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Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring 
organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back 
to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation 
in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although 
ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, 
they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the 
expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium 
compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organosele-
nium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in 
some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular 
basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing 
enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium 
or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of 
computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase 
their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
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Introduction

In this review, we shall cover toxicological and pharmaco-
logical effects, in which organoselenium compounds are 
involved, but the effects of inorganic compounds will not 
be addressed here. The review mostly discusses recent lit-
erature, starting from 2011 until the end of 2020; however, 
some earlier studies are cited when needed. Method data 
for this review were sourced from online Web of Science 
database. The deadline for data search was August 2020; no 

data were excluded based on language or publication origin. 
Since, it is not possible to cite all of the findings that have 
taken place, we apologize to those whose work has been 
omitted.

The chemical structures of representative organoselenium 
compounds which will be discussed in this review are shown 
in Scheme 1.

A brief history of selenium: an element with two 
faces

Since its discovery about 200 years ago, selenium has been 
attracting the interest of chemists and biologists. Soon after 
its isolation by Jacobs Berzelius, in 1817, selenium was used 
in organic synthesis and investigated as a potentially toxic 
or beneficial agent both in animals (including humans) and 
plants (Levine 1915, 1925; Martin 1936; Rocha et al. 2017; 
Smith 1941; Weil 1915). One of the first therapeutic uses of 
selenium was in the treatment of cancer and reports about 
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the beneficial effects of elemental selenium in the treatment 
of inoperable carcinoma can be found in clinical studies 
published at the beginning of the twentieth century (Free-
man 1922; Watson-Williams 1919; Weil 1915). In sharp 
contrast, the lethal effect of a single injection of selenite 
in one human patient with cancer can also be found in the 
literature, cited in Weil (1915). Subsequently, selenium was 
rarely used in cancer treatment in humans, possibly because 
its effectiveness in clinical studies was inconsistent (Weil 
1915). In addition, the toxicity of selenium became notori-
ous in farm and experimental animals exposed to high lev-
els of the element (Levine 1915, 1925; Painter 1941; Smith 
1941). In short, the early history of the element selenium in 
biology has been marked by the contrast between its toxic 
and beneficial effects.

The importance of selenium to mammals started to be 
defined in 1957 when Schwartz and Foltz demonstrated that 
selenite and selenate could prevent liver necrosis caused by 
feeding a vitamin E-deficient diet to rats. Though the clas-
sical paper of Schwartz and Foltz did not establish dietary 
essentiality to selenium in rats, it gave the first demonstra-
tion that selenium could mitigate the deficiency of an essen-
tial vitamin (Schwarz and Foltz 1957). The explanation on 
how vitamin E and selenium have partial overlapping nutri-
tional and biochemical protective effects in mammals was 
deciphered only in 1985, when the phospholipid hydroper-
oxide glutathione peroxidase (GPx4) was characterized as 
a selenium enzyme (Ursini et al. 1985). GPx4 is involved in 

the degradation of phospholipid hydroperoxides in biomem-
branes of mammalian cells, and consequently, it protects cell 
membranes from lipid peroxidation up-stream to vitamin 
E. Vitamin E scavenges phospholipid hydroperoxyl radi-
cals directly, whereas GPx4 decreases the concentration of 
phospholipid peroxides that can generate the reactive per-
oxyl radicals. It is noteworthy that the selenium atom of the 
selenol (–SeH) group of GPx4 interacts directly with lipid 
peroxides in biomembranes, whereas vitamin E interacts 
with lipid peroxide radicals.

The first discovered biochemical role of selenium was its 
presence as an integral part of the enzyme glutathione per-
oxidase (Flohe et al. 1973; Rotruck et al. 1973). The accu-
rate molecular role played by selenium in mammalian cell 
biochemistry was elucidated in 1978, when the chemical 
nature of selenium, in the active site of rat liver glutathione 
peroxidase, was deciphered (Forstrom et al. 1978). The stud-
ies of Cone with bacteria (Cone et al. 1976) and Forstrom 
with rodents (Forstrom et al. 1978) introduced in the chem-
istry of life a new amino acid and a new functional group: 
the selenocysteine and the selenol group. They are analogs 
of the amino acid cysteine and its functional thiol group. 
The essentiality of selenocysteine and its selenol group in 
the biochemistry and physiology of mammalian cells will be 
presented in the next section: selenium physiology: selenium 
as a component of selenoproteins.

Adequate selenium intake has also been indicated to be 
critical to proper immune function and decrease the risk of 

Scheme 1  Chemical structures 
of representative organosele-
nium compounds discussed in 
this review
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cardiovascular diseases (Avery and Hoffmann 2018; Huang 
et al. 2012; Kuria et al. 2020; Qian et al. 2019; Rayman 
2012). Furthermore, beneficial effects of appropriate blood 
selenium levels as a factor against virus infections (particu-
larly HIV and, more, recently against SARS-CoV-2) and 
sepsis severity have also frequently appeared in the literature 
(Aggarwal et al. 2016; Alhazzani et al. 2013; Guillin et al. 
2019; Heller et al. 2020; Mertens et al. 2015; Moghaddam 
et al. 2020; Rayman 2012; Zhang et al. 2020b, c). How-
ever, negative and contradictory results can also be found 
in the literature (Bloos et al. 2016; Kamwesiga et al. 2015; 
Shivakoti et al. 2014; Stone et al. 2010). However, it is still 
elusive if selenium has specific direct role in such complex 
physiological, immunological, and pathological responses or 
if selenoproteins modulate indirectly the inflammatory and 
other responses by modulating the redox state of the body.

The influence of selenium supplementation as a potential 
anticarcinogenic agent was studied in a large epidemiologi-
cal study in USA. The SELECT study compared the sup-
plementation of selenium (as selenomethionine) and vitamin 
E in the incidence of prostate cancer. However, the study 
was interrupted before planned, because the data, contrary 
to the expectation, have not indicated potential beneficial 
effects of selenium or vitamin E. Despite the negative out-
comes of SELECT (Dunn et al. 2010; Klein et al. 2011; 
Lippman et al. 2009; Nicastro and Dunn 2013), the potential 
use of selenium in cancer prevention or treatment is still a 
matter of debate (Chapelle et al. 2020; Vinceti et al. 2018). 
Several experimental studies have indicated the potential 
anti-cancer properties of inorganic and organic forms of 
selenium (Álvarez-Pérez et al. 2018; Gandin et al. 2018; 
Gopalakrishna et al. 2018; Krasowska et al. 2019; Ruberte 
et al. 2019; Sanmartín et al. 2012; Sharma and Amin 2013; 
Spengler et al. 2019; Steinbrenner et al. 2013; Tan et al. 
2019). Some clinical studies have also demonstrated that 
selenite can have beneficial effects by itself or decrease some 
toxic effects of radiotherapy in cancer patients (Brodin et al. 
2015; Han et al. 2019; Handa et al. 2020; Knox et al. 2019; 
Muecke et al. 2014). More recently, ethaselen (a derivative 
of ebselen) was described to have pharmacological effects 
against lung cancer cell lines and is now recruiting patients 
for clinical trials for lung cancer treatment (Tan et al. 2019; 
Zheng et al. 2017b).

The supranutritional intake of selenium has been linked 
with increased risk of developing type 2 diabetes, advanced 
prostate cancer, hypertension, dyslipidemia, and neurode-
generative diseases (amyotrophic lateral sclerosis (ALS), 
early onset dementia, and Parkinson Disease) (Adani et al. 
2020a, b; Bastola et al. 2020; Loomba et al. 2020; Vinceti 
et al. 2018, 2019a, b; Wu et al. 2018; Yarmolinsky et al. 
2018). In accordance with epidemiological studies, the 
intake of supranutritional levels of selenium, which were 
associated with an overexpression of two selenoenzymes 

[glutathione peroxidase 1 (GPx1) and methionine sulfoxide 
reductase (MsrB1)] has been shown to cause hyperinsuline-
mia and insulin resistance in mice (Labunskyy et al. 2011). 
The detrimental effects of selenium in glucose homeostasis 
have been attributed to deregulation of cell redox balance 
(reductive stress). In contrast, the insufficient synthesis of 
selenoproteins by overexpressing a mutant selenocysteine 
t-RNA caused glucose intolerance and diabetes-like pheno-
type in mice (Labunskyy et al. 2011).

