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A B S T R A C T

Among the 11 members of the secreted phospholipase A2 (sPLA2) family, group IID, IIE, IIF and III sPLA2s
(sPLA2-IID, -IIE, -IIF and -III, respectively) are “new” isoforms in the history of sPLA2 research. Relative to the
better characterized sPLA2s (sPLA2-IB, -IIA, -V and -X), the enzymatic properties, distributions, and functions of
these “new” sPLA2s have remained obscure until recently. Our current studies using knockout and transgenic
mice for a nearly full set of sPLA2s, in combination with comprehensive lipidomics, have revealed unique and
distinct roles of these “new” sPLA2s in specific biological events. Thus, sPLA2-IID is involved in immune sup-
pression, sPLA2-IIE in metabolic regulation and hair follicle homeostasis, sPLA2-IIF in epidermal hyperplasia,
and sPLA2-III in male reproduction, anaphylaxis, colonic diseases, and possibly atherosclerosis. In this article, we
overview current understanding of the properties and functions of these sPLA2s and their underlying lipid
pathways in vivo.

1. Introduction

As already described in other reviews in this special issue, the se-
creted PLA2 (sPLA2) family contains 10 catalytically active isoforms (IB,
IIA, IIC, IID, IIE, IIF, III, V, X and XIIA) and one inactive isoform (XIIB)
in mammals [1–6]. Individual sPLA2s exhibit unique tissue and cellular
distributions and substrate selectivity, suggesting their distinct biolo-
gical roles. Historically, sPLA2-IB and -IIA were purified and cloned in
the 1980s, and sPLA2-IIC and -V were identified by genomic sequencing
of the locus close to the sPLA2-IIA (PLA2G2A) gene in 1994 [7–11].
Soon afterwards, in the period of “sPLA2 hunting” research from 1997
to the early 2000s, sPLA2-IID, -IIE, -IIF, -III and -X as well as two sPLA2-
XII isoforms were identified by EST database searches (“new” sPLA2s)
by Lambeau's (a guest editor of this special issue) group, as well as by
others [12–21]. There is another sPLA2-related protein called otoconin-
95, an inner ear structural protein that contains two catalytically in-
active sPLA2-like domains [22].

Among the “new” sPLA2s, sPLA2-IID, -IIE and -IIF are classified as

conventional sPLA2s (group I/II/V/X), which are closely related, low-
molecular-weight enzymes with a highly conserved Ca2+-binding loop
and a His/Asp catalytic dyad as well as conserved disulfide bonds. More
specifically, they are members of the group II subfamily of sPLA2s, to
which sPLA2-IIA and –IIC, as well as sPLA2-V, belong. The genes for
these 6 group II subfamily sPLA2s are clustered at the same chromo-
somal locus (chromosomes 1 and 4 in human and mouse, respectively),
suggesting that they originated from a common ancestral gene [18]. In
contrast, sPLA2-III is an atypical sPLA2 showing closer similarity to bee
venom group III sPLA2 than to the other mammalian sPLA2s [19].
Evolutionally, the group II subfamily sPLA2s exist only in vertebrates,
while sPLA2s in the group III branch are present in vertebrates and
insects but not in nematodes. Although currently known sPLA2 in-
hibitors can inhibit conventional sPLA2s to various degrees, no agent
that specifically inhibits sPLA2-III or sPLA2-XIIA, another class of aty-
pical sPLA2, has yet become available.

Although the properties and functions of sPLA2-IB, -IIA, -V and -X
(see other reviews in this special issue) have been described in
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numerous studies, those of other sPLA2s have remained poorly under-
stood for more than a decade. Recently, a series of studies using
knockout and transgenic mice for nearly a full set of sPLA2s, together
with comprehensive lipidomics approaches to identify their cognate
substrates (phospholipids) and products (fatty acids, lysophospholipids
or their metabolites), have clarified their distinct biological roles in
vivo. Although genes for the group II subfamily sPLA2s are clustered in
the same chromosome locus [18], the phenotypes observed in knockout
mice for individual sPLA2s are distinct (see below), implying that they
do not have compensatory functions. In this review, we provide an
overview of current knowledge on the properties and functions of
sPLA2-IID, -IIE, -IIF and -III. The roles of these sPLA2s and their un-
derlying lipid-metabolic pathways are summarized in Table 1.

2. sPLA2-IID

2.1. General aspects

sPLA2-IID, which is more similar to sPLA2-IIA (48% homology) than
to other sPLA2s, was identified by three groups; Lambeau's group [14]
and Hanasaki's group [13] independently identified the mouse and
human enzymes by EST database searches, and another group isolated
sPLA2-IID (called SPLASH) by subtraction cloning of splenic cDNA from
wild-type (WT) and lymphotoxin-deficient mice, which have profound
defects in the splenic microarchitecture [15]. Similar to sPLA2-IIA,
sPLA2-IID is a basic protein (pI ~ 8.7) made up of 125 amino acids with
14 cysteines at exactly conserved positions. Likely because of its ca-
tionic nature, sPLA2-IID binds to heparin in vitro or heparan sulfate on
the cell surface when overexpressed in cultured cells [23].

Initial studies revealed that recombinant sPLA2-IID had rather lower
enzymatic activity than sPLA2-IIA in an assay using phospholipid ve-
sicles with oleic acid (OA) or linoleic acid (LA) at the sn-2 position [14]
and that transfection of sPLA2-IID into cultured cells (e.g. HEK293 cells)
was able to augment IL-1β-induced arachidonic acid (AA) release and
prostaglandin E2 (PGE2) generation, albeit at a lower potency than
sPLA2-IIA [23,24]. However, these properties need to be interpreted
with caution, since PLA2 enzyme assays employing artificial phospho-
lipid vesicles comprising only one or a few phospholipid species, or cell-
based studies in which sPLA2s are artificially overexpressed, or in which
excess sPLA2s are added at super-physiological levels, do not necessa-
rily reflect their true functional aspects in vivo. To comprehensively
understand the pathophysiological functions of sPLA2s, it is important
to consider as to when, where and to what degree any given sPLA2 is
expressed, which phospholipid species in a given membrane component
serve as the target substrates, which lipid metabolites are generated,
and how these lipid metabolites modulate biological responses in re-
levant tissue microenvironments. It has become obvious that the
functions of sPLA2s are not limited to the regulation of AA metabolism,
which used to be the classical view in PLA2 research, but are also as-
sociated with mobilization of various fatty acids and lysophospholipids
in specific tissue contexts, as described below.

sPLA2-IID is expressed mainly in dendritic cells (DCs) and macro-
phages, particularly CD4+CD11b+CD11c+MHC class IIlo DCs and M2-
like macrophages, in secondary lymphoid organs such as the spleen and
lymph nodes (LNs) of mice and humans [25]. As opposed to sPLA2-IIA
(a so-called “inflammatory sPLA2”), whose expression is upregulated in
various tissues in response to pro-inflammatory cytokines and lipopo-
lysaccharide (LPS) [26], sPLA2-IID is downregulated in antigen-acti-
vated MHC class IIhi DCs [25] or LPS-stimulated tissues and macro-
phages [16,27]. A new lipidomics-based PLA2 enzyme assay using a
natural phospholipid mixture extracted from a relevant tissue (lym-
phoid tissues in the case of sPLA2-IID) as a substrate (“natural mem-
brane assay” [28]) has revealed that sPLA2-IID preferentially hydro-
lyzes phosphatidylethanolamine (PE) species with sn-2 polyunsaturated
fatty acids (PUFAs), including ω6 AA and more efficiently ω3 eicosa-
pentaenoic acid (EPA) and docosahexaenoic acid (DHA), rather than

those with OA and LA [25]. This enzymatic preference of sPLA2-IID for
PE species with ω3 PUFAs as substrates, together with its distribution in
lymphoid immune cells and downregulation by pro-inflammatory sti-
muli, suggests that sPLA2-IID has a role in resolution, rather than pro-
motion, of the adaptive immune response.

