eral inhibition of D2-MSNs should lead to a contralateral rotation.
Our model is able to replicate this and shows a contralateral rotation
(Fig. 3F). This is due to disproportionately higher input that the left
motor receives from the left hemisphere when the D2-MSNs in the
hemisphere are inhibited. This behavior is also consistent with other
studies which have shown that targeted ablation of D2-MSNs in
mice indeed leads to contralateral rotations (Hikida et al., 2010;
Sano et al., 2013). However, unilateral inhibition of fewer D2-
MSNs (~30%) results in an ipsilateral rotation (Tecuapetla et al.,
2014) which we cannot reproduce with this current model. This
issue is further discussed in Sec. Limitations.
Finally, Kravitz et al. (2010) reports contralateral rotation for uni-

lateral excitation of D1-MSNs and ipsilateral rotation for unilateral
excitation to D2-MSNs. In our set-up, excitation of D1-MSNs in the
left hemisphere results in stronger motor input to the left motor,
hence leading to right turns (Fig. 3G). Conversely, excitation of D2-
MSNs of the left hemisphere results in stronger input to the right
motor, leading to a left turn (Fig. 3H). A video of the trajectory of
the robot for unilateral D1 excitation is shown in Video S2 in the
Supporting information.
These results show that our model is able to reproduce the key

behavioral features of all but one of the optogenetics experiments,
namely ipsilateral rotation for unilateral inhibition of a reduced num-
ber of D2-MSNs. We thus conclude it is well-suited for exploring
hypotheses on cooperation and competition within the striatum.

D1-MSNs and D2-MSNs show concurrent activation on a
single channel level

In order to explore the hypothesis that D1- and D2-MSNs are antag-
onistic on a single channel level but show concurrent activation on
the population level, we designed and simulated sequence paradigms
that emulate the selective stimulation of neurons that belong to a
certain action, or channel in our case (see Sec. Experimental para-
digms and Table 3). Unlike the global unilateral or bilateral stimula-
tions investigated in the previous section, in these experimental
paradigms individual channels are sequentially stimulated to induce
a sequence of actions. The results of these experiments are shown in
Fig. 4.
In the paradigm ‘Sequences D1’ we sequentially stimulate D1-

MSNs with an excitatory input, first ‘turn right’ (in left hemisphere
– first panel) for 5 s and then ‘turn left’ (in right hemisphere – sec-
ond panel) for 5 s (see Fig. 4A). As expected, a clear increase is
observed in the population activity of the left hemisphere D1 neu-
rons for the first half of the stimulation (and in the right hemisphere
for the second). Correspondingly, the robot performs first right turns
for the first stimulation period and afterwards left turns.
As can be observed, only the D1-MSNs in the relevant channel

(‘turn right’) show activation during stimulation, whereas the activ-
ity in other channels remain low. The population activity also
shows an increase in D1-MSNs activity whereas the population
activity of D2-MSNs does not show any distinguishable change in
response to the stimulation. We then calculated the average activity
of D1- and D2-MSNs in the stimulated channel in the absence and
presence of stimulation. The results are shown in the right most
panel of Fig. 4A. According to the hypothesis of antagonistic
behavior within the channel, we expect a suppression of D2-MSNs
within the stimulated channels. Interestingly, it turns out that D1-
and D2-MSNs show concurrent activation within the channel i.e., in
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addition to the expected clear increase in activity of D1-MSNs
when the external stimulus is applied, the average activity for the
corresponding D2-MSNs also increases in both left and right hemi-
spheres.
This unexpected effect is due to relatively sparser connectivity

within the channel and high connectivity with the channels nearby.
The increased activity in D1-MSNs inhibits the D1- and D2-MSNs
in the near channels more strongly than the ones within the channel.
Due to a decrease in the activity of nearby D2-channels, the D2-
MSNs within the stimulated channel are released from inhibition
and hence show an increase in the activity.
We also checked whether the converse was true, i.e. whether a

stimulation of D2-MSNs can induce an activation of D1-MSNs in

the same channel. We repeated the experimental paradigms as
described above for D2-MSNs (‘Sequences D2’ in Table 3). The
spiking activity and trajectory are shown in Fig. 4B, and the com-
parison of D1 and D2 activity in the stimulated and background
condition can be seen in Fig. 4B. The corresponding trajectory
shows weak ipsilateral turning on D2-MSNs stimulation (first left
followed by right) which is consistent with behavioral experiments
in Fig. 3H. We observe that D1-MSNs within the channel indeed
increase their activity in response to stimulation of the channel D2-
MSNs. The explanation for this effect is analogous. The increase in
D2-MSNs activity within a channel inhibits the neighboring D2-
MSNs and D1-MSNs more strongly, hence disinhibiting the D1-
MSNs within the channel.