Concerning ALS, it seems that the speciation of sele-
nium (e.g., selenite or selenate vs organic forms) can deter-
mine the neurotoxicity of selenium in humans (Vinceti et al. 
2019b). Accordingly, Vicenti and collaborators have recently 
demonstrated that the speciation of selenium in the cerebro-
spinal fluid of patients with mild cognitive deficits predicted 
the risk of progression to Alzheimer’s disease, with selenate 
 (Se+6) increasing the risk significantly (Vinceti et al. 2017). 
Thus, in relation to cancer and other degenerative diseases, 
the role of selenium seems to have a U inverted shape curve 
with a relatively narrow range of selenium for the optimum 
physiological effects (Fig. 1). Another point that is highly 
critical and little explored is the speciation of selenium as a 

Fig. 1  U inverted shaped curve for selenium levels in humans. Low 
selenium status can increase the risk of immunological malfunction-
ing, cardiovascular diseases, sepsis severity, virus infection, and cog-
nitive deficits. High levels of blood selenium can be associated with 
an increased risk of developing certain types of cancer (e.g., mela-
noma and prostate cancer), hypertension, type 2 diabetes, and neuro-
degenerative diseases (e.g., ALS and Alzheimer’s Dementia). In the 
figure, the ideal levels of selenium were arbitrarily based on the opti-
mal blood activity of glutathione peroxidase (see below). Selenium 
plays important physiological functions as a part of 25 selenopro-
teins in humans. At least one half of them are important oxireduc-
tases (e.g., 5 glutathione peroxidases (GPxs1-4 and 6); 3 thioredoxin 
reductases (TrxRs), which are involved in the regeneration of reduced 
thioredoxin (Trx); methionine sulfoxide reductase, which reduces 
oxidized methionine sulfoxide to methionine in proteins, 3 deiodi-
nases (DIOs) that are involved in the metabolism of thyroid hormones 
(T3 and T4); selenophosphate synthetase and several selenoproteins 
without a clear-defined molecular role in cell physiology. The ideal 
physiological levels of selenium are not known, but for the blood GPx 
maximal activity, a level of selenium around 100 µg   L−1 is required 
(Rea et  al. 1979; Thomson et  al. 1977, 1982). However, how blood 
GPx activity can predict the whole-body selenoproteins adequate 
physiological activity is unknown. There is also epidemiological evi-
dence, suggesting that above 120 μg  L−1, selenium can start to facili-
tate the installation of pathological conditions (Bastola et al. 2020)
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determinant of its toxic effects. Of particular toxicological 
importance, recent data have indicated that high levels of 
cationic selenium (e.g., selenate) in the cerebrospinal fluid of 
patients with mild cognitive impairment increases the risk of 
conversion from mild cognitive impairment to Alzheimer’s 
Disease (Vinceti et al. 2017).

In this review, we will emphasize the potential pharma-
cology and toxicology of synthetic organoselenium com-
pounds and some naturally occurring organoselenium amino 
acids (e.g., selenomethionine). The use of selenium as an 
important tool in organic synthesis and as a pharmacologi-
cal agent goes back to the middle of the nineteenth and the 
beginning of the twentieth centuries. Notably, the rediscov-
ery of ebselen (which was originally synthesized in 1924) 
and its investigation in several clinical trials in different 
types of human pathologies have motivated the search for 
new selenium-containing molecules with pharmacological 
properties (Masaki et al. 2016a; Ogawa et al. 1999; Saito 
et al. 1998; Singh et al. 2016; Yamaguchi et al. 1998). One 
point that has further stimulated the search for novel orga-
noselenium compounds is the successive failures of ebse-
len or its low effectiveness as therapeutic agent (Beckman 
et al. 2016; Kil et al. 2017; Masaki et al. 2016a; Ogawa et al. 
1999; Saito et al. 1998; Yamaguchi et al. 1998).

However, here, we have to emphasize that ebselen is still 
under clinical trials to treat bipolar disorder (Sharpley et al. 
2020a) and has been registered for two clinical trials with 
moderate and severe COVID-19 patients (Haritha et al. 
2020). Besides, ethaselen, an ebselen derivative, is in the 
recruiting phase of a clinical trial to treat lung cancer. The 
compound has been effective in a pre-clinical trial in human 
non-small cell lung cancer models (Ye et al. 2017; Zheng 
et al. 2017b,2019b). In short, though ebselen has not been 
approved to treat a specific disease, its safety in humans has 
been an indication that organoselenium compounds can be 
promising therapeutic agents.

Physiological chemistry of selenium: selenium 
as component of selenoproteins

The physiological chemistry of selenium in animals is 
played almost exclusively by the selenocysteinyl residue(s) 
found in a few types of selenoproteins. Selenocysteine is an 
analogue of cysteine and serine. The human genome codifies 
25 selenoproteins that have usually only one residue of sele-
nocysteine (Sec); the exception is the selenoprotein P that 
has near 10 s residues (for a brief description of selenopro-
teins function, see the legend of Fig. 1). The incorporation 
of selenium into the seryl-carbon skeleton is complex and 
occurs at the level of the transfer RNA (t-RNA[Ser]Sec) (in 
a process named co-translational incorporation of Sec in its 
t-RNA and then in the selenoproteins) (for reviews, see Hat-
field et al. 2014; Labunskyy et al. 2014). This t-RNA[Ser]

Sec is first loaded with a seryl residue by the action of a 
seryl t-RNA synthetase and metabolized to phosphoseryl-t-
RNA[Ser]Sec by the enzyme seryl–t-RNA[Ser][Sec] kinase 
(PSTK). Then, selenophosphate donates, via the reaction 
catalyzed by the enzyme selenocysteine synthase (SepSecS), 
the selenium atom to form the selenol group in the place of 
the phosphorylated OH group of serine (Fig. 2). The incor-
poration of the selenium atom in an organic moiety requires 
four enzymatic steps, including the binding of serine to the 
t-RNA[Ser]Sec, the phosphorylation of loaded seryl residue, 
the synthesis of selenophosphate by the reaction of HSe- 
(selenide) with ATP (a reaction catalyzed by the selonoen-
zyme selenophosphate synthetase), and the incorporation 
of selenophosphate in the place of the phosphorylated OH 
group of serine. For details about the incorporation of sele-
nium in the serine skeleton, see the reviews (Hatfield et al. 
2014; Labunskyy et al. 2014; Serrão et al. 2018).

The entire process requires several steps, protein factors, 
e.g., the Sec-t-RNA[Ser]Sec dedicated translation elonga-
tion factor (EFSec), SECIS-binding protein 2 (SBP2 or 
SECISBP2), ribosomal protein eL30, translation initiation 
factor 4A3 (eIF4A3), nucleolin, Secp43 or t-RNA seleno-
cysteine 1-associated protein 1 (TRNAU1AP) and SepSecS), 
the specific RNA sequences (the selenocysteine insertion 
sequence or SECIS elements), and the t-RNA[Ser]Sec. The 
machinery utilized in the synthesis of selenoproteins inter-
prets the stop codon UGA as selenocysteine only when it 
is present within the RNA sequences of the selenoproteins. 
The key players here are the SECIS elements, which in ver-
tebrates are non-codifying RNA regions adjacent to the sele-
noprotein sequence, and selenocysteine-t-RNA (Bulteau and 
Chavatte 2015; Howard and Copeland 2019; Serrão et al. 
2018; Simonović and Puppala 2018).