2.2. Suppression of adaptive immune responses

The possibility that sPLA2-IID might have an immunosuppressive
function was first demonstrated in the research field of T cell biology.
Von Allmen et al. found that, among the various T cell subsets, sPLA2-
IID is selectively expressed in Treg cells and has the capacity to promote
Treg differentiation and function [29], although a subsequent study has
shown that sPLA2-IID is expressed much more abundantly in antigen-
presenting cells (DCs and macrophages) than in Treg cells [25]. Inter-
estingly, an sPLA2-IID-Fc fusion protein inhibits the proliferation of
CD4+ and CD8+ effector T cells in vitro and suppresses Th17-dependent
diseases such as colitis and multiple sclerosis when administered to
mice. However, it remained uncertain whether systemically adminis-
tered artificial sPLA2-IID-Fc fusion protein indeed mirrored the intrinsic
function of endogenous sPLA2-IID, and even if so, how this enzyme
exerts its immunoregulatory functions. Although the sPLA2-IID-Fc fu-
sion protein might act on the sPLA2 receptor (PLA2R1), sPLA2-IID has
poor binding affinity for PLA2R1 [30] (overall binding properties of
various sPLA2s to PLA2R1 are detailed in the other review in this spe-
cial issue). Beyond this, the possibility that sPLA2-IID could transmit
some signals through binding to an unknown receptor cannot be ruled
out, and the distinction between an effect due to enzymatic activity
versus a receptor-operated mechanism can only be addressed by using a
catalytic mutant of sPLA2-IID, including knock-in mice such as the
sPLA2-IID mutant “H48Q”. Nonetheless, the immunosuppressive func-
tion of sPLA2-IID has been established by a series of recent studies using
sPLA2-IID-deficient (Pla2g2d−/−) and -transgenic (Pla2g2d-TG) mice,
as described below.

In a model of Th1-dependent contact hypersensitivity (CHS), ap-
plication of the hapten antigen dinitrofluorobenzene (DNFB) to ab-
dominal skin (sensitization) followed by a second application of the
same antigen to ear skin (elicitation) induces ear swelling. In the eli-
citation phase of CHS, the resolution, but not propagation, of in-
flammation in the skin and LNs is delayed in Pla2g2d−/− mice [25]. In
this state, expression levels of the signature Th1 cytokines IFN-γ and IL-
12 are highly elevated in the draining LNs, whereas those of the Treg

markers FOXP3 and IL-10 are unaffected, by sPLA2-IID deficiency. Even
in the late stage of the sensitization phase, IFN-γ expression in the LNs is
substantially elevated in Pla2g2d−/− mice [31]. Moreover, DCs isolated
from Pla2g2d−/− mice are hyper-activated even in the absence of sti-
mulation, with increased secretion of IFN-γ and elevated surface ex-
pression of MHC class II [25]. In contrast, acute skin inflammation as
evaluated by irritant dermatitis is not affected by sPLA2-IID deficiency
[31]. These results suggest that the lack of sPLA2-IID augments DC-
mediated Th1 immunity, rather than influencing Treg cell function and
neutrophil-mediated acute inflammation.

Psoriasis is a common chronic skin diseases in western countries,
characterized by epidermal hyperplasia (acanthosis), scaling, and er-
ythematous plaque formation due to aberrant proliferation, differ-
entiation and activation of keratinocytes as well as activation of Th17-
type immunity [32]. In a model of imiquimod (IMQ)-induced psoriasis,
Pla2g2d−/− mice display more severe epidermal hyperplasia than do
Pla2g2d+/+ mice, with increased IL-17A+ or IL-22+ T cells in the af-
fected skin and regional LNs [31]. Furthermore, DCs from Pla2g2d−/−

mice produce greater amounts of IL-6 and IL-23, which play pivotal
roles in Th17 immunity [33], than those from WT mice. Conversely,
Pla2g2d-TG mice display milder inflammation in the CHS and psoriasis
models [31]. Thus, sPLA2-IID suppresses the Th1- and Th17-dependent
adaptive immune responses in CHS and psoriasis, respectively. This
concept appears to corroborate the ability of a sPLA2-IID-Fc fusion
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Fig. 1. Properties and functions of sPLA2-IID. (A) Increased Th2 response in Pla2g2d−/− mice. Pla2g2d+/+ and Pla2g2d−/− mice (male, 8 weeks old) were im-
munized intraperitoneally on days 0, 7, and 14 with 10 μg of chicken OVA (Sigma-Aldrich) in 100 μl of saline mixed with 200 μl of alum (Alu Gel S, which contained
2% Al(OH)3; Serva). Seven days after the last immunization, the left and right ears of the mice were injected intradermally with 30 μg of OVA. Ear swelling was
measured at 30min after OVA challenge. Total and OVA-specific IgE levels in sera were measured by ELISA (Bethyl Laboratories). OVA-induced IgE levels and ear
edema were elevated in Pla2g2d−/− mice relative to Pla2g2d+/+ mice (n=5–7, mean ± SEM, *p < 0.05, **p < 0.01). (B) Lipidomic heat map profiling of ω6
AA- and ω3 EPA/DHA-derived lipid mediators in lymph nodes of Pla2g2d−/− (KO) mice relative to Pla2g2d+/+ (WT) mice. EPA/DHA-derived lipid mediators were
decreased in KO mice [25,31]. The elevation of several AA metabolites in KO mice might have been due to increased lymph node inflammation. HETE, hydro-
xyeicosatetraenoic acid; HEPE, hydroxyeicosapentaenoic acid; HDHA, hydroxydocosahexaenoic acid; LX, lipoxin; PD, protectin; Rv, resolvin. (C) Lung histology of
WT and Pla2g2d-TG mice (male, 34 weeks old). The lungs of Pla2g2d-TG mice had more pronounced leukocyte infiltration than those of WT mice. (D) Aged (25 weeks
old), but not young (7–15weeks old), Pla2g2d-TG mice had more circulating granulocytes than did age-matched WT mice (mean ± SEM, *p < 0.05). The results in
(C, D) suggest that the increased immunosuppressive tone in the TG mice results in more opportunistic infection, and thereby airway inflammation. (E) A schematic
diagram of sPLA2-IID action. In lymphoid tissues, sPLA2-IID is preferentially expressed in DCs and hydrolyzes PE in microparticles to provide ω3 EPA/DHA-derived
pro-resolving lipid mediators (the structure of RvD1 is shown), which dampen adaptive immunity. As such, sPLA2-IID ameliorates Th1/Th17-dependent in-
flammation in CHS and psoriasis and perturbs host defense against infection and cancer.
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protein to suppress colitis and multiple sclerosis, which are typical
Th17-dependent disease models [29].

To address whether or not sPLA2-IID would also affect Th2 im-
munity, we sensitized Pla2g2d−/− and littermate Pla2g2d+/+ mice
with ovalbumin (OVA) intraperitoneally and challenged them with the
same antigen into the ears. In this model of Th2-dependent active cu-
taneous anaphylaxis, the serum levels of total and OVA-specific IgE, as
well as ear swelling, were significantly increased in OVA-challenged
Pla2g2d−/− mice relative to Pla2g2d+/+ mice (Fig. 1A). Since passive
cutaneous anaphylaxis is not affected by the absence of sPLA2-IID [34],
it is likely that the increased active anaphylactic response in Pla2g2d−/

− mice is due to an increased level of OVA-specific IgE (an indication of
the increased Th2 response) and thereby hyper-activation of mast cells
sensitized by this IgE, rather than being attributable to some intrinsic
alterations in mast cells or vascular endothelial cells. Thus, not only
Th1/Th17 immunity, but also the Th2-dependent immune response is
suppressed by sPLA2-IID.