Fig. 4. Spiking activity and trajectory for the sequences experiments, see Table 3. The first panel shows the time binned activity in nine channels (‘turn left’ –
green frame; ‘turn right’ – orange frame) and the population activity (D1 – black; D2 – blue) in the left hemisphere. The second panel shows the corresponding
data for the right hemisphere. The third panel shows the resulting robot trajectory. Inset shows the instantaneous angular velocity as in Fig. 3; white gaps indi-
cate the pause in stimulation. The last panel shows the activity of D1 (black markers) and D2-MSNs (blue markers) averaged over the 5 s of stimulation and
no stimulation. The left hemisphere is indicated by solid lines and circular markers, the right hemisphere by dashed lines and square markers. The experiment
was repeated five times and each marker represents the activity during one trial (with different random seeds). (A) experiment ‘Sequences D1’. (B) experiment
‘Sequences D2’. (C) experiment ‘Sequences D1D2’.

Fig. 3. Total population activity and trajectories of the robot for global stimulation paradigms. Left panel shows the total activity of the D1 (black) and D2
(blue) neurons in left and right hemispheres (marked as L and R, respectively). Right panel shows the corresponding trajectory of the robot, starting at the green
star. Each trajectory section between two markers corresponds to one biological second. Red circles indicate the presence of the experimental stimulus; gray cir-
cles indicate no experimental stimulus. Insets show instantaneous angular velocity; in the green (orange) area the robot is turning to the left (right). Note the dif-
fering scales for firing rate and trajectory between the panels. (A) No stimulation (B) Bilateral D1 stimulation (C) Bilateral D2 stimulation (D) Unilateral
inhibition of left hemisphere (E) Unilateral D1 inhibition (F) Unilateral D2 inhibition (G) Unilateral D1 excitation (H) Unilateral D2 excitation.
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External input to both D1-MSNs and D2-MSNs in the channel
required for population level increase in activity

The distance dependent connectivity ensures a concurrent activation
of both D1- and D2-MSNs within a channel, even if only of them is
stimulated. This increase in activity, however, is not substantial
enough to be visible on the entire population level, as recorded in
Cui et al. (2013), who showed an increase in activity of both D1-
and D2-MSNs on the population level. As can be observed in
Fig. 4A and B, an activity increase on the population level is only
visible for stimulated neurons.
We therefore designed a new paradigm, in which we provided exci-

tatory stimulation to both D1- and D2-MSNs within a channel
(‘Sequences D1D2’ in Table 3). The stimulation was greater to D1-
MSNs to ensure a net positive input to the motors, enabling move-
ment. The results of this experiment can be seen in (Fig. 4C). The tra-
jectory for this experiment is similar to the one for the experiment
‘Sequences D1’, i.e. right turn for the first half of stimulation followed
by left turns for the rest of the stimulation, whereas the spiking activity
shows an increase in the activity of both D1- and D2-MSNs within the
channel ‘turn left’, but also on the population level.
An external stimulation to both D1 and D2 is also consistent with

the observations that both D1- and D2-MSNs receive external input
(e.g. from cortex) during action execution.