As briefly commented in the previous paragraph, the 
existence of these SECIS elements forming a stem-loop-
stem-loop structure with near 100 nucleotides in the 
3′-untranslated region of human 25 selenoprotein mRNAs 
is indispensable for the proper insertion of Sec in the sele-
noproteins. In fact, the stem–loop–stem–loop forming the 
SECIS bends or kinks itself toward the UGA codon inside 
the selenoprotein sequence and, inside of the ribosome, 
SECIS interacts with the t-RNA loaded with Sec and with 
protein factors described just above, allowing the release of 
the transporter and the incorporation of selenocysteine in the 
nascent polypeptide. For reviews about the molecular play-
ers in the noncanonical incorporation of Sec at UGA codon 
in selenoproteins (i.e., about the recoding of UGA), see 
(Bulteau and Chavatte 2015; Howard and Copeland 2019; 
Simonović and Puppala 2018). The selenocysteinyl residue, 
specifically its selenol group, is the softest of the nucleophile 
centers found in biomolecules. Accordingly, several sele-
noproteins are oxidoreductases enzymes, where the -SeH 
(-Se−) of the selenocysteine participates in the catalysis. 
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The well-characterized selenoproteins include glutathione 
peroxidase isoforms (e.g., GPx1 and GPx4); thioredoxin 
reductase isoforms (TrxR1, TrxR2, TrxR3), iodothyronine 
deiodinases (DIO1, DIO2, and DIO3), methionine sulfoxide 
reductase B (MsrB), selenophosphate synthetase, and sele-
noprotein P. There are a group of endoplasmatic reticulum-
resident selenoproteins which the molecular roles are still 
elusive (Pitts and Hoffmann 2018; Addinsall et al. 2018; 
Gennadyevna 2020; Pitts and Hoffmann 2018). In addition 
to DIO2, selenoproteins K, M, N, S, T, and selenoprotein 
15 kDa are found in the endoplasmic reticulum, where they 
appear to be involved in the regulation of  Ca2+ levels, protein 
folding, inflammatory processes, and oxidative stress (Add-
insall et al. 2018; Gennadyevna 2020; Pitts and Hoffmann 
2018; Pothion et al. 2020; Shchedrina et al. 2010).

As commented above, the physiological chemistry of 
selenium seems to be played almost exclusively by the –SeH 
group of selenoproteins. Recently, it was demonstrated that 
selenocysteine can be incorporated in the uncoupling protein 
(UCP1) in the place of cysteine (Jedrychowski et al. 2020). 
The process is not a random incorporation of selenocyst-
eine, but occurs in a specific cysteinyl residue (Cys253). 

The incorporation of selenocysteine is expected to occur via 
its t-RNA[Ser][Sec], because selenocysteine does not exist 
as a free amino acid in the presence of oxygen and water. 
However, the reasons why a cysteine codon can interact with 
the t-RNA[Ser][Sec] are unknown. Despite this, the data 
published by Jedrychowski and collaborators may open a 
new role for selenium as a modulator of the cysteine physio-
logical function, via specific incorporation of selenocysteine 
in the place of specific cysteinyl residue in a small portion 
of synthesized thiol-containing proteins (for instance, for 
replacement of Cys 253 in UCP1, about 1.5% of this position 
was loaded with Sec) (Jedrychowski et al. 2020).

Toxicity of organoselenium compounds

Interaction of selenium with thiols

Herein, we will emphasize the biochemistry of interaction 
of organoselenium compounds with thiols from molecules 
of biological significance and their implications, without 
highlighting the pathophysiological processes associated 

Fig. 2  Incorporation of selenide in the phosphoseryl-t-RNA[Ser]Sec 
and synthesis of selenocysteinyl-t-RNA[Ser]Sec after the reaction of 
selenophosphate with the phosphorylated hydroxyl group of serine-
loaded t-RNA[Ser]Sec. Selenocysteine is released from the t-RNA 
when the ribosome reads the UGA codon inside the mRNA sequence 
of a selenoprotein. The recoding of UGA codon to selenocysteine 
depends on the SECIS elements (which in mammals is a non-cod-

ing mRNA forming a stem-loop structure that kinks to interact with 
the t-RNA). The translation of the in-frame UGA codons inside the 
genes of selenoproteins also requires several protein factors that are 
not indicated in the figure (for more details, consult the text or the 
reviews Bulteau and Chavatte 2015; Howard and Copeland 2019; 
Simonović and Puppala 2018)
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with high levels of selenium. Among the organoselenium 
compounds, we will address primarily selenides and dis-
elenides, such as ebselen, diphenyl diselenide, and some 
derivatives of them.

The molecular mechanisms involved in selenium toxicity 
are not completely elucidated; however, the interaction of 
inorganic and organic selenium with low- and high-molec-
ular-weight thiols plays a central role in their toxicity. This 
evidence was first reported to inorganic forms, in which 
classical experiments showed the effectiveness of selenite 
in oxidizing sulfhydryl groups, producing disulfides and an 
unstable intermediary containing –S–Se–S– bonds (Gan-
ther 1968; Painter 1941; Tsen and Tappel 1958). Afterward, 
studies demonstrated that the oxidation of thiols, such as 
glutathione (GSH) and cysteine, by selenite produced the 
radical superoxide (Seko et al. 1989; Spallholz 1994). To 
date, the oxidation of thiols has also been the basis to explain 
the toxicity of a variety of organoselenium compounds (Bar-
bosa et al. 2017; Nogueira and Rocha 2011; Prigol et al. 
2012) and mounting evidence has pointed out that reactive 
species (RS) formation contributes for the toxicity of many 
compounds (Nogueira and Rocha 2011; Prigol et al. 2012). 
In effect, the occurrence of oxidative stress and related 
phenomena has been highlighted in numerous in vitro and 
in vivo studies with organoselenium compounds. Interest-
ingly, the increased production of RS accompanied by cell 
viability loss, DNA damage, and apoptosis are considered 
important pro-oxidant effects elicited by some organose-
lenium compounds against cancer cells, virus, and fungal 
pathogens (Álvarez-Pérez et al. 2018; Chen et al. 2020; Sies 
and Parnham 2020; Thangamani et al. 2017). It is important 
to mention here that the thiol oxidation may also subsidize 
the antioxidant effects of some selenium compounds via 
activation of antioxidant gene expression.

Therefore, the systematic study of oxidation of sulfhydryl 
groups from biological thiol-containing molecules by orga-
noselenium compounds has facilitated the identification of 
potential “molecular targets" that might support both sele-
nium pro-oxidative and antioxidant effects. In this context, 
we will cite here some in vitro and in silico (computational) 
studies toward specific interactions of some organosele-
nium compounds with proteins containing vicinal thiol 
groups, which are more efficiently oxidized than monothiol 
molecules.

In vitro molecular toxicity of organoselenium 
compounds

Although the molecular mechanisms involved in toxicity of 
organoselenium compounds are still not completely under-
stood, the interaction with thiols is pointed out as a key 
phenomenon. Similar to inorganic selenium molecules, the 
interaction of the sulfur atom from thiols with the selenium 

atom from organoselenium compounds  (S….Se) can lead to 
the formation of a selenenyl–sulfide bond (S–Se), an adduct 
able to impair the activity of sulfhydryl enzymes. In fact, 
the toxic effects of several selenides and diselenides have 
been related to their potential in disrupting the activity of 
thiol-containing enzymes via oxidation of cysteinyl residues 
(Barbosa et al. 1998; Chaudiere et al. 1992; Galant et al. 
2017, 2020; Nogueira and Rocha 2011; Quispe et al. 2019; 
Yu et al. 2017).

Focusing on diphenyl diselenide and its derivatives, 
the more precise findings include mainly those toward 
the enzyme δ-aminolevulinate dehydratase (δ-ALA-D). 
δ-ALA-D catalyzes the condensation of two molecules of 
5-aminolevulinic acid to porphobilinogen, a monopyrrol 
precursor of prosthetic group heme, and due to its sulfhy-
dryl nature, it has been commonly used in toxicological 
researches as an indicator of toxicity caused by pro-oxidant 
agents (Chaudiere et al. 1992; Ecker et al. 2018; Klimacze-
wski et al. 2018; Rocha et al. 2012c).