Lipidomics analyses of regional LNs and spleen, where sPLA2-IID is
abundantly expressed, have revealed that the steady-state levels of ω3
PUFAs are markedly reduced in Pla2g2d−/− mice relative to Pla2g2d+/

+ mice [25,31]. Moreover, the levels of ω3 PUFA metabolites, such as
DHA-derived resolvin D1 (RvD1), are markedly lower in Pla2g2d−/−

LNs than in Pla2g2d+/+ LNs (Fig. 1B). Conversely, the levels of ω3
PUFA metabolites are elevated in the LNs of Pla2g2d-TG mice relative to
WT mice [31]. In contrast, the LN levels of eicosanoids (prostanoids and
leukotrienes) are barely altered or even elevated by sPLA2-IID deletion,
implying that these AA metabolites are largely derived from a sPLA2-
IID-independent AA pool, possibly through the action of cytosolic PLA2

(cPLA2α) or other PLA2 subtype(s). Together with the substrate se-
lectivity described above, it is likely that sPLA2-IID preferentially and
constitutively hydrolyzes PUFA-containing PE species in LN mem-
branes, probably those in microparticles (as in the case of sPLA2-IIA)
[35,36], to mobilize ω3 PUFA-derived anti-inflammatory lipid media-
tors, which can put a brake on DC-committed adaptive immunity. It has
been reported that leukocyte-derived microparticles spatiotemporally
generated in inflammatory exudates during resolution contain ester-
ified phospholipid precursors of anti-inflammatory lipid mediators
[37]. We therefore speculate that similar microparticles constitutively
generated in lymphoid tissues might be a target of sPLA2-IID, although
this hypothesis needs further elucidation. A growing body of evidence
indicates that ω3 PUFA-derived resolvins including RvD1 have the ca-
pacity to suppress acquired immunity by attenuating migration and
activation of DCs, antigen presentation to T cells, and IgE class
switching in B cells [31,38–41]. Furthermore, consistent with the view
that some ω3 PUFA metabolites such as maresins facilitate anti-in-
flammatory M2 polarization of macrophages [42,43], the splenic ratio
of M2/M1 macrophages is decreased in Pla2g2d−/− mice relative to WT
mice [31].

Collectively, sPLA2-IID is a “resolving sPLA2” that preferentially
mobilizes ω3 PUFA metabolites in lymphoid organs, thereby amelior-
ating aggravated adaptive immunity. It should be noted that sPLA2-IID
is not the only ω3 PUFA-releasing sPLA2 in vivo. Indeed, ω3 PUFAs are
released by sPLA2-X in the colon and spermatozoa [44] and by sPLA2-
IIF in the skin [45], where each of these sPLA2s has tissue-specific roles
(see below).

2.3. Suppression of anti-viral and anti-tumor immunity

Although sPLA2-IID prevents exaggerated Th1/Th17 immunity in
CHS and psoriasis, this beneficial immunosuppressive property is con-
versely disadvantageous in some circumstances such as host defense
against infection and cancer. Indeed, sPLA2-IID prevents anti-viral and
anti-tumor Th1 immunity, eventually exacerbating viral infection and
tumor development toward worse outcomes.

sPLA2-IID expression in lung DCs increases with age in response to
chronic exposure to oxidative stress. In aged (10–13months old) mice,

sPLA2-IID contributes to exacerbation, rather than amelioration, of
pneumonia caused by infection with SARS coronavirus or influenza
virus [46]. In this situation, sPLA2-IID is coupled with pulmonary mo-
bilization of prostaglandin D2 (PGD2), an anti-inflammatory AA meta-
bolite in this context that blocks DC migration and thereby Th1-driven
anti-viral responses through its receptor, DP1. Accordingly, Pla2g2d−/−

mice show increased migration of lung DCs to LNs, leading to aug-
mented anti-viral T cell responses, which are protective against infec-
tion-induced lung inflammation and death. Although not tested in that
study, it is conceivable that the steady-state reduction of ω3 PUFA
metabolites in the LNs of Pla2g2d−/− mice (see above) may also con-
tribute to the increased anti-viral immunity in this setting. Consistent
with this notion, aged (> 6months old) Pla2g2d-TG mice show more
profound leukocyte infiltration in the lung (Fig. 1C) and more granu-
locytes in the circulation (Fig. 1D) than age-matched WT mice, sug-
gesting that the increased immunosuppressive tone by overexpression
of sPLA2-IID results in more opportunistic infection and thereby lung
inflammation.

Likewise, sPLA2-IID accelerates, rather than prevents, the develop-
ment of skin tumors, likely because this enzyme attenuates anti-tumor
Th1 immunity. In a model of chemical carcinogenesis, Pla2g2d−/−

mice are highly protected against the development of skin cancer, ac-
companied by an increase of cytotoxic CD8α+IFN-γ+ T cells and M1-
like macrophages, as well as a decrease of tumor-promoting M2-like
macrophages [31]. Conversely, transgenic overexpression of sPLA2-IID
shifts the immune balance toward suppression of the anti-tumor im-
munity. Reportedly, ectopic administration of ω3 PUFA metabolites
[31,47,48] or systemic overproduction of these lipids in mice trans-
genic for Fat-1 (an ω3 PUFA synthase in Caenorhabditis elegans) [49]
confers protective effects against infection-based inflammation or
cancer xenograft by facilitating phagocytotic clearance of detrimental
materials by neutrophils and macrophages. Apart from this systemic
effect of ω3 PUFAs, the spatiotemporal supply of ω3 PUFAs by sPLA2-
IID in local lymphoid niches may have a distinct impact on adaptive
immunity by suppressing the functions of DCs and T cells.

Taken together, the immunosuppressive functions of sPLA2-IID
provide favorable or unfavorable outcomes in distinct disease settings,
protecting against inflammation and exacerbating infection and cancer
(Fig. 1E). This points to the potential prophylactic or therapeutic use of
an agent that would specifically stabilize or inhibit this enzyme ac-
cording to disease context. In particular, specific inhibition of sPLA2-IID
in patients with severe respiratory infection or those with certain types
of cancer would be a potentially attractive therapeutic intervention for
restoration of immunological functions, a concept reminiscent of the
“immune checkpoint” therapy.

2.4. Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is a major cause of
morbidity and mortality worldwide. This life-threatening disease not
only creates problems resulting from airflow obstruction, but also has a
major impact on cardiac function and air exchange, thereby resulting in
systemic manifestations [50,51]. The presence of chronic and systemic
inflammatory responses has an important influence on patient survival,
because unexplained weight loss due to muscle wasting and adipose
tissue depletion, a characteristic feature of advanced COPD, can be
linked to systemic inflammation.

Interestingly, G80S polymorphism in the human sPLA2-IID
(PLA2G2D) gene is associated with body weight loss in patients with
COPD [52]. COPD patients carrying sPLA2-IID(Ser80) lose a significant
amount of body weight in comparison with those carrying sPLA2-IID
(Gly80). Although this mutation does not affect the in vitro enzymatic
activity of sPLA2-IID, it enhances the expression of IL-6 and IL-8 in
A549 cells (a human pulmonary epithelial cell line) [53]. A molecular
model of human sPLA2-IID has revealed substantial differences between
the native and mutant forms in terms of channel opening and the
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surface area for interfacial binding contact [54]. Given the im-
munosuppressive property of sPLA2-IID described above, the Ser80
mutant form might have weaker ability than the Gly80 native form to
suppress inflammation. It is also possible that the body weight loss
could be related to the anti-inflammatory function of sPLA2-IID in
metabolically active tissues (e.g. adipose tissue), which will be de-
scribed elsewhere.