Competition originates in D2–D2 connections

If D1- and D2-MSNs are indeed co-activated during action selection,
the question remains as to whether their individual roles should be
considered as co-operative or antagonistic. To address this issue, we
performed another experiment called ‘Competing Actions’ (see
Table 3 for details). In this experiment, the D1- and D2-MSN of the
neighboring channels ‘turn left’ and ‘turn right’ are simultaneously
stimulated in both hemispheres with equal strength. This is to mimic
competing action plans, as may occur, for example, in an untrained
animal performing a two-choice task such as a T-Maze. The popula-
tion activity during stimulation for D1- and D2-MSNs for both chan-
nels was filtered and mean corrected and is shown in Fig. 5A, and
the trajectory of the simulated robot in Fig. 5B. The competition in
the striatal network of both hemispheres results in a switching activ-
ity between the two actions ‘turn left’ and ‘turn right’. We determine
the ‘winning channel’ within a hemisphere by comparing the D2
activities of both channels within a sliding window of 250 ms (see
color bars of the hemispheres in Fig. 5A). It can be observed that
there is a strong competition between the channels within the hemi-
spheres and there are clear winners (few gray areas). An overlap of
winning channels in both hemispheres determines the selected action
(see ‘selected action’ in Fig. 5A), which can also be observed in the
trajectory of the robot. The competition between the channels is also
reflected in strong negative D1–D1 and D2–D2 correlations between
the two competing channels (left violins in Fig. 5E and F). In con-
trast, the mean activity of D1- and D2-MSNs is not opposing within
a single channel, but rather shows strong positive correlation (left
violins in Fig. 5G and H) which is consistent with our earlier obser-
vation that D1- and D2-MSNs co-operate on a single channel level.
To investigate the source of the competition between the channels,

we repeated the experiment having severed the D2–D2 connections
(set the synaptic weight to zero) between the two channels. In this
condition, the competition between the channels is impaired, which
can be observed in the color bars in Fig. 5C. Here, there are more
gray areas visible, indicating that for much of the time, no channel
emerged as a clear winner. Additionally, the average activity of D2-

MSNs increases leading to nearly no movement of the robot (com-
pare Fig. 5B and D). The D1–D2 correlations within the channels are
now mildly negative (right violins in Fig. 5G and H), whereas D1–
D1 and D2–D2 correlations between the channels are much less nega-
tive, or even positive (right violins in Fig. 5C and D).
Our model implies that although the D1- and D2-MSNs are

antagonistic on the motor level of the robot, both neuron types are
needed for action selection in the striatum. D1-MSNs are required
for initiating the desired action while D2-MSNs are responsible to
suppress all other competing motor plans. See Sec. Implications for
striatal representations of an action for a detailed discussion of the
implications of this result.

Relationship between D1- and D2-MSNs depends on spatial
distance and temporal scale

In the following, we explore how the relationship between D1- and
D2-MSNs depends on their spatial location as well as on the pres-
ence/absence of external stimulation. We measured correlations at
zero-lag among individual D1-MSNs (D1–D1), D2-MSNs (D2–D2)
and between D1- and D2-MSNs (D1–D2) at different spatial dis-
tances. For this correlation analysis, the transients in the neural
activity during the beginning and end of the stimulation phase are
excluded. We base our analysis on the assumption that negative cor-
relations between D1- and D2-MSNs indicate an antagonistic rela-
tionship, whereas positive correlations indicate a co-operative
relationship. We discuss the effects of spatial and temporal condi-
tions separately in the following sections.

Correlations with respect to spatial distances

Modulation of neuronal pairwise correlations by stimulus depends
on their spatial distance

We measured the Pearson’s correlation coefficient for 500 randomly
picked neurons (250 000 neuronal pairs) and separated the neuronal
pairs into three groups depending on the spatial distance, i.e. within
channel, neighboring channel and far channel (see Sec. Material and
Methods). All experimental paradigms have two phases: no stimula-
tion and external stimulation; the correlation coefficients were calcu-
lated separately for these two time periods. Because the experimental
paradigm ‘No stim’ does not have a stimulation phase, the neuronal
activity was separated based on the stimulation times of other para-
digms as a control. The correlation coefficients for the stimulation
phase were binned and are plotted as histograms in Fig. 6.
The correlation histograms for the experimental paradigm ‘No

Stim’ are shown in Fig. 6A. In this case all correlations are predom-
inantly negative. However, D1–D1 and D2–D2 correlations show an
additional positive peak at 0.6 for neuronal pairs within a channel.
Pairs of neurons between neighboring channels are more negatively
correlated compared to within and far channels.
The global stimulation paradigms ‘Bilateral D1’, ‘Bilateral D2’,

and ‘Unilateral D1 Exc’ enhance this trend (Fig. 6B–D). The within
channel correlations become predominantly positive while near
channel correlations shift further to negative values. It should be
noted that although D1–D1 and D2–D2 correlations have been mea-
sured in experiments (Barbera et al., 2016; Klaus et al., 2017), D1–
D2 correlations have not yet been reported. Our model predicts that
the spatial structure for D1–D2 correlations follows the same trend
as D1–D1 and D2–D2 correlations.
Our observation that within channel neurons show higher positive

correlations is consistent with Klaus et al. (2017) and Barbera et al.
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(2016), where they show that neurons situated close by show signifi-
cantly higher covariance in their activity as compared to other neu-
ron pairs. However, going beyond the findings reported in those
studies, our model exhibits strong negative correlations between the
nearby channels, resulting from the strong connectivity and inhibi-
tion between the nearby channels. This issue is discussed in detail
in Sec. Limitations.