The active site of δ-ALA-D possesses three cysteine 
residues coordinated with  Zn2+, which prevent the forma-
tion of disulfide bridges between the sulfhydryl groups. The 
proximity of the cysteine groups in the active site renders to 
enzyme a high sensitivity to oxidation (Nogara et al. 2020; 
Rocha et al. 2012c; Saraiva et al. 2012).

The first studies demonstrating the diphenyl diselenide 
potential inhibitory on δ-ALAD were carried out comparing 
the animal and plant enzymes (Barbosa et al. 1998; Farina 
et al. 2002). These findings revealed that diphenyl diselenide 
inhibited the activity from the animal enzyme, but not from 
the plant, in which the active site has aspartic acid instead of 
cysteine residues and the metal  Mg2+ in the place of  Zn2+. 
Since that, various other diphenyl diselenide derivatives 
were reported as inhibitors of the enzyme from different 
sources, as well (Nogueira and Rocha 2011; Nogueira et al. 
2004; Rocha et al. 2012a, b, c).

In general, the mechanism by which diphenyl diselenide 
and its derivatives inhibit the δ-ALA-D activity involves two 
steps of cysteine oxidation: (1) the first oxidation involves 
the attack of the selenium atom from diphenyl diselenide by 
the most reactive cysteinyl residue to yield the intermediate 
(E–S–SePh); and (2) the attack of the second more nucleo-
philic cysteinyl residue to the S–Se– bond of the intermedi-
ate (E–S–SePh), generating the oxidized enzyme (E–(S–S)) 
and two molecules of selenol (PhSeH) (Scheme 2) (Rocha 
et al. 2012c; Saraiva et al. 2012).

By docking analyses, the cysteine 124 residue from the 
active site of the enzyme was identified as the nucleophilic 
center that initiates the attack on the Se–Se bond from dis-
elenides, forming an E–S–SePh as intermediate. The vicinal 
cysteine 132 residue was identified as responsible for the 
subsequent attack to the S–Se bond, resulting in the forma-
tion of the disulfide bond between cysteines 124 and 132 
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from δ-ALA-D. Along with diphenyl diselenide, these inter-
actions were also shown in silico for p-chloro, p-methoxy, 
and m-trifluoromethyl diselenide derivatives (Saraiva et al. 
2012) (Fig. 3).

A very recent docking study was performed with sources 
of δ-ALA-D enzyme from Homo sapiens (Hsδ-AlaD), 
Drosophila melanogaster (Dmδ-AlaD), and Cucumis sati-
vus (Csδ-AlaD), and the results corroborated the previous 
findings and provided more information about the mecha-
nism of action (Nogara et al. 2020). Nogara and collabora-
tors also reported the interaction of diphenyl diselenide with 
the cysteine residues from Hsδ-AlaD and Dmδ-AlaD, but 
not with Csδ-AlaD (a non-thiol protein). In the Hsδ-AlaD 
active site, they found that the selenium atoms of diphenyl 
diselenide interacted with the carboxylic group of aspar-
tate 120 and the  Zn2+ ion, besides the thiolate group from 
cysteine 124. In the Dmδ-AlaD, selenium atoms interacted 
with arginine 205, proline 212, phenylalanine 204, tyrosine 
20, and arginine 217 via H bond, and with the cysteine 122. 
Interestingly, they found that the diphenyl diselenide puta-
tive metabolite, phenylseleninic acid, as well as other oxi-
dized organoselenium forms presented similar binding pose, 

interacting with the cysteine 124 and 122 residues from the 
active site from Hsδ-AlaD and Dmδ-AlaD, respectively 
(Nogara et al. 2020).

Because organoselenium compounds are highly prone to 
suffer a nucleophilic attack by cysteinyl residues, the activity 
of other sulfhydryl enzymes has been usually carried out to 
test the in vitro pro-oxidant potential of novel organochal-
cogens. Among them, the enzymes  Na+,  K+ATPase and lac-
tate dehydrogenase (LDH) have been investigated (Chagas 
et al. 2013a; Kade et al. 2009; Lugokenski et al. 2011). In 
addition to diphenyl diselenide, herein, we highlighted the 
toxicological studies showing the inhibitory effects of ebse-
len, 4-(4-fluorophenylseleno)-3-phenylisoquinoline), chloro 
(4-(4-chlorophenylseleno)-3-phenylisoquinoline), trifluoro 
(4-(3-trifluoromethylphenylseleno)-3-phenylisoquinoline), 
and bis(phenylimidazoselenazolyl) diselenide on δ-ALA-D 
and  Na+,  K+ATPase activities from rat tissues (Chagas et al. 
2015; Sampaio et al. 2017a).

Recently, the activities of both enzymes were also used 
for screening the toxicity of novel zidovudine (AZT)-based 
selenides on human erythrocytes. Among 5′-phenylseleno-, 
p-chloro-, p-methyl-AZT derivatives, the p-methyl substi-
tuted AZT-derivative was the least toxic and did not cause 
δ-ALA-D and  Na+,  K+ ATPase inhibition, thiol depletion, 
and eryptosis; whereas the 5′-phenylseleno- and p-chloro- 
derivatives inhibited both δ-ALA-D and  Na+,  K+ ATPase 
activities, causing thiol depletion, and eryptosis (Ecker et al. 
2018).

Regarding the oxidation of thiols from low-molecular-
weight compounds, increasing evidence indicates that the 
oxidation rate seems to be dependent on pH and independ-
ent of thiol group pKa. At pH 7.4, cysteine and dithiothrei-
tol were more reactive with diphenyl diselenide, whereas 
2,3-dimercapto-1-propanesulfonic acid, GSH, and dimer-
captosuccinic acid exhibited a low reactivity (Hassan and 
Rocha 2012).

Organoselenium compounds: thiol depletion, reactive 
species overproduction, and mitochondrial dysfunction

As mentioned before, some organoselenium compounds 
may exhibit strong electrophilic activity, forming selenenyl-
sulfide bonds with the cysteinyl residues from non-protein 
and protein thiols. Therefore, the activity of several protein 
families, including antioxidant enzymes as well as the GSH 
cell levels can be affected, and represent one of the main 
mechanisms by which organoselenium compounds modu-
late a wide spectrum of related biological processes. Among 
them, we highlighted herein those associated with oxidative 
stress, in which thiol depletion, RS overproduction, DNA 
damage, and mitochondrial dysfunctions are usually pointed 
out as key end-points.
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Scheme  2  Molecular mechanism of oxidation of δ-ALAD catalytic 
thiols by diphenyl diselenide

Fig. 3  Additional proposed molecular mechanism showing the oxida-
tion of catalytic cysteine (cys) 124 and 132 from human δ-ALAD by 
diphenyl diselenide, obtained by in silico studies (Nogara et al. 2020; 
Saraiva et al. 2012)
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Although ebselen and diphenyl diselenide are well rec-
ognized as antioxidant active agents, both compounds may 
exacerbate the production of RS at relatively high concen-
trations in vitro. In a range from 10 to 50 μM, ebselen and 
diphenyl diselenide induced RS overproduction, accom-
panied by loss of viability, and DNA damage in human 
white cells (Bueno et al. 2018; Caeran Bueno et al. 2013). 
Similarly, ebselen caused an increase in RS levels, viabil-
ity loss, -SH oxidation, and calcium dyshomeostasis in 
cultured astrocytes (Santofimia-Castano et al. 2013, 2016).

It is important to note that depletion of thiols accom-
panied by the increase in RS production has been sug-
gested as possible mechanisms involved in the action of 
ebselen, diphenyl diselenide, and its derivatives against a 
diversity of fungal pathogens (Bueno Rosseti et al. 2014; 
Jaromin et al. 2018; Ngo et al. 2016; Rosseti et al. 2015; 
Thangamani et al. 2017).

In line with this, a study toward Saccharomyces cerevi-
siae showed that the deleterious effects of diphenyl dis-
elenide on growth, size, and membrane permeability were 
followed by a marked RS overproduction at the highest 
concentration tested (10 µM) (Galant et al. 2017). Diphe-
nyl diselenide and its dicholesteroyl diselenide derivative 
were genotoxic and mutagenic to S. cerevisiae, and these 
effects were associated with oxidative damage, because 
N-acetylcysteine partially reversed the toxicity of these 
compounds (de Oliveira et al. 2014).