3. sPLA2-IIE

3.1. General aspects

Mouse and human sPLA2-IIEs were identified by Lambeau's group
[17] and Hanasaki's group [16] from the EST databases. sPLA2-IIE
consists of 123 amino acids and is most similar to sPLA2-IIA with re-
spect to the number and positions of cysteine residues as well as overall

Fig. 2. Properties and functions of sPLA2-IIE. (A) Lipidomic heat map profiling of phospholipids in LDL of Pla2g2e−/− (KO) mice relative to Pla2g2e+/+ (WT) mice
fed a high-fat diet for 18weeks. Most PE, PG, PI and PS molecular species were elevated in LDL of KO mice, suggesting that sPLA2-IIE acts on these minor lipoprotein
phospholipids with no apparent fatty acid selectivity [62]. (B) A schematic diagram of the sPLA2-IIE-driven lipid pathway in lipoprotein metabolism during obesity.
In obesity, sPLA2-IIE is induced in adipocytes, hydrolyzes minor lipoprotein phospholipids, and promotes obesity and hyperlipidemia. The roles of lysophospholipids
released by sPLA2-IIE are unknown. (C) In situ hybridization of sPLA2-IIE in mouse skin. Intense Pla2g2e signal are localized to hair follicles [55].
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identity (51% homology). Similar to other group II subfamily sPLA2s
(except for sPLA2-IIF; see below), sPLA2-IIE is a basic protein (pI ~ 8.1)
and shows weak affinity for heparin. Within the limitations of the
overexpression strategy using cultured cells, the ability of sPLA2-IIE to
elicit AA release is weaker than that of sPLA2-IID [23,24].

Valentin et al. have reported that the enzymatic activity of sPLA2-IIE
is much weaker than that of other sPLA2s [17], whereas Suzuki et al.
have shown that the activity of sPLA2-IIE is comparable to that of
sPLA2-IIA, hydrolyzing PE and to a lesser extent phosphatidylcholine
(PC) with no fatty acid selectivity [16]. To reconcile the inconsistency
between those two studies, we reevaluated the enzymatic activity of
sPLA2-IIE using a lipidomics-based natural membrane assay with a
phospholipid mixture extracted from mouse skin, a tissue where sPLA2-
IIE is expressed abundantly (see below), as a substrate. It was found that
sPLA2-IIE is as active as other sPLA2s if the phospholipid concentration
is sufficiently high, whereas its activity is very weak at a low substrate
concentration that allows other sPLA2s to remain fully active [55]. This
suggests that the apparent Km of sPLA2-IIE toward this skin-extracted
phospholipid mixture is higher than that of other sPLA2s. In the pre-
sence of a sufficiently high concentration of phospholipids, sPLA2-IIE is
capable of releasing various unsaturated fatty acids including OA, LA,
AA and DHA as well as lysphosphatidylethanolamine (LPE) in pre-
ference to lysophosphatidylcholine (LPC), a pattern similar to the re-
sults reported by Suzuki et al. [16]. This substrate selectivity is further
supported by the crystal structure of human sPLA2-IIE, which shows
overall similarity to that of human sPLA2-IIA, yet with substantial dif-
ferences in terms of basic residue clusters at the interfacial site and C-
terminal region [56].

In some inbred mouse strains such as C57BL/6, A/J, C58/J, P/J,
129/Sv and B10.RIII, sPLA2-IIA is entirely absent due to a frameshift
mutation in its gene, whereas the gene is functional, but its expression
is largely restricted to the intestine, in inbred strains such as BALB/c,
C3H, NZB and DBA and outbred strains such as OF1 [57]. Instead,
sPLA2-IIE expression is markedly induced in several mouse tissues upon
LPS challenge [16]. Serum amyloid A, a pro-inflammatory mediator of
lethal systemic inflammatory diseases, induces sPLA2-IIE expression in
mouse macrophages [58]. In contrast, sPLA2-IIE expression is barely
detectable in most human tissues, leading to the hypothesis that the
functions of sPLA2-IIA in humans might be compensated by sPLA2-IIE in
mice [4]. Nevertheless, a few studies have reported that sPLA2-IIE is
expressed in human cells [59,60] and that polymorphism in the human
sPLA2-IIE (PLA2G2E) gene is associated with ulcerative colitis [61],
suggesting that sPLA2-IIE may be functional in humans in certain si-
tuations. Recent studies using sPLA2-IIE-deficient (Pla2g2e−/−) mice
have revealed the novel roles of this sPLA2 in metabolic regulation and
hair follicle homeostasis, as described below.

3.2. Metabolic regulation

sPLA2-IIE is highly induced in hypertrophic white adipocytes in
mice fed a high-fat diet or in genetically obese ob/ob mice [62]. An
adipogenic stimulus is sufficient for the induction of sPLA2-IIE in 3T3-
L1 adipocytes. In a model of diet-induced obesity, Pla2g2e−/− mice are
modestly protected from obesity, hepatic steatosis and hyperlipidemia
[62]. Lipidomics analysis of plasma lipoproteins obtained from
Pla2g2e−/− mice in comparison with Pla2g2e+/+ mice has revealed
that various molecular species of PE, phosphatidylserine (PS), phos-
phatidylinositol (PI) and phosphatidylglycerol (PG), but not those of
PC, are all elevated in the null mice (Fig. 2A), suggesting that sPLA2-IIE
preferentially hydrolyzes these minor lipoprotein phospholipids with
no apparent fatty acid selectivity in vivo [62]. As such, sPLA2-IIE, a
“metabolic sPLA2”, alters the lipid composition of lipoproteins, thereby
moderately affecting lipid accumulation in adipose tissue and liver
(Fig. 2B). However, the mechanism whereby the sPLA2-IIE-driven hy-
drolysis of minor lipoprotein phospholipids is linked to metabolic reg-
ulation still remains obscure. Since an increase of negative charges in

lipoproteins renders the particles smaller [63], an increase of anionic
phospholipids (e.g. PS) in lipoproteins resulting from sPLA2-IIE defi-
ciency might afford such an effect. Alternatively, certain lysopho-
spholipid species produced by sPLA2-IIE might have some metabolic
effects, a possibility that awaits future studies. In fact, lysopho-
sphatidylserine (LysoPS) and lysophsophatidylinositol (LPI) act on their
cognate receptors that can affect inflammation and metabolism
[64,65]. Importantly, the metabolic action of sPLA2-IIE contrasts with
that of sPLA2-V, another diet-inducible “metabolic sPLA2” that hydro-
lyzes PC in low-density lipoprotein (LDL) to preferentially release OA
and LA, thereby protecting against obesity, insulin resistance, fatty
liver, and adipose tissue inflammation [62].

On the other hand, another study has revealed that Pla2g2e−/−

mice accumulate more epididymal fat than do Pla2g2e+/+ mice as they
age [66]. During ex vivo adipogenesis, knockout or knockdown of
sPLA2-IIE increases triglycerides in adipocytes, whereas its over-
expression or exogenous addition facilitates lipolysis with increased
release of glycerol. Although the reason for the discrepancy between
these two studies is unclear, it might be attributable to the difference of
experimental conditions (diet-induced versus age-associated obesity,
high-fat versus chow diet, or female versus male) in the different animal
facilities. One possible explanation is that sPLA2-IIE might have some
additional effects on brown or beige fat, and thereby lipolysis and
thermogenesis, a hypothesis that remains to be tested.

3.3. Hair follicle homeostasis

Hair follicles in the skin undergo repeated cycles of growth
(anagen), regression (catagen) and rest (telogen) during life [67]. Per-
turbed skin lipid metabolism variably and often severely affects hair
cycling, thereby causing hair loss or alopecia [68,69]. sPLA2-IIE is a
“hair follicular sPLA2” that is expressed abundantly in hair follicles
during the anagen period, being distributed in companion cells of the
outer root sheath and cuticular cells of the inner root sheath [55]
(Fig. 2C). Pla2g2e−/− mice exhibit mild skin abnormalities with per-
turbation of hair follicle ultrastructure and modest changes in the
steady-state expression of a subset of skin genes. Lipidomics analysis
has revealed that sPLA2-IIE mobilizes various unsaturated fatty acids
and LPE species (both acyl and plasmalogen forms) in mouse skin. This
substrate selectivity fits well with the in vitro enzymatic property of
sPLA2-IIE (see above). However, it remains unclear which lipid meta-
bolites mobilized by sPLA2-IIE are important for hair follicle home-
ostasis.