Global and competing stimulation paradigms result in spatial
patterns in the correlation structure

The pairwise correlation coefficients calculated in the previous sec-
tion were separated in terms of spatial distances, rather than on the

basis of individual channels. Consequently, the analysis reveals large
deviations in the distribution of correlation coefficients, but not the
changes in correlations on a single channel level. In order to investi-
gate the change in correlations locally, we measured the correlations
of all neuronal pairs within a channel as well between the channels.
For computational feasibility and ease of visibility, every 5th neuron
in a channel was used for this analysis. The correlation coefficients
were calculated among the D1-MSNs, D2-MSNs and between D1-
and D2-MSNs. These correlation matrices are shown in Fig. 7.
Figure 7A shows the correlations for the network during the no

stimulation condition as a reference. The correlations for D1–D1 and
D2–D2 along the diagonals represent the positive correlations for neu-
rons within a channel as previously observed in Fig. 6. In contrast,

Fig. 5. (A) Mean corrected activity traces during stimulation of channels ‘turn left’ and ‘turn right’ in both hemispheres in the experiment ‘Competing
Actions’. Color bars indicate the winning channel in each hemisphere in a 250 ms sliding window. Orange areas indicate that the D2-MSNs activity is higher
in the ‘turn right’ than in the ‘turn left’ channel, green areas indicate that ‘turn left’ is the winner, gray areas indicate no clear winner in that period. Color bar
at the top of the panel indicates the selected action when both hemispheres are in agreement. (B) Trajectory of the simulated robot. Numbered positions corre-
spond to those in (A). (C) As in (A), but with D2–D2 connections between channels severed. (D) Trajectory of the simulated robot without D2–D2 connections.
(E) Correlation coefficient of the mean activity of D1 and D1 neurons between the channels. (F) as in (E) but for D2–D2 correlations. (G) Correlation coeffi-
cient of the mean activity of D1 and D2 neurons within the channel ‘turn left’. (H) as in (G) but for channel ‘turn right’.
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neuronal D1–D2 pairs (Fig. 7A – right column) show neither strong
positive nor negative correlations on a single channel level.
During a global stimulation such as ‘Bilateral D1’, these correla-

tions are strongly modulated as shown in Fig. 7B. As all D1-MSNs
are stimulated in this paradigm, the D1–D1 correlations shows
strong modulation; the D1-MSN sub-network self-organizes into a
checkerboard pattern with channels firing in co-operation (positive
correlations) and in competition (negative correlations). This effect
is due to the distance-dependent connectivity: channels nearest to
stimulated channel receive strong inhibition, and thus disinhibit their
neighboring channels. The D1-stimulation also indirectly modulates
the D2–D2 correlations and D1–D2 correlations in a similar pattern.
The same pattern of correlations, but focused on the D2-MSN sub-
network, is observed for the ‘Bilateral D2’ paradigm (Fig. 7C).
In the paradigm ‘Competing Actions’ (Fig. 7D), the D1- and D2-

MSNs of two neighboring channels are stimulated simultaneously,
emulating a competition between two actions. Interestingly, the
checkerboard correlation patterns that emerge are similar to the glo-
bal stimulation paradigms such as bilateral D1 and D2 stimulation,
albeit concentrated on a local area. No such pattern could be
observed for single channel stimulations such as ‘Sequences D1D2’
(data not shown). This suggests that global stimulation paradigms
like bilateral D1 stimulation is qualitatively similar to the ‘Compet-
ing Actions’ paradigm, but on a global scale. This also supports the
hypothesis that bilateral D1/D2 stimulation releases multiple compet-
ing motor programs simultaneously.

Correlations with respect to temporal scales

Here, we explore the instantaneous correlations between the popula-
tion activity of D1- and D2-MSNs in order to determine their depen-
dence on the presence/absence of stimulation.