Toxicological studies have indicated that mitochondria 
are potential targets for pro-oxidant action of selenides and 
diselenides, including ebselen and diphenyl diselenide. In 
general, the deleterious effects are demonstrated at con-
centrations ranging from 10 to 100 μM. One of the first 
studies that simultaneously evaluated the effect of ebse-
len and diphenyl diselenide on mitochondria demonstrated 
that both compounds caused mitochondrial depolarization 
and swelling, effects that were associated with thiol oxi-
dation, given that dithiotreitol prevented them (Puntel 
et al. 2010). In an extension of this study, using renal and 
hepatic mitochondria, ebselen and diphenyl diselenide 
inhibited the activity of complex I and II, without chang-
ing the complex III and IV. These effects were reversed 
by GSH and then related to the oxidation of critical thiol 
groups from mitochondrial complexes I and II (Puntel 
et al. 2013).

In the rat liver mitochondria, a recent study investigated 
diphenyl diselenide derivatives containing o-methoxy and 
p-methyl groups substituted in the aryl (25–100 μM) and 
revealed that only the compound containing the p-methyl 
group affected the mitochondrial membrane potential and 
decreased the State III respiration from 25 μM (Stefanello 
et al. 2020). Mitochondria from rat hippocampal astrocytes 
exposed to ebselen at a concentration of 100 μM showed 
disturbances in the membrane potential and calcium levels 

along with RS overproduction (Santofimia-Castano et al. 
2013).

As the mitochondria are highly sensitive to redox status, 
pro-oxidant agents can disrupt mitochondrial homeosta-
sis and trigger cell death via apoptosis. As stated above, 
diphenyl diselenide and ebselen induced in vitro deleterious 
effects on mitochondria that could elicit apoptosis. However, 
some in vitro findings show that exposure of healthy cells to 
both compounds did not culminate with apoptosis. In fact, 
human leukocytes exposed to diphenyl diselenide and ebse-
len, ranging from 10 to 50 μM, presented changes in mRNA 
expression of antioxidant enzymes, such as catalase, super-
oxide dismutase, and glutathione peroxidase, and increase 
in RS production, but did not undergo apoptosis (Caeran 
Bueno et al. 2013). Accordingly, exposure of rat hippocam-
pal astrocytes to ebselen (10–100 μM) caused viability loss, 
endoplasmic reticulum, and mitochondrial stress, without 
changing the activity of caspase-3, an apoptosis activation 
marker (Santofimia-Castaño et al. 2016; Santofimia-Castano 
et al. 2013).

On the other hand, the activation of death signaling by 
many organoselenium compounds toward unhealthy cells 
and pathogens has driven studies on the synthesis and 
screening for anti-cancer, anti-viral, and anti-fungal appli-
cations (these will be further addressed in detail at the phar-
macological section).

In vivo toxicity of organoselenium compounds

Although diphenyl diselenide and ebselen are recognized 
as compounds with low toxicity in vivo, at high doses, they 
can elicit toxic effects, which vary a lot according to the 
species, exposure time, and route of administration. As dem-
onstrated in vitro, mechanistically, the in vivo toxicity of 
ebselen, diphenyl diselenide, and its derivatives has been 
associated with oxidative events, including thiol depletion, 
lipid peroxidation, and inhibition of sulfhydryl enzymes, 
such as δ-ALA-D,  Na+,  K+ ATPase, and LDH (Nogueira and 
Rocha 2011; Nogueira et al. 2004). To date, the toxicological 
implications from acute and chronic exposures to organose-
lenium compounds on mammalian models have not been 
extensively reported in the literature. Therefore, we will 
also include here some findings found in non-mammalian 
models. Table 1 summarizes the acute and chronic effects 
of some organoselenium compounds.

Acute exposure

In rodents, the toxicity of diphenyl diselenide and ebselen 
varies depending on the route of administration, age, and 
species (Table 1). After acute administration by the intra-
peritoneal (i.p) route, diphenyl diselenide was more toxic to 
mice than rats (Meotti et al. 2003). On the other hand, the 
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Table 1  Effects of acute and chronic treatments with diphenyl diselenide, ebselen, and selenomethionine

a LD50 the dose of a test substance that is lethal for 50% of the animals, hpf hours post-fertilization, PTZ pentylenetetrazol, Flyb Drosophila mela-
nogaster

Acute exposure Chronic exposure

Species Treatments Effects Treatments Effects

Mice Diphenyl diselenide
 210 µmol  kg−1 (i.p)a  Mortality
 150 µmol.kg−1 (i.p)  ↑ PTZ-induced seizure
 10 mg  kg−1(i.p) Stereotypy

Ebselen
 340 µmol  kg−1 (i.p)a  Mortality

Selenomethionine Selenomethionine
 ∼ 8 mg  kg−1(i.p)a

 8 mg Se  kg−1 (i.p)
 Mortality
 Hepatic lipid peroxidation

 0.2 and 2 mg  g−1(p.o)
 50 days

 ↑Liver
 Lipoperoxidation
 Arsenic-induced

Rats Diphenyl diselenide Diphenyl diselenide
 1200 µmol  kg−1 (i.p)a

 10 mg  kg−1(i.p)
 50 to 500 mg  kg−1(i.g)

 Mortality
 Anxiety
 Seizures, brain lipid peroxidation in pups

 1 mg  kg−1 (i.p)
 21 days

 ↑Hg deposition
 In liver and brain

Ebselen
 10 mg   kg−1 (s.c)
 21 days

 Hepatic lipoperoxidation
 In suckling

Selenomethionine
 1.2–1.8 mg  kg−1

(p.o)
 13 weeks

 ↓Weight
 Liver and
pancreas damage

Ebselen
 400 µmol  kg−1 (i.p)a  Mortality

Selenomethionine
 ∼4 mg  kg−1(i.p)a  Mortality
 1 mg  kg−1 (i.p)  Pancreatic damage

Rabbits Diphenyl diselenide
 500 mmol  kg−1 (i.p)  Mortality, hepatoxicity, and brain oxidative 

stress
Flyb Diphenyl diselenide

 0.5–2 µM (p.o)
10 days

 Developmental delay

 1–10 µM (p.o)
3 days

↑Hg toxicity in adult

Fish Diphenyl diselenide
 5 ppm (p.o)
 60 days

 ↓weight
 Oxidative damage
 Silver catfish and Cyprinius carpo

Selenomethionine
 10–30 μg  g−1(p.o)
 90 days

 Behavioral changes, cardiac dysfunctions
 In adult Zebrafish

 30–60 μg  g−1(p.o)
 30 days

 Cognitive impairment, brain oxidative stress
 In adult Zebrafish

 100 µg  L−1 (p.o)
 48 hpf

 Embryonic teratogenesis
in Zebrafish

 30–60 μg  g−1 (p.o)
 30 days

 Growth retard, mortality, hematological 
disturbances in

juvenile Steelhead trout
Lambs Selenomethionine

1–8 mg/kg (p.o) Tachypnea, myocardial
necrosis, pulmonary edema
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i.p. administration of diphenyl diselenide-loaded nanocap-
sules (50–1000 µmol  kg−1) did not cause overt toxicity or 
death in mice (Stefanello et al. 2015a). The  LD50 values for 
ebselen were very similar when intraperitoneally injected in 
mice and rats (Meotti et al. 2003).

Diphenyl diselenide was also toxic to rabbits, when 
administered by the i.p route at a dose of 500 µmol  kg−1 
caused mortality, hepatoxicity, and disruption of brain redox 
status (Straliotto et al. 2010).

By subcutaneous (s.c) and intragastric (i.g) routes, 
diphenyl diselenide usually exhibited lower toxicity than 
that observed after i.p administration. Acute intragastric or 
subcutaneous administration of diphenyl diselenide did not 
cause overt toxicity or death in rats and mice (da Luz Fiuza 
et al. 2015; Meinerz et al. 2014; Meotti et al. 2003; Wilhelm 
et al. 2009b).