4. sPLA2-IIF

4.1. General aspects

Mouse and human sPLA2-IIFs were identified by Lambeau and his
colleagues [17,18]. sPLA2-IIF consists of 148 amino acids harboring all
of the structural features of group II subfamily sPLA2s, but has several
unique characteristics. First, sPLA2-IIF is an acidic protein (pI ~ 5.8), in
contrast to the other group II subfamily sPLA2s, which are basic.
Second, although sPLA2s are active under neutral to mildly basic con-
ditions in general, sPLA2-IIF retains its full enzymatic activity even at
mildly acidic pH. This property may be related to the distribution of the
enzyme in the epidermis (see below), where a mildly acidic environ-
ment is important for proper keratinocyte differentiation and function
[70]. Third, sPLA2-IIF has a uniquely long C-terminal extension that is
proline-rich and contains a single cysteine. The presence of this odd
cysteine raises the possibility that sPLA2-IIF might occur as a covalent
dimer (like several venom sPLA2s), although this has not been experi-
mentally confirmed. Fourth, sPLA2-IIF is more hydrophobic than other
sPLA2s. Probably as a result of this high hydrophobicity, sPLA2-IIF has a
unique ability to penetrate and disrupt lipid monolayers and bilayers in
vitro and to rapidly enter HEK293 cells in an endocytosis-independent

M. Murakami et al. BBA - Molecular and Cell Biology of Lipids 1864 (2019) 803–818

809



manner to form unusual aggregates [71]. Within the limitations of the
overexpression strategy, sPLA2-IIF can increase AA release with a po-
tency comparable to sPLA2-III and superior to sPLA2-IIA when trans-
fected into HEK293 cells or human fibroblasts (the rank order is
X > V > III= IIF > IIA > IID > IIE) [24,72]. In the natural mem-
brane assay using a phospholipid mixture extracted from mouse skin,
sPLA2-IIF preferentially hydrolyzes PE, particularly plasmalogen-type
PE (P-PE), to yield lysoplasmalogen (plasmalogen-type LPE; P-LPE) as
well as DHA in preference to AA at a physiologically relevant con-
centration [45]. Of note, although high concentrations of sPLA2s often
cleave all substrates non-selectively in vitro, as we have observed in skin
lipid hydrolysis by recombinant sPLA2-IIF [45,55], the use of low
concentrations of sPLA2s could reproduce the in vivo substrate se-
lectivity in the natural membrane assay.

The epidermis is a highly organized stratified epithelium having
four distinctive layers comprising the innermost stratum basale, the
stratum spinosum, the stratum granulosum, and the outermost stratum

corneum (SC) [73]. sPLA2-IIF is abundantly expressed in the suprabasal
(spinous to SC) layers of the epidermis [45]. In cultured keratinocytes,
sPLA2-IIF is markedly increased during cell differentiation in parallel
with the induction of keratinocyte differentiation and activation mar-
kers such as KRT1, S100A9 and IL-36α, and robustly upregulated fol-
lowing stimulation with the Th17 cytokines IL-22 and IL-17A [45].
Moreover, sPLA2-IIF is highly expressed in the hyperplasic epidermis of
patients with psoriasis [45]. These findings indicate that sPLA2-IIF may
be associated with epidermal homeostasis and diseases, particularly
with the pathology of psoriasis in which Th17 immunity plays a crucial
role. Indeed, studies using sPLA2-IIF-deficient (Pla2g2f−/−) and trans-
genic (Pla2g2f-TG) mice have revealed the unique role of sPLA2-IIF, an
“epidermal sPLA2”, in epidermal hyperplasic diseases including psor-
iasis and skin cancer, as described below.

Fig. 3. Properties and functions of sPLA2-IIF. (A, B)
Distinct roles of sPLA2-IIF and sPLA2-IID in psoriasis
and skin cancer [31,45]. (A) Following a psoriatic
stimulus (imiquimod), sPLA2-IIF is induced in epi-
dermal keratinocytes by Th17 cytokines derived
from Tγδ and Th17 cells and hydrolyzes plasmalogen
to give rise to lysoplasmalogen (P-LPE), which in
turn promotes epidermal hyperplasia and in-
flammation. In contrast, sPLA2-IID blocks Th17 im-
munity in lymph nodes through production of ω3
PUFA metabolites, thereby putting a brake on psor-
iasis. (B) P-LPE produced by epidermal sPLA2-IIF
promotes hypergrowth of skin cancer, without af-
fecting its incidence. In contrast, ω3 PUFA metabo-
lites produced by sPLA2-IID in lymph nodes decrease
IFN-γ+CD8+ cytotoxic T cells (CTLs) and increase
M2-like tumor-associated macrophages (TAMs),
leading to reduced anti-tumor immunity. As such,
sPLA2-IID facilitates tumor formation and growth.
The structure of P-LPE is shown. (C) Lipoprotein
profiles in Pla2g2f-TG and WT mice. The levels of
phospholipids in HDL and LDL were markedly lower
in Pla2g2f-TG mice than in WT mice (n= 4,
mean ± SEM, *p < 0.05), suggesting that sPLA2-
IIF, when overexpressed systematically, has the ca-
pacity to hydrolyze lipoprotein phospholipids in the
circulation. LDL fractions are magnified in Inset.
VLDL, very-low-density lipoprotein; HDL, high-den-
sity lipoprotein; CM, chylomicron.
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4.2. Psoriasis

Perturbation of epidermal lipids variably and often profoundly af-
fects skin homeostasis and barrier function, leading to skin disorders
such as ichthyosis, psoriasis, atopic dermatitis and cancer [74–76].
Prior to the discovery of epidermal expression of sPLA2-IIF, it was re-
cognized that several sPLA2s are expressed in mouse and human skins
[77–80]. Interestingly, transgenic overexpression of human sPLA2-IIA
(PLA2G2A-TG) or sPLA2-X (PLA2G10-TG) in mice led to epidermal
hyperplasia and alopecia [81–83], although endogenous expression of
these two sPLA2s has been scarcely detected in mouse skin [45]. Later,
it was shown that global or skin-specific Pla2g2f-TG mice spontaneously
develop psoriasis-like epidermal hyperplasia and alopecia, with in-
creased expression of a panel of psoriasis markers including S100A9
and IL-36α. Therefore, the skin phenotypes observed in PLA2G2A-TG or
PLA2G10-TG mice may indicate that sPLA2-IIA or -X mimic the intrinsic
actions of sPLA2-IIF when artificially overexpressed in the skin or that
endogenous sPLA2-IIF is upregulated in the hyperplasic epidermis of
these TG mice.

Pla2g2f−/− mice exhibit only mild skin abnormalities under the
basal state, characterized by a fragile stratum corneum with modest
perturbation of skin barrier function and acidity [45]. These pheno-
types are evident in the abdominal, but not dorsal, skin of adult, but not
newborn, Pla2g2f−/− mice, suggesting that sPLA2-IIF contributes to SC
stability against environmental stresses, such as friction against the
floor or prolonged exposure to skin microbiota, rather than to the
central program of epidermal differentiation. After tape-stripping of the
corneum, Pla2g2f−/− mice display delayed recovery from the skin
barrier damage [80], suggesting that sPLA2-IIF accelerates epidermal
repair. The impact of sPLA2-IIF ablation is more dramatic in primary
keratinocytes, where the cells fail to be differentiated and undergo
proper activation when sPLA2-IIF is genetically or pharmacologically
inactivated [45]. The more profound effects of sPLA2-IIF deletion on
keratinocytes in vitro than in vivo suggest that some mechanisms com-
pensating for the lack of sPLA2-IIF might exist in vivo.

Strikingly, under pathological conditions, Pla2g2f−/− mice are
protected from epidermal hyperplasia in models of Th17-dependent
psoriasis and Th1-dependent CHS [45]. In primary keratinocytes from
Pla2g2f−/− mice, IL-22- or IL-17A-induced expression of several psor-
iasis markers is markedly impaired. Mechanistically, sPLA2-IIF hydro-
lyzes P-PE secreted from keratinocytes to yield P-LPE, a unique lyso-
phospholipid that facilitates the differentiation and activation of
keratinocytes, leading to the propagation of skin inflammation. Indeed,
the levels of P-LPE in the skin are correlated well with the expression
levels of sPLA2-IIF in multiple skin disease models, and topical appli-
cation of P-LPE to Pla2g2f−/− skin in vivo or supplementation of
Pla2g2f−/− keratinocytes with P-LPE ex vivo restores the psoriasis-re-
lated phenotypes. Thus, in the pathology of psoriasis, sPLA2-IIF plays an
exacerbating role by promoting aberrant proliferation and activation of
keratinocytes through production of P-LPE in the suprabasal epidermis,
whereas sPLA2-IID plays a resolving role by reducing the harmful Th17
immune response through production of ω3 PUFA-derived pro-resol-
ving mediators in lymphoid tissues (see above) (Fig. 3A).