Instantaneous D1–D2 correlations depend on window size and type
of stimulation

In order to measure the instantaneous correlations, we applied slid-
ing windows of two different sizes to the filtered activity traces of

D1- and D2-MSNs for several different experiments (see Sec.
Instantaneous correlation of population average trace). The shorter
window size was selected to be shorter than the stimulation period,
and the larger to be longer than it. As the experimental paradigm
‘No stim’ has no stimulation period, we apply the same window
sizes as for ‘Bilateral D1’. The motivation to consider two window
sizes relative to stimulation periods is to discover how the apparent
co-operation or competition depends on whether the stimulation is
considered as an unitary event against the background. The shorter
window detects instantaneous correlations on shorter time scales, i.e.
not only the on- and offset of stimulation, but also during the stimu-
lation period. The window size longer than stimulation period con-
siders the whole stimulation as a single event with respect to the
background.
The instantaneous D1–D2 correlations were calculated for these

two window sizes and repeated for five trials for each experimental
paradigm. The mean spiking activities and the means and standard
deviations of the instantaneous correlations are plotted in Fig. 8.
For the ‘No stim’ paradigm (Fig. 8A), we observe that although the

absolute values of D1–D2 correlations fluctuate, they remain reso-
lutely negative throughout the whole simulation for both window
sizes. The instantaneous correlations for shuffled versions of the activ-
ity remain at zero. This suggests that in the absence of external stimu-
lation, D1- and D2-MSNs compete on the level of population activity.
In the experimental paradigm ‘Bilateral D1’, shown in Fig. 8B,

the instantaneous D1–D2 correlations measured within a short win-
dow are negative for activity before, during and after stimulation.
However, they become more strongly negative during the on- and
offset of stimulation. This is due to the strong increase in D1 activ-
ity evoked by the stimulation and concomitant decrease in D2 activ-
ity. The D1–D2 correlations for the longer window size remain
strongly negative and show no such modulation. The instantaneous
correlations for the shuffled activity for both window sizes remain at
zero. A similar trend can be observed for bilateral D2 stimulation
(Fig. 8C). The competition between D1 and D2-MSNs at the popu-
lation level in the absence of stimulation is consistent with the pre-
vious observation in Fig. 5A. This competition is intensified at the

Fig. 6. The probability density functions of correlation coefficients for neuronal pairs situated within (black), near (orange), and far (blue) channels of the left
hemisphere. The correlation histograms were calculated during stimulation, except for (A), which is calculated for an equivalent period. Top row: D1–D1 corre-
lations. Middle row: D2–D2 correlations. Bottom row: D1–D2 correlations. (A) No stim. (B) Bilateral D1 stimulation. (C) Bilateral D2 stimulation (D) Unilat-
eral D1 stimulation.
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Fig. 7. Pairwise correlation coefficient for every 5th neuron in the left hemisphere, i.e. eight neurons shown per channel (marked as dashed grid lines). The
correlations are measured between D1-MSNs (left column), D2-MSNs (middle column) and between D1-MSNs and D2-MSNs (right column). The channel out-
lined in black represents ‘turn right’; channels marked in magenta represent the near channels to ‘turn right’. (A) No stim. (B) Bilateral D1 stimulation. (C)
Bilateral D2 stimulation. (D) Competing actions.
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on- and offset of the stimulation if only one of the population is
stimulated, as is the case in both of these paradigms (i.e. D1-MSNs
in ‘Bilateral D1’ and D2-MSNs in ‘Bilateral D2’). The larger win-
dow size suggests a constant strong competition between population
activities of D1 and D2-MSNs.
Lastly, during ‘Sequences D1D2’, the instantaneous D1–D2 corre-

lations measured using a short window size show a strong shift
towards positive values during on- and offset of stimulation
(Fig. 8D – red line in second panel). This is in line with the obser-
vations made by Barbera et al. (2016), where a concurrent increase
in D1- and D2-MSNs population activity was observed during
movement initiation and a concurrent decrease in activity was
observed at movement termination. During stimulation, however, the
D1–D2 correlations are strongly negative. This has yet to be
reported and hence is a prediction of this model. However, the lar-
ger window size is not able to detect negative values during stimula-
tion, but rather detects the entire stimulation period as an event of
increase in instantaneous D1–D2 correlations (Fig. 8D – orange line
in second panel). Hence, on shorter time scales, our model predicts
that the population activity of D1- and D2-MSNs co-operate at onset
and offset of stimulation but compete during stimulation. However,
on the longer time scales the paradigm ‘Sequences D1D2’ is
detected as an unitary event of co-operation against the background.
In summary, the population activity of D1- and D2-MSNs can