By the intravenous route, sheep treated with a single dose 
of diphenyl diselenide (6 µmol  kg−1) did not have any overt 
sign of toxicity until the end of observational period, namely 
37 days (Leal et al. 2018).

Especially toward central symptoms from acute treat-
ments, the first investigations demonstrated that an i.p 
administration of diphenyl diselenide increased the penti-
lentetrazole-induced seizure in mice (Table 1), but not in 
rats (Brito et al. 2006). Regarding the age of animals, diphe-
nyl diselenide administered by s.c or i.g route did not cause 
seizures in adult rats or mice; however, in 12-day-old rat 
pups, oral acute treatment induced seizure episodes (Table 1) 
(Prigol et al. 2007). Diphenyl diselenide acutely adminis-
tered at the dose of 10 mg  kg−1 induced stereotypy in mice 
and anxiety-like behavior in rats, manifestations that were 
related to the inhibition of the brain monoamino oxidase 
(MAO-B) activity and increased levels of pro-inflammatory 
marker tumor necrosis factor α (TNF), respectively (Figueira 
et al. 2015; Yamakawa et al. 2020).

In non-mammalian models, some findings showed that 
the acute treatment of zebrafish with diphenyl diselenide 
and diphenyl diselenide-loaded nanocapsules, at concentra-
tions ranging from 0.1 to 2 µM, did not cause behavioral 
impairments and/or oxidative stress (Ferreira et al. 2019b; 
Ibrahim et al. 2014b).

Chronic exposure

The toxic effects elicited by diphenyl diselenide from 
chronic treatments also vary in relation to the organisms 
(Table 1). Most of chronic protocols have applied dietary 
diphenyl diselenide, which have revealed that the long-
term intake is relatively safe for several species. Evidence 
has been found to suggest that dietary diphenyl diselenide, 
from 1 to 3 ppm, was relatively secure for rats, rabbits, and 
some fish species after months of exposure, without eliciting 
either systemic or central signals of toxicity (Baldissera et al. 

2020a; Barbosa et al. 2008; de Bem et al. 2006; dos Santos 
et al. 2020). However, the intake of high concentrations for 
a long time may culminate with toxic effects in fish. In fact, 
Silver catfish and Cyprinius carpio fed with 5 ppm diphenyl 
diselenide, for 60 days, had reduction in the weight and body 
length, and also showed increased lipid peroxidation in the 
liver, brain, and muscle (Menezes et al. 2014, 2016).

Here, we highlight that diphenyl diselenide chronic treat-
ment (Table 1) did not induce toxicity in rats, but enhanced 
the Hg accumulation in the liver and brain as well as potenti-
ated motor deficits and body-weight loss caused by methyl-
mercury (MeHg) (Dalla Corte et al. 2013).

In vivo chronic toxicity data with ebselen are scarcer 
than diphenyl diselenide, but there is evidence that chronic 
subcutaneous administration of the compound (10 mg/kg, 
for 21 days) to suckling rats culminated with lipid peroxi-
dation and non-protein thiol depletion in the liver (Farina 
et al. 2004).

In invertebrates, literature brings some findings from D. 
melanogaster as an organism model to study toxicology and 
pharmacology of dietary diphenyl diselenide. Accordingly, 
the toxicity of dietary diphenyl diselenide was dependent 
on sex of D. melanogaster both in relation to total body 
thiol depletion and disruption in the mRNA expression of 
the antioxidant enzymes like catalase, superoxide dismutase, 
and glutathione S transferase (Occai et al. 2018).

Leão and collaborators exposed flies to diphenyl disele-
nide during both developmental and adult phases. Dietary 
diphenyl diselenide, ranging from 0.5 to 2 µM, affected the 
normal developmental success of D. melanogaster and also 
enhanced the toxicity of MeHg on development. In adult 
flies, diphenyl diselenide (1 to 10 μM) did not induce toxic 
effects, but increased the toxicity of MeHg on climbing abil-
ity and survival of individuals (Leão et al. 2018).

Moreover, diphenyl diselenide and MeHg co-exposure 
increased the Hg levels in the flies, an effect that was related 
to the formation of a less excretable complex between the 
selenium from the organoselenium and Hg. Accordingly, the 
same group had already demonstrated that diphenyl disele-
nide and MeHg co-exposure had increased the Hg content 
in the brain and liver of rodents (Dalla Corte et al. 2016, 
2013). In flies and rats, the reduced intermediate of diphenyl 
diselenide (phenylselenol or selenophenol) may have reacted 
with MeHg to form a PhSe–HgMe complex. This complex 
possibly facilitated the break of –C–Se– and –Hg–C– bonds, 
releasing the insoluble HgSe salt (Madabeni et al. 2020).

In vivo toxicity of diphenyl diselenide derivatives and other 
organoselenium compounds Similar to diphenyl diselenide, 
the toxic profile of diselenide derivatives varies depending 
on the species and administration route, and, in general, the 
intragastric and subcutaneous administrations were reported 
to be safer than intraperitoneal. For mice, the intragastric 
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 LD50 for diselenide derivatives, p-chloro and p-methoxyl 
substituted diselenides, was found to be > 1 mmol  kg−1. For 
m-trifluoromethyl and benzylamino derivatives, the  LD50 
was estimated to be > 0.62 and 350 mg   kg−1, respectively 
(Ibrahim et al. 2019; Savegnago et al. 2009).

The intragastric administration of p-methoxyl-substituted 
diselenide-nanoencapsulated (25 mg  kg−1, 7 days) did not 
cause any alteration in hematological and oxidative dam-
age markers, and enhanced the selenium levels in the blood, 
kidney, and liver of mice (Sari et al. 2017).

By the subcutaneous route, p-chloro diselenide deriva-
tive (1000 µmol  kg−1) did not induce overt sign of toxicity 
in mice and reduced the toxicity of  HgCl2 on the liver and 
kidney, as indicated by the restoration of δ-ALA-D,  Na+,  K+ 
ATPase, and lipid peroxidation to normal levels (de Freitas 
et al. 2012).

In rats, 2,2′-dithienyl diselenide derivative, at doses of 50 
and 100 mg  kg−1, caused systemic toxicity after intragastric 
administration, such as weight body loss, hepatotoxicity, 
inhibition of δ-ALA-D activity, lipid peroxidation, and death 
(Chagas et al. 2013a).

Acute intraperitoneal administration of vinyl chalcoge-
nide 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one, 
at doses of 125–500 µg  kg−1, was toxic to rats, increasing 
plasma alanine aminotransferase and causing hematological 
and behavioral changes. The compound also increased lipid 
and protein oxidation in the brain (de Andrade et al. 2014; 
dos Santos et al. 2012). Likewise, rats exposed chronically 
to this vinyl chalcogenide (i.p., 30 days), in addition to cause 
behavioral alterations, increased brain lipid and protein oxi-
dation, thiol depletion, liver, and renal damage (Medeiros 
et al. 2012; Mello et al. 2012).

3,3′-Diselenodipropionic acid (DSePA), a synthetic deriv-
ative of selenocystine, has been extensively investigated as 
an antioxidant and radioprotective agent. The acute oral tox-
icity of DSePA is low in mice  (LD50 ∼200 mg  kg−1) and rat 
 (LD50 ∼ 25 mg  kg−1) when compared with its parent com-
pound selenocystine and other organoselenium commonly 
used as a nutritional supplement, including methylseleno-
cysteine and selenomethionine (Kunwar et al. 2018, 2020; 
Yang and Jia 2014). The mechanisms involved in the toxicity 
of DSePA have not been studied in detail, but considering 
its structure and its  LD50 for rodents (which is greater than 
selenocystine); we can predict that its toxicity will be medi-
ated by oxidation of thiol groups of critical target proteins. 
Although the acute in vivo toxicity of DSePA in mice has 
been described to be low in relation to selenocystine, we 
have to bear in mind the extreme sensitivity of humans to 
the toxic effects of selenocystine (Weisberger and Suhrland 
1956). This aspect is important in view of the structural 
similarity of DSePA with selenocystine.