4.3. Skin cancer

Skin-specific Pla2g2a-TG mice are sensitive to chemical carcino-
genesis [82], even though endogenous sPLA2-IIA is not expressed in
mouse skin. Likewise, Pla2g2f-TG mice are highly susceptible to the skin
carcinogenesis model, with an apparent propensity to develop larger
tumors than WT mice [45], implying again that the overexpressed
sPLA2-IIA in Pla2g2a-TG mice mimics the action of sPLA2-IIF. Im-
portantly, Pla2g2f−/− mice on a BALB/c background are markedly
protected from the development of skin tumors, accompanied by lower
production of P-LPE and unaltered production of canonical AA meta-
bolites [45]. Among the sPLA2 knockout mouse strains tested so far,

only Pla2g2d−/− and Pla2g2f−/− mice are protected against skin
cancer through distinct mechanisms; sPLA2-IID deficiency increases
anti-tumor immunity and thereby blocks tumor development (see
above), whereas sPLA2-IIF deficiency ameliorates keratinocyte hyper-
proliferation (Fig. 3B) [31,45].

Taken together, the findings so far suggest that sPLA2-IIF promotes
epidermal hyperplasic diseases including psoriasis and skin cancer and
that P-LPE, a primary sPLA2-IIF product, represents a particular bio-
marker and bioactive lipid that reflects the expression and function of
sPLA2-IIF. Given that sPLA2-IIF is expressed in the epidermis rather
specifically and that Pla2g2f−/− mice display more profound skin
phenotypes under pathological conditions than under physiological
conditions, blocking or neutralizing this particular sPLA2 may be a
novel approach for specific treatment of psoriasis, skin cancer, or other
conditions characterized by epidermal hyperplasia. It remains to be
clarified whether sPLA2-IIF-driven P-LPE would act on keratinocytes
through a specific receptor or through other mechanism(s), and whe-
ther DHA, another sPLA2-IIF-driven product, would be metabolized to
certain products that would affect skin homeostasis. The latter possi-
bility seems plausible, since DHA and its metabolites have been shown
to have the capacity to facilitate skin wound healing, suppress psoriasis,
and prevent neoplastic transformation of keratinocytes [84–86].

4.4. Other potential functions

Recombinant sPLA2-IIF has a potent capacity to prevent malaria
infection in vitro [87]. The anti-malaria property of sPLA2s is dependent
on their ability to release PUFAs relative to other fatty acids from li-
poproteins, sPLA2-IIF being the most PUFA-selective sPLA2. Indeed, li-
poprotein phospholipids are potently hydrolyzed, with marked PUFA
preference, when treated with sPLA2-IIF in vitro [87,88] or in Pla2g2f-
TG mice in vivo (Fig. 3C). Beyond this ability to confer anti-malaria
immunity, lipoprotein hydrolysis by sPLA2s would be expected to have
some influence on systemic metabolism, as has been demonstrated for
the “metabolic sPLA2s” sPLA2-IIE and -V (see above) [62]. In this
context, it would be important to determine whether endogenous
sPLA2-IIF has an opportunity to encounter plasma lipoproteins under
certain in vivo conditions, and if so, which cells or tissues would secrete
sPLA2-IIF in this context and how sPLA2-IIF-directed lipoprotein hy-
drolysis would affect immunity or metabolism. Although sPLA2-IIF is
also substantially expressed in the intestinal epithelium [45], its defi-
ciency does not significantly alter the sensitivity to colitis in an animal
model [44].

5. sPLA2-III

5.1. General aspects

Human sPLA2-III was originally identified by Lambeau and his
colleagues in 2000 [19]. sPLA2-III is an atypical sPLA2 whose structure
is rather distinct from conventional group I/II/V/X sPLA2s except for
the conserved catalytic site and the Ca2+-binding motif. Human sPLA2-
III has 490 amino acids made up of a central sPLA2 domain (141 re-
sidues) with a typical group III feature that is flanked by unique N- and
C-terminal domains (130 and 219 residues, respectively), and its gene
maps to chromosome 22q. The central sPLA2 domain is similar to bee
venom sPLA2 and possesses all of the features of group III sPLA2s in-
cluding 10 cysteines. Unlike sPLA2-IB and -X, in which the N-terminal
propeptide interferes with catalytic activity, the presence of the N- and
C-terminal domains does not profoundly affect the activity of sPLA2-III
[19,89]. Molecular modeling of the sPLA2 domain has revealed that
sPLA2-III has unique structural features in comparison with conven-
tional sPLA2s, such as a decrease in the volume of the substrate-binding
hydrophobic channel [90].

When overexpressed in HEK293 cells or primary fibroblasts, sPLA2-
III elicits AA release with a potency comparable to that of sPLA2-IIF and
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superior to that of sPLA2-IIA [24,89]. The N- and C-terminal domains
are removed to give rise to a mature, sPLA2 domain-only form [91].
Overexpressed sPLA2-III in mammalian or insect cells is often N-gly-
cosylated at two positions, which affect the secretion of the enzyme
[91], although the N-glycosylation of endogenous sPLA2-III has not yet
been confirmed in vivo. Evaluation of the enzymatic property using a
lipidomics-based natural membrane assay with a mixture of colon-ex-
tracted phospholipids as the substrate has demonstrated that sPLA2-III
hydrolyzes all phospholipid subclasses including PC, PE, PS, PI and PG
(i.e. with no apparent polar head group specificity), tending to prefer
the sn-2 position of PUFAs [92]. In mice, sPLA2-III is distributed in
several tissues, showing the highest expression in the colon, skin, and
male reproductive organs [92,93]. Indeed, mice null for sPLA2-III
(Pla2g3−/−) and those with transgenic overexpression of human sPLA2-
III (PLA2G3-TG) display several remarkable phenotypes in these tissues,
as described below. Importantly, these studies have revealed that the
same sPLA2 may work in different tissues by different mechanisms for
different biological effects.

5.2. Male reproduction

After the complex process of testicular germ cell differentiation,
spermatozoa exit the seminiferous tubules of the testis into the epidi-
dymis. During the epididymal transit of spermatozoa, PC in the sperm
membrane undergoes a dramatic shift in its sn-2 acyl groups from OA
and AA to DHA and docosapentaenoic acid (DPA), and the increased
proportion of DPA/DHA consequently contributes to increased sperm
membrane fluidity, and thereby flagellar motility and oocyte fertiliza-
tion [94–97]. The percentage of DHA relative to total fatty acids is
correlated with the normal morphology and fertility of sperm cells [98].
Male hypofertility in Pla2g3−/− mice highlights a critical role of sPLA2-
III in this epididymal sperm maturation process [93]. In fact, when
mutant males are mated with WT females, the litter sizes are reduced in
a genotype-related manner, with only 2–3 pups per litter after breeding
of Pla2g3−/− males with Pla2g3+/+ females.

sPLA2-III is expressed in epididymal epithelial cells as well as tes-
ticular Sertoli cells [93]. In the epididymis, sPLA2-III is secreted from
the epithelium into the lumen and acts on immature sperm cells passing
through the duct in a paracrine manner to regulate phospholipid re-
modeling. Strikingly, sperm membrane phospholipid remodeling in the
epididymis, but not testicular spermatogenesis, is severely compro-
mised in Pla2g3−/− mice [93]. Accordingly, Pla2g3−/− spermatozoa,
with a low proportion of DPA/DHA, have aberrant acrosomes and an
abnormal axoneme configuration in flagella, resulting in reduced mo-
tility and fertility. Epididymal sPLA2-III may participate in deacylation
of OA and AA from sperm phospholipids, followed by reacylation with
DHA and DPA by a certain lysophospholipid acyltransferase (possibly
LPAAT3 [99]) leading to an increase of DPA/DHA-containing PC in
mature sperm cells. In the Pla2g3−/− epididymis, impairment of the
deacylation step may eventually perturb the subsequent reacylation
with DPA/DHA, culminating in the asthenozoospermia phenotype.