appear to co-operate or compete depending on the temporal scale

under observation, and whether the stimulation paradigm involves a
concurrent stimulation of both populations (e.g. ‘Sequences D1D2’)
or only one of them (e.g. ‘Bilateral D1’). Although a short external
stimulation of D1- and D2-MSNs (‘Sequences D1D2’) indicates co-
operation with respect to the background, their competition is revealed
during stimulation when observed on shorter time scales. This has
many implications, the minor and most obvious being that in order to
record instantaneous correlations correctly, the observation time win-
dow should be at least shorter than the stimulation time. More impor-
tantly, this raises the question as to what time scales the nuclei
downstream from the striatum detect and track correlations. It has
been shown that transfer of correlations from presynaptic to postsy-
naptic population depends on the size of the window in which they are
calculated (Pamela et al., 2011). Specifically, in this case, it will be
interesting to investigate how the D1- and D2-MSNs correlations are
transferred to the downstream nuclei such as GPe (where some D1-
MSNs may project along with majority of D2-MSNs) and GPi (where
the both pathways most definitely converge).

Discussion

In this study, we present a functional model that aims to bridge the
action-specific representations in the striatum, modeled by a spiking
neuronal network, to behavioral manifestations in a simulated robot.
The advantage of this approach is that D1- and D2-MSNs can be

Fig. 8. Dependence of instantaneous correlations on stimulus features and correlation window. Top panels: Mean spiking activity for D1- (black) and D2-
MSNs (blue); windows sizes used for measuring instantaneous correlations shown as overlaid rectangles. Bottom panels: Instantaneous correlations between the
population activities, colors corresponding to the boxes in the top panels, standard deviation indicated by shaded areas. The instantaneous correlations for shuf-
fled versions of the trace plotted as solid gray curves. (A) No stim. (B) Bilateral D1 stimulation. (C) Bilateral D2 stimulation. (D) Sequences D1D2.
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observed/manipulated on the single channel and population levels
whilst the effect of these manipulations can be observed as robot tra-
jectories. Hence, this framework is well suited to explore whether D1-
and D2-MSNs co-operate or compete during action selection.
We show that this model is able to reproduce on a behavioral level

all but one key finding from several optogenetically manipulated
experiments (Sec. Unilateral and bilateral stimulation). We also show
that D1- and D2-MSNs co-operate (showing co-activation) on a single
channel level. Concurrent activation on the population level can be
observed if D1- and D2-MSNs are simultaneously stimulated. In con-
trast, D1- and D2-MSNs of the neighboring channels compete
strongly, whereby the competition is largely modulated by the connec-
tion between D2-MSNs. (Sec. Competition originates in D2-D2 con-
nections). We also show that the correlation structure of the striatal
D1- and D2-MSNs depends on their spatial locations and the stimula-
tion paradigms. The neuronal pairs within a channel on an average
show higher positive correlations, whereas neuronal pairs in the neigh-
boring channels show strong negative correlations. Finally, the instan-
taneous correlations of the D1- and D2-MSNs population activity
depends on temporal scales on which this activity is observed (Sec.
Relationship between D1- and D2-MSNs depends on spatial distance
and temporal scale). Although we could reproduce many experimental
results, we see discrepancies in two results: firstly, unilateral inhibition
of a reduced number of D2-MSNs in our model does not show ipsilat-
eral rotations as reported by Tecuapetla et al. (2014). Secondly, in our
model, neighboring channels are negatively correlated, while experi-
ments show a gradual decrease in positive correlations with increased
distance between MSNs (Klaus et al., 2017).
The former discrepancy might be a result of several missing basal

ganglia nuclei in the model, and is discussed in more detail in Sec.
Limitations. The latter can be partially attributed to coarse distance
dependent connectivity structure (a more continuous form of dis-
tance dependent network has been explored in Spreizer et al.,
2017). Of course, we cannot exclude the possibility that there are
non-modeled features of the biological network which would have
significant effect on the correlation structure in the model. These are
discussed in Sec. Limitations.