Regarding the in  vivo toxicity of naturally occur-
ring organoselenium compounds, we included here some 

toxicological studies published in the last decade with sele-
nomethionine, methylselenocysteine, and selenocysteine, 
in which the findings with selenomethionine were the most 
prevalent (Table 1). Selenomethionine can be metabolized 
to selenide and provided selenium to be incorporated into 
selenoproteins. However, depending on the species, sele-
nomethionine levels exceeding 0.2 ppm can become toxic 
(Schrauzer 2003).

Human cases of acute and/or chronic selenomethionine 
poisoning are rare, but, recently, a fatal case of occupa-
tional acute intoxication with this powdered amino acid was 
reported. After trying to open a sealed bag-container, the 
l-selenomethionine powder blew out back onto 30 years-old 
man. Selenomethionine contaminated his skin and clothes, 
and was also inhaled. A few hours after the contamination 
(about 5 h), the man died, and just before dying, he had 
abnormal blood pH (7.01), oxygen saturation (75%), glu-
cose (17 mg 100  mL−1), bicarbonate (12 mEq  L−1), urea 
(14 mg  dL−1), creatinine (1.51 mg 100  mL−1), 11 mg  L−1 of 
selenium (normal levels below 0.16 mg.L−1), and urine sele-
nium levels of 25 mg  L−1 (normal levels below 0.2 mg  L−1) 
(Spiller et al. 2020).

In an experimental animal model, lambs orally admin-
istered with a single dose of selenium as selenomethionine 
(ranging from ∼ 1 to 8 mg of Se  kg−1) developed tachypnea, 
whose severity and time to recovery were dose-dependent. 
Histopathologic alterations were also observed in the ani-
mals exposed to the higher doses, including myocardial 
necrosis, pulmonary edema, and hemorrhage (Tiwary et al. 
2006).

In rats, the i.p.  LD50 of selenomethionine was estimated 
to be ∼ 4 mg Se  kg−1, whereas for mice ∼ 8 mg Se  kg−1 
(Schrauzer 2003). Indeed, rats intravenously injected, at a 
bolus dose of 1.0 mg Se  kg−1 as selenomethionine, accu-
mulated selenium preferably in the pancreas and had a sig-
nificant increase in the serum amylase levels, a key marker 
of pancreatic damage.

The chronic toxicity of selenomethionine is considered 
lower than inorganic selenium forms, and often is reported 
in animals fed with too high levels. Rats fed for 8 weeks with 
selenomethionine (16 ppm of Se) did not develop signs of 
toxicity, whereas the same amount of selenium as sodium 
selenite produced hepatotoxicity, cardiotoxicity, and spleno-
megaly (Schrauzer 2003).

Oral administration of 0.5 and 1.0 mg selenomethionine, 
for 13 weeks, did not also induce toxic effects in rats. How-
ever, higher concentrations (1.2 and 1.8 mg Se  kg−1 body 
weight.day−1) caused weight loss, liver, and pancreas dam-
age and decreased food consumption (Schrauzer 2003).

In a mouse model, the supplementation of sufficient and 
excess levels of selenomethionine (0.2 and 2 mg  Se−1  kg−1, 
respectively), for 50 days, improved the basal immuno-
logical parameters impaired by arsenic intoxication, but the 
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two doses increased the hepatic lipid peroxidation arsenic-
induced (Rodríguez-Sosa et al. 2013).

In non-mammalian models, most of the literature 
about the toxicity of selenomethionine intake is in fish. In 
zebrafish, chronic exposure to elevated dietary selenom-
ethionine (from 10 to 30 μg  g−1) has been associated with 
impairments in behavioral performance, aerobic metabolic 
capacity, and energy homeostasis (McPhee and Janz 2014). 
These adverse effects were correlated with the negative 
impact of chronic dietary selenomethionine on cardiac 
function, because zebrafish exposed to similar concentra-
tions had a marked decrease in the ventricular contractile 
rate, stroke volume, and cardiac output, as well as disruption 
in the mRNA expression of cardiac remodeling enzymes 
(Pettem et al. 2017).

Adult zebrafish exposed to selenomethionine ∼30 and 
60 μg  g−1 of diet developed learning impairment, which was 
associated with oxidative stress and altered brain mRNA 
expression of dopaminergic system components (Naderi 
et al. 2017).

Chronic exposure of adult zebrafish to selenomethionine 
(34.1 μg  g−1; 90 days) also displayed changes in social learn-
ing via dysregulation of key genes of the serotonergic path-
way (Attaran et al. 2020).

In zebrafish embryos, selenomethionine at 100 µg  L−1 
induced significant deformities (lordosis and craniofacial 
malformation), which were partially attributed to oxidative 
stress, since N-acetylcysteine reduced the teratogenic signals 
(Arnold et al. 2016).

A study performed with steelhead trout in the juvenile 
stage fed on ∼ 8, 15, 30, and 60 μg Se  g−1 diet in the form of 
selenomethionine, for 4 weeks, revealed that Se accumulated 
in a dose-dependent manner in all tissues. Moreover, the 
diets with selenomethionine at 30 μg  g−1 or higher arrested 
growth and increased mortality and hematological distur-
bances (Lee et al. 2019).

Pharmacology of organoselenium 
compounds

The coronavirus COVID-19 pandemic, caused by the world-
wide spread of new SARS-CoV-2, has dominated the work 
of researchers in an unprecedented global effort to lead to 
the rapid discovery of drugs with the clinical potential to 
fighting this new infectious disease for which no specific 
drugs or vaccines are available (Roser et al. 2020).

Since the nutritional essentiality of selenium as a trace 
element for human health has been demonstrated (Schwarz 
and Foltz 1957), the multifaceted aspects of this nutri-
ent have attracted worldwide clinical and research inter-
est (Allingstrup and Afshari 2015; Navarro-Alarcon and 
Cabrera-Vique 2008; Oldfield 1987; Rayman 2012). 

However, the selenium status should be analyzed consider-
ing its U-shaped effects, exhibiting advantages in selenium-
deficient individuals but specific health risks in those with 
selenium excess (Duntas and Benvenga 2015; Misu et al. 
2012; Rayman 2020; Rayman et  al. 2012; Rayman and 
Stranges 2013; Rocourt and Cheng 2013; Zhou et al. 2013).

Particularly, in China, where COVID-19 emerged, the 
concentration of selenium in the soil, which generally 
reflects its presence in food and the selenium levels in human 
populations, varies from deficiency to excess (Dinh et al. 
2018). Based on this premise and knowing the immunomod-
ulatory property of selenium (Guillin et al. 2019; Steinbren-
ner et al. 2015), a very recent published study from Rayman 
group reported the better recovering of COVID-19 patients 
related to certain regions of China that had the most sele-
nium in soil (Zhang et al. 2020c).

Selenium, as a cyclic selenyl amide ebselen, also emerges 
in the pandemic scenario as a potential repurposing approved 
pharmaceutical drug with anti-viral activity for the treatment 
of COVID-19 (Sies and Parnham 2020).

Considering what was mentioned before, in this chapter, 
the pharmacology of organoselenium compounds is dis-
cussed, emphasizing properties beyond their well-known 
antioxidant activity.

Anti‑viral activity

As previously described in Sect. 2.1 of this review, the 
pro-oxidant action of selenium compounds, including thiol 
oxidation, RS generation, DNA damage, and mitochondrial 
dysfunctions, can drive events that culminate in biological 
downstream effects by affecting kinases, phosphatases, and 
caspases, proteins involved in the DNA repair and transcrip-
tion factors that regulate growth, proliferative, and death 
pathways in cancer cells and different pathogens. Further-
more, organoselenium compounds, particularly ebselen and 
diselenides, can oxidize critical thiol-containing proteins 
from viruses, bacteria, and fungi.