In addition to Pla2g3−/− mice, sPLA2-X-deficient (Pla2g10−/−)
mice also display sperm abnormality. In Pla2g10−/− mice, spermato-
genesis and epididymal sperm maturation occur normally, but sub-
sequent sperm activation including the acrosome reaction is impaired,
thus affecting fertilization [44,100,101]. sPLA2-X is secreted from the
sperm acrosome and selectively hydrolyzes DPA/DHA-bearing PC spe-
cies in sperm membranes to release DPA, DHA and LPC, among which
DPA and to a lesser extent LPC can restore the fertilization capacity of
Pla2g10−/− sperm [44]. Thus, sPLA2-III promotes epididymal sperm
maturation, allowing enrichment of DPA/DHA-containing PC species in
sperm membranes, while sPLA2-X acts on these DPA/DHA-rich phos-
pholipids to liberate DPA and LPC for successful fertilization, thus un-
derscoring elegant cooperation of these two “reproductive sPLA2s” in
the process of male reproduction. From a clinical standpoint, sPLA2-III
and -X are potential targets for the development of male contraceptive

agents or as potential diagnostic markers of male sterility.

5.3. Anaphylaxis

It has been well established that cPLA2α is essential for the pro-
duction of PGD2 and leukotrienes by mast cells, a key effector cell po-
pulation in allergy [102,103]. Beyond this, the hypothesis that sPLA2-III
might participate in mast cell activation and allergy stemmed primarily
from the fact that this enzyme is the sole mammalian homolog of bee
venom sPLA2, which is a potent mast cell activator and anaphylaxis
inducer [19]. Indeed, like bee venom sPLA2, exogenous human sPLA2-
III elicits mast cell activation when injected into mouse skin [34]. En-
dogenous sPLA2-III is expressed in mouse and human mast cells, where
it is stored in secretory granules and released upon cell activation.
Detailed analysis of Pla2g3−/− mice has revealed that sPLA2-III not
merely acts as a mast cell activator, but also functions essentially as a
regulator of mast cell maturation.

Microenvironmental alterations of mast cell phenotypes through
intercellular communication with fibroblasts affect susceptibility to
allergy [104,105]. However, the mechanisms underlying the matura-
tion of mast cells toward an allergy-sensitive phenotype remain in-
completely understood. Mast cell-dependent passive and active ana-
phylactic responses are markedly attenuated in Pla2g3−/− mice and
conversely augmented in PLA2G3-TG mice in a cell-autonomous
manner [34]. Skin mast cells in Pla2g3−/− mice are morphologically
and functionally immature, with markedly lower histamine and pro-
tease contents in secretory granules, expression of mast cell maturation
markers, and cell surface expression of FcεRI. Moreover, bone marrow-
derived mast cells (a relatively immature mast cell population) pre-
pared from Pla2g3−/− mice exhibit impaired fibroblast-driven ma-
turation and thereby IgE-dependent and even -independent activation
in ex vivo culture. Importantly, similar mast cell abnormalities are also
evident in mice lacking lipocalin-type PGD2 synthase (L-PGDS) or those
lacking the PGD2 receptor DP1 [34]. Indeed, genetic or pharmacolo-
gical inactivation of DP1 in mast cells or of L-PGDS in fibroblasts
phenocopies that of sPLA2-III in mast cells toward defective mast cell
maturation and anaphylaxis.

Collectively, sPLA2-III secreted from immature mast cells is func-
tionally coupled with fibroblastic L-PGDS to provide a microenviron-
mental pool of PGD2, which in turn acts on DP1 on mast cells to pro-
mote their appropriate maturation (Fig. 4A). This PGD2-dependent
paracrine circuit involving sPLA2-III, L-PGDS and DP1 explains a
missing link required for fibroblast-driven maturation of mast cells
[106]. Accordingly, a new agent that specifically inhibits this unique
sPLA2 may be useful for the treatment of patients with mast cell-asso-
ciated allergic and other diseases. It should be noted, however, that the
mast cell defects observed in mice lacking sPLA2-III tend to be more
severe than those observed in mice lacking L-PGDS or DP1 [34], sug-
gesting that the full maturation of mast cells may require an additional
sPLA2-III-driven lipid signal(s).

5.4. Colonic inflammation and cancer

Colorectal cancer is a frequent form of malignancy and a major
cause of death in the Western hemisphere. Sporadic colon cancers ex-
hibit some aspects of inflammation, and the pathogenesis of some types
of colon cancer is associated with inflammatory bowel disease [107].
Several lines of evidence suggest a potential link between sPLA2-III and
the development of colon cancer. Implantation of sPLA2-III-transfected
colon cancer cells into nude mice leads to increased growth of tumor
xenografts [91]. sPLA2-III has been proposed as a candidate biomarker
for human colon cancer [108]. Higher expression of sPLA2-III in human
colorectal cancer is positively correlated with a higher rate of lymph
node metastasis and shorter survival [109]. Moreover, polymorphisms
in the human sPLA2-III gene (PLA2G3) are significantly associated with
a higher risk of colorectal cancer [110]. Importantly, a recent study has
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Fig. 4. Properties and functions of sPLA2-III. (A) The role of sPLA2-III in mast cell maturation and allergy [34]. sPLA2-III is released from immature mast cells and
coupled with fibroblastic L-PGDS to produce a microenvironmental pool of PGD2, which in turn acts on DP1 to promote mast cell maturation. Mature mast cells,
which express cPLA2α and hematopoietic PGD2 synthase (H-PGDS) abundantly, release a distinct pool of PGD2 as well as histamine following activation by IgE and
antigen, leading to allergic responses. Disturbance of the paracrine sPLA2-III-L-PGDS-DP1 circuit hampers the maturation and thereby activation of mast cells,
resulting in impairment of allergic responses. (B) The roles of distinct PLA2s in the colon [44,92]. cPLA2α releases a pool of AA that is converted to PGH2 by
cyclooxygenase-2 (COX-2) and then to PGE2 by microsomal PGE2 synthase (mPGES-1). This cPLA2α-driven PGE2 confers protection from colitis through its receptor
EP4 [143]. sPLA2-X releases ω3 EPA/DHA, which blocks harmful Th17 responses in colitis through the PUFA receptor GPR120. In contrast, sPLA2-III supplies
lysophospholipids such as LPA and LPI, which promote colitis and colorectal cancer probably through their receptors LPA2 and GPR55, respectively. Representative
images of the colons of WT, Pla2g4a−/− and Pla2g10−/− mice treated with 1% DSS and those of Pla2g3+/+ and Pla2g3−/− mice treated with 1.5% DSS are shown.
(C) Real-time PCR of Pla2g3 mRNA in the brain of 8-week-old C57BL/6 mice (n= 4, mean ± SEM). These results agree with a previous report [125]. (D) In situ
hybridization of Pla2g3 mRNA in the brain of newborn C57BL/6 mice. Signals for Pla2g3 mRNA (blue) are located in several neurons within the hypothalamus and
brainstem.
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shown that sPLA2-III is expressed in colonic epithelial cells and that its
genetic deletion protects against colon cancer and colitis [92].