Limitations

Tecuapetla et al. (2014) show that inhibition of a reduced number
of D2-MSNs lead to ipsilateral rotations. In our model, inhibiting
only a few D2-MSNs does not show clear results (data not shown).
However, in the same study Tecuapetla et al. (2014) report that with
a strong expression of opsins in D2-MSNs, and hence optogenetic
inhibition of a large number of D2-MSNs, the mice show contralat-
eral rotations. Our model is able to replicate this result (Fig. 3F).
This behavior is also consistent with other studies which also show
that targeted ablation of D2-MSNs leads to contralateral rotations in
mice (Hikida et al., 2010; Sano et al., 2013).
The reason behind this discrepancy is not understood, as also sug-

gested by Tecuapetla et al. (2014). It may be due to entrainment of
different basal ganglia downstream pathways and/or lateral striatal cir-
cuit elements during these two types of stimulations. Hence our model
does reproduce one aspect of the experiment (strong inhibition of D2-
MSNs) but fails to reproduce the other aspect (weaker inhibition of
D2-MSNs). This work only models the MSNs of striatal network and
not the other downstream nuclei of basal ganglia that are integral com-
ponents of ‘Go’ and ‘No-Go’ pathways. One way to overcome this
limitation would be to add the minimal basal ganglia circuit that is able
to replicate both behaviors (ipsilateral as well as contralateral rota-
tions) for different degrees of D2-MSNs inhibition.

Secondly, the neighboring channels in our model show strong
negative correlations, in contrast to experimental results that show a
gradual decrease in positive correlations with respect to neuronal
distances (Klaus et al., 2017). There might be many reasons for this
discrepancy in neuronal correlations, such as the role of fast spiking
interneurons (FSIs), short or long term plasticity between the striatal
units, spatio-temporal structure in the input (background and/or
external stimulus), or a combination of some of these factors.
In particular, the role of FSIs might be integral in shaping MSN-

MSN correlations. Although striatal FSIs are much fewer in number
than MSNs (�1–3% of the total striatal neurons), they provide
strong feed-forward inhibition to both D1- and D2-MSNs by form-
ing divergent projections to many MSNs (Tepper et al., 2004;
Humphries et al., 2010). FSIs are coupled by gap junctions, and
although they do not show synchronization on small timescales in
awake animals (Berke, 2008, 2011), they show co-ordinated activa-
tion during stages of behavioral tasks such as movement initiation
(Gage et al., 2010). Hence, the change in synchronization of FSI
activity could affect the correlations between the MSNs (Damodaran
et al., 2015; Corbit et al., 2016).

Future extensions

For the sake of simplicity, we assumed static synapses between the
striatal neurons. However, the model could be extended to include
short- and long-term plasticity, as has been reported for FSI-MSN
synapses as well as MSN-MSN connections (Tecuapetla et al.,
2007; Rueda-Orozco et al., 2009; Planert et al., 2010).
For similar reasons, the background input considered in our model is

uncorrelated Poissonian spike trains. However, background input under
in-vivo conditions is likely to exhibit spatio-temporal structure. Simi-
larly, we considered global stimulation in our model as a current injec-
tion and localized channel inputs as poisson spike trains. A more natural
input, however, might also have a specific spatio-temporal pattern and
influence the MSN-MSN correlations (Yim et al., 2011).
Our model of the striatum implements both hemispheres, but we

did not model inter-hemisphere interactions. The origin of this inter-
hemispherical co-ordination may well lie at a much earlier phase of
the motor program, i.e. at the cortico-cortical connections. Unilateral
tracing studies have shown significant projections from primary
motor cortex corresponding to forepaw region of a rat to the corre-
sponding area in the contralateral hemisphere (Alloway et al.,
2009). Although there are no interhemispheric connections on the
level of the striatum (Swanson et al., 2016), there is significant con-
tralateral cortico-striatal innervation from the motor cortex (Reig &
Silberberg, 2016). Our model could be extended to include inter-
hemispheric connections to explore their role in action selection.
Finally, it has been shown that cholinergic interneurons can also

significantly change the dynamical state of the striatal network
(McCarthy et al., 2011). An extension of the model could explore
the influence of cholinergic interneurons on the striatal dynamics.

Spatial extent of action encoding in striatum

In our model, by encoding one action per channel, we have by default
assumed a non-overlapping and spatially compact action encoding in
striatum as proposed by Barbera et al. (2016). However, an arrange-
ment suggested by Klaus et al. (2017) can be implemented by allowing
multiple channels to encode an action in overlapping fashion. The exter-
nal input should then stimulate all the channels encoding the action.
However, this raises interesting questions about the downstream map-
ping of the striatal representation of action. In our model, one possible

© 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
European Journal of Neuroscience, 49, 737–753

Role of D1/D2-MSNs in action selection 751



arrangement could be that all the channels encoding the action are
mapped to the relevant motor with equal weights. Alternatively, chan-
nels could be mapped to the motors with different weights, as could be
interpreted from Barbera et al. (2016), where different neuronal clusters
contributed to decoding a behavior state with different weights.

Implications for striatal representations of an action

It has been suggested that a striatal representation for an action (func-
tional unit or channel) should include both D1- and D2-MSNs, and that
both populations are needed for action selection: D1-MSNs facilitate
action execution while D2-MSNs suppress action execution (Gurney
et al., 2001a,b, 2015; Humphries et al., 2006; Bahuguna et al., 2015;
Lindahl & Kotaleski, 2016). One hypothesis proposed about comple-
mentary roles for D1- and D2-MSNs is the concept of D1–D2 hetero-
mers, where all MSNs either facilitate or suppress an action depending
on the form of synaptic plasticity they express at a certain moment
(Calabresi et al., 2014). Other studies propose that the global co-activa-
tion of both MSNs can be explained by D1- and D2-MSNs competing
within a channel and co-operating among the channels, i.e. D1-MSNs
of the desired action and D2-MSNs of all suppressed actions increase
in activity (Nelson & Kreitzer, 2014; Burke et al., 2017).
In contrast to the aforementioned hypotheses, we propose that the

global co-activation of D1- and D2-MSNs originates not in different
channels, but within one (or more) channel(s) representing the
desired action. Despite the lateral inhibition, suggesting a competi-
tion between D1-MSNs and D2-MSNs within a channel, they co-
operate by playing complementary roles during action selection. In
this co-operative tandem, D1-MSNs of a channel drive the action
execution while D2-MSNs of the channel suppress the competing
actions. This suppression is most effective between neighboring
channels due to high connectivity between them. Hence, this implies
that diametrically opposite actions are encoded by neurons situated
in neighboring channels, ensuring effective suppression of one when
the other is active. The suppression of the neighboring channels in
turn disinhibits their neighbors, hence allowing them to be recruited
for co-operation. This would therefore be a plausible location for
the representation of complementary actions.
The aforementioned functional units or channels are akin to the con-

cept of neuronal assemblies found in striatum during in vitro (Carrillo-
Reid et al., 2008; Carrillo-Reid et al., 2011) and in vivo during task-
related activity in primates (Adler et al., 2013) and in freely moving
mice (Barbera et al., 2016; Klaus et al., 2017). The generation of stri-
atal assemblies has been shown in striatal models with spatial connec-
tivity structure (Wickens et al., 1995; Humphries et al., 2009;
Spreizer et al., 2017) as well as with randomly connected networks
(Ponzi & Wickens, 2010; Angulo-Garcia et al., 2016). The channels
in our model consists of spatially local neurons in contrast to globally
distributed neurons in the other models (although see Spreizer et al.,
2017). The experimental data also shows that striatal neurons encoding
an action do show spatial bias (Barbera et al., 2016; Klaus et al.,
2017). We also note that the channels/assemblies in our model are
structurally pre-defined in terms of mapping the striatal activity to
low-level robotic motors. This assumption is consistent with the idea
that striatum, like cortex, follows a somatotopic organization (Nambu,
2011), which might further corroborate the hypothesis that an action
encoding in striatum may be biased towards locally situated neurons.
We emphasize that this reasoning applies strictly to only the striatal
encoding of a lower level limb (e.g. ‘turn left’ channel in striatum rep-
resents a mapping of the robot’s right motor). A higher level or more
complex action representation need not be limited to locally biased
assemblies. This prediction can be tested by adding more complex

actions to the robotic behavior (e.g. wall-follow) as described in Gur-
ney et al. (2006), albeit with the difference that all chunks of the
action sequence are represented in striatum. Such an approach could
be a fruitful source of insights into how striatum encodes complex
actions.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article:
Fig. S1. F-I curves for D1 and D2-MSNs for the neuron parameters
listed in Table 1.
Video S1. Video for experimental paradigm ‘Bilateral D2’ excita-
tion.
Video S2. Video for experimental paradigm ‘Unilateral D1 Exc’.
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