Pla2g3−/− mice are resistant to three distinct models of colon
cancer, including those induced by azoxymethane (a model of carci-
nogen-induced cancer), by azoxymethane plus chronic treatment with
dextran sulfate sodium (DSS) (a model of colitis-induced cancer), and
by an APC mutation (ApcMin/+; a model of familial adenomatous
polyposis) [92]. Furthermore, Pla2g3−/− mice are less susceptible to
DSS-induced acute colitis, with lower expression of pro-inflammatory
and pathogenic Th17 cytokines and higher expression of epithelial
barrier genes, than are Pla2g3+/+ mice [92], implying that the ameli-
oration of colonic inflammation by sPLA2-III ablation underlies the
protection against colon cancer (Fig. 4B). Lipidomics analysis has re-
vealed that the Pla2g3−/− colon displays significant reduction of LPA
and LPI species [92], which promote colon inflammation or cancer
through their receptors LPA2 and GPR55, respectively [111,112]. Pro-
duction of these lysophospholipids by sPLA2-III is evident in DSS-
treated, but not in steady-state, colon, suggesting that sPLA2-III acts on
labile or damaged epithelial membranes in this disease setting. The
colonic action of sPLA2-III appears to be distinct from those of cPLA2α
and sPLA2-X, which mobilize colon-protective PGE2 and ω3 PUFAs,
respectively, in the colon and thereby protect against colitis [44]
(Fig. 4B). Overall, these results establish a role for sPLA2-III in the ag-
gravation of colonic inflammation and cancer, expand our under-
standing of the divergent roles of multiple PLA2 enzymes in the colon,
and point to sPLA2-III as a novel druggable target for colorectal dis-
eases.

5.5. Atherosclerosis

Clinically, an elevated plasma level of sPLA2-IIA is an independent
risk factor for cardiovascular disease [113]. It has been proposed that
sPLA2-mediated hydrolysis of lipoprotein phospholipids gives rise to a
type of pro-atherogenic, small-dense LDL with an increased net nega-
tive charge, LPC content and aggregation propensity, as well as mod-
ified HDL whose anti-atherogenic function is decreased [114]. Indeed,
LDL treated with several sPLA2s such as sPLA2-III, -V and -X facilitates
the formation of lipid-laden foam cells from macrophages, a hallmark
feature of atherosclerosis, in vitro [115,116]. On the basis of these
backgrounds, the roles of conventional group I/II/V/X sPLA2s in
atherosclerosis have been investigated using their transgenic or
knockout mice in several studies, although the results have been con-
troversial [117–121]. Although varespladib, a pan-sPLA2 inhibitor that
broadly inhibits conventional group I/II/V/X sPLA2s, prevented the
development of atherosclerosis in animal studies [122], a phase III
clinical trial using this compound failed to demonstrate its therapeutic
efficacy in patients with cardiovascular disease [123]. This is likely
because any advantageous effect of the inhibition of pro-atherogenic
sPLA2s would be cancelled out by the detrimental effect of the inhibi-
tion of anti-atherogenic sPLA2s.

PLA2G3-TG mice crossed with ApoE−/− mice, followed by supple-
mentation with an atherogenic diet, develop more advanced athero-
sclerotic lesions than ApoE−/− mice, accompanied by marked increases
in pro-atherogenic LPC-rich small-dense LDL and the pro-thrombotic
AA metabolite thromboxane (TX) A2 [116]. PLA2G3-TG mice also de-
velop systemic inflammation with increased age [124], suggesting that
the elevated systemic inflammatory state may have an additional im-
pact on promotion of atherosclerosis in these mice. Given that sPLA2-III
is insensitive to pan-sPLA2 inhibitors, a new agent that targets this
atypical sPLA2 might be useful for treatment of atherosclerosis. None-
theless, although the analysis of PLA2G3-TG mice has revealed the pro-
atherogenic potential of sPLA2-III, the definitive role of endogenous
sPLA2-III in atherosclerosis awaits further clarification using Pla2g3−/−

mice.

5.6. Other potential roles

sPLA2-III is expressed in the central nervous system, where it is
distributed in the brainstem, hypothalamus, spinal cord, and cerebral
neocortex (Fig. 4C, D) [125]. The localization of sPLA2-III in dendrites
or dendritic spines as well as postsynaptic structures in rat spinal cord
suggests a potential role of this enzyme in neurotransmission or sy-
naptic plasticity. In culture, sPLA2-III can promote neuronal outgrowth
and survival [126]. In humans, PLA2G3 polymorphisms are associated
with Alzheimer's disease [127]. The potential roles of sPLA2-III in
neuronal function and diseases need to be evaluated using Pla2g3−/−

mice in future studies.
Interestingly, functional genomic screening has identified sPLA2-III

as a negative regulator of ciliogenesis [128] The primary cilium is a
microtubule-based organelle that projects from the cell surface and acts
as an antenna to sense extracellular cues and regulate diverse signaling
pathways [129,130]. Defective cilium formation is associated with
many pathologic states, including classical ciliopathies, obesity and
cancer [131,132]. Using a Pla2g3 knockdown strategy, it has been
proposed that the production of lysophospholipids by sPLA2-III, whose
expression is controlled by the transcription factor SREBP-1c, disturbs
endosomal recycling and vesicular trafficking toward normal ciliogen-
esis [133]. Therefore, the functions of sPLA2-III in inflammation,
cancer, and sperm flagellar motility (see above) might rely, at least in
part, on the regulation of ciliogenesis by this enzyme.

6. Other poorly characterized sPLA2s

sPLA2-IIC has the structural features of group II sPLA2s, but pos-
sesses an extra sequence in the middle region, thus having 16 cysteines
(i.e. 8 disulfides) [134]. Although sPLA2-IIC is expressed abundantly in
meiotic cells in rodent testis [135], it is a pseudogene in humans [134].
Therefore, analysis of Pla2g2c−/− mice has not been performed. A cell
biological study using Pla2g2c knockdown has shown that sPLA2-IIC is
up-regulated in hepatitis B-infected hepatocytes to produce LPE, which
is then presented to CD1d on natural killer T cells, leading to propa-
gation of an anti-virus immune response [136].

The atypical group XII subfamily contains two isoforms, sPLA2-XIIA
and -XIIB. The in vivo functions of sPLA2-XIIA are largely obscure, since
studies using Pla2g12a−/− mice have not yet been reported. sPLA2-XIIA
kills Gram-negative bacteria such as Helicobacter pylori even more ef-
ficiently than sPLA2-IIA, a “bactericidal sPLA2”, in vitro [137,138].
Forcible overexpression of sPLA2-XIIA in Xenopus laevis embryos facil-
itates olfactory sensory neurogenesis [139]. sPLA2-XIIA is present in
axon terminals and dendrites in rat brain, and injection of its antisense
oligonucleotide into the prefrontal cortex perturbs working memory
and attention [140]. sPLA2-XIIB, preferentially expressed in the liver, is
catalytically inactive due to the replacement of the catalytic histidine
by a leucine residue [141]. Mice lacking sPLA2-XIIB (Pla2g12b−/−)
display steatohepatitis due to impaired hepatic secretion of very-low-
density lipoprotein through an unknown, probably non-catalytic, me-
chanism [142].

7. Concluding remarks

Studies during the last decade have revealed the pathophysiological
functions of various sPLA2s, among which sPLA2-IID, -IIE, -IIF and -III
are highlighted in this review. It is now clear that individual sPLA2s
play unique and tissue-specific roles by acting on extracellular phos-
pholipids, which include adjacent cell membranes, non-cellular lipid
components, and foreign phospholipids such as those in microbes and
food. The diversity of target phospholipids and products may explain
why the sPLA2 family contains multiple isoforms. However, as most of
our knowledge on sPLA2 functions has been obtained from mouse
(mostly C57BL/6) studies, it is important to translate these studies to
humans with caution. Although current data obtained from the
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knockout studies have suggested that individual sPLA2s are functionally
non-redundant in most cases, the possibility that some of the functions
could be compensated if sPLA2-IIA is normally expressed cannot be
fully ruled out. Further analyses in this research field and their in-
tegration for therapeutic applications will benefit from advanced lipi-
domics that can monitor the sPLA2-associated lipid metabolism occur-
ring within specific tissue niches in more detail. Hopefully, the next
decade will yield a comprehensive map of sPLA2-driven lipid networks,
allowing the development and therapeutic application of a new class of
sPLA2 inhibitors.
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