Ebselen has been shown to target critical proteins from 
different viruses due to its reaction with thiols. Toward 
human immunodeficiency virus type 1 (HIV-1), ebselen 
was found to be a potent integrase inhibitor, disrupting the 
interaction of the enzyme with the key growth-factor (lens-
epithelium-derived growth-factor, LEDGF/p75), through the 
formation of a selenium–sulfur bond with a cysteinyl residue 
from the factor LEDGF/p75 (Zhang et al. 2020a). Similarly, 
the ebselen action as a potent HIV-1 capsid assembly dis-
ruptor was associated with its covalent binding to cysteine 
198 and 218 residues in the HIV-1 capsid protein (Thenin-
Houssier et al. 2016).

Regarding the hepatitis C virus, ebselen was recognized 
as a potent inhibitor of the NS3, a non-structural protein 
with helicase function. At concentrations higher than 10 µM, 
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ebselen caused an irreversible inhibition and formation of 
covalent adducts with all cysteines present in the viral heli-
case (Mukherjee et al. 2014).

Currently, extensive computational–experimental screen-
ings on SARS-CoV-2 have identified several promising 
drugs that could serve as effective inhibitors of the virus 
proteins, mainly toward the protease Mpro protease (NSP5), 
a non-structural sulfhydryl protein involved in the processing 
of Orf polyproteins 1a and 1ab. The products of hydrolysis 
of polyproteins 1a and 1ab (NSP4 to NSP 16) are involved 
in the replication of SARS-CoV-2 as well as SARS-CoV and 
MERS-CoV (Pillaiyar et al. 2016).

Among various compounds investigated, ebselen 
appeared as one of the most potent inhibitors of the enzyme 
both in vitro and SARS-CoV-2 replication in Vero cells. 
The  IC50 for MPro protease was near 0.7 μM and for virus 
replication about 10 μM (Jin et al. 2020; Sies and Parnham 
2020).

Ebselen covalently attaches to the catalytic cysteine resi-
due from Mpro site active (Cys 145), forming selenosulfide 
that leads to the enzyme inactivation. Atomistic molecular 
simulations also provided evidence that ebselen exhibits 
high-affinity binding for sites localized between the II and 
III domains of the protein, an important allosteric effect that 
regulates the enzyme catalytic site (Menendez et al. 2020).

Ebselen and its derivatives have been demonstrated as 
inhibitors of both Mpro and the papain-like protease (PL-
Pro) from SARS-CoV-2 (Ma et al. 2020); however, they had 
higher inhibitory effects against Mpro than PLpro (Zmudz-
inski et al. 2020).

The anti-viral properties of diphenyl diselenide and its 
derivatives have been only rarely explored. Therefore, diphe-
nyl diselenide has been reported to have virucidal and anti-
viral actions against in vitro herpes simplex virus 2 (HSV‐2), 
reducing the infectivity in 70.8% and 47%, respectively. 
Moreover, treatment with diphenyl diselenide was proven 
to be effective against oxidative stress and inflammation in 
HSV‐2-infected mice (Sartori et al. 2016, 2017).

In this way, a recent high-throughput screening of a series 
of new anti-viral diphenyl diselenide derivatives against 
human herpes virus type 1 (HHV-1) and encephalomyocar-
ditis virus (EMCV) in A549-infected cells revealed their 
effectiveness against the two viruses. The majority of com-
pounds tested, especially bis[2-(hydroxyphenylcarbamoyl)]
phenyl diselenide, exhibited high activity against HHV-1 
and moderate activity against EMCV. The anti-HHV-1 
activity of most effective diselenides ranged between 2 and 
40 μg  mL−1 (Giurg et al. 2017). Recently, diphenyl disele-
nide was reported to be effective against bovine alphaherpes-
virus 2 (BoHV-2), the agent of bovine herpetic mamillitis, 
both in vitro and in vivo in ewes transdermally infected with 
BoHV-2 (Amaral et al. 2020).

Antimicrobial activity

In the last decades, several studies regarding the antimicro-
bial activity of organoselenium compounds, such as ebselen, 
diphenyl diselenide, and selenide-based compounds, toward 
pathogenic fungi and bacteria have appeared in the literature 
(Di Leo et al. 2019).

Data from different laboratories have indicated that ebse-
len and various ebsulfur derivatives exhibited high efficacy 
against several kinds of clinically relevant fungal strains, 
among them Candida albicans, Candida glabrata, Candida 
tropicalis, and Candida parapsilosis. From these studies, 
the minimal inhibitory concentration (MIC) values found 
to ebselen ranged from ∼ 0.5 to 2 µg  mL−1, whereas ∼ 0.02 
to 12 µg  mL−1 was reported to its derivatives (Di Leo et al. 
2019; May et al. 2018; Ngo et al. 2016; Thangamani et al. 
2017). Moreover, ebselen and its structural derivatives, such 
as benzisoselenazol-3(2H)-one, and 2-methyl- and 2-n-pro-
pyl-benzisoselenazol derivatives, 2-phenylbenzisothiazol-
3(2H)-one, and 2-phenyl-7-azabenzisoselenazol-3(2H)-one, 
exhibited similar inhibitory activity in assays with flucona-
zole-resistant strain of C. albicans (Orie et al. 2017).

Ebselen appeared as one of the most active compounds 
in studies that screened repurposing off-patented molecules 
with anti-fungal activity against Candida auris (De Oliveira 
et al. 2019; Wall et al. 2018).

The activity of ebselen nanoencapsulated was mark-
edly increased against C. parapsilosis, C. albicans, and C. 
tropicalis when compared with the free form (Jaromin et al. 
2018). In this way, Vartak and collaborators demonstrated 
the efficacy of a soluble vaginal film containing ebselen 
developed to treat vulvovaginal candidiasis, which exhibited 
an MIC value of 20 μM against Candida species, a con-
centration significantly lower when compared to classical 
anti-fungal as fluconazole (MIC 500 µM) and miconazole 
(MIC 100 µM) (Vartak et al. 2020b). The same group also 
showed the superior efficacy of a novel topical nanoemulgel 
of ebselen against C. albicans and C. tropicalis when com-
pared to the effect of a clinically used drug terbinafine that 
was ineffective even at 100 µM (Vartak et al. 2020a).

Ebselen has also been suggested by several studies as a 
promising molecule to treat bacterial infections alone or in 
combination with other agents. The effectiveness of ebselen 
and its derivatives has already been demonstrated against 
diverse pathogens, including Staphylococcus ssp., Strepto-
coccus ssp., and Enterococcus ssp. (Chen and Yang 2019; 
Thangamani et al. 2015a).

Ebselen exhibited a potent bactericidal activity against 
Staphylococcus aureus multidrug-resistant clinical isolates 
and reduced the bacteria load in a mouse model of staphylo-
coccal skin infections, acting also synergistically with tradi-
tional antimicrobials (Thangamani et al. 2015b).
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After an evaluation against a broad array of enterococ-
cal isolates in vitro, ebselen was uncovered as a promising 
agent for decolonization of vancomycin-resistant entero-
cocci from the gastrointestinal tract (AbdelKhalek et al. 
2018).

By targeting cysteine residues in the active site from 
critical enzymes of Mycobacterium tuberculosis (antigen 85 
complex; transpeptidase Ldt Mt2), ebselen and some deriva-
tives were considered promising for treating tuberculosis (de 
Munnik et al. 2019; Favrot et al. 2013; Goins et al. 2017).

Similarly, from a high-throughput screening assay, ebse-
len was identified as a potent inhibitor of anthrax receptor 
(tumor marker endothelial 8, TEM8), via modification of a 
cysteine residue in the extracellular domain from the anthrax 
receptor (Cryan et al. 2013). In addition to the receptor mod-
ulation, Gustaffon and collaborators demonstrated that ebse-
len and its derivatives strongly inhibited Bacillus anthracis 
thioredoxin reductase (Gustafsson et al. 2016).

Screening ebselen and its derivatives for the treatment of 
ureolytic bacterial infections has revealed these organose-
lenium compounds as inhibitors of urease activity from 
Sporosarcina pasteurii and Helicobacter pylori through the 
interaction with a critical cysteine located at the entrance of 
the enzyme active site (Macegoniuk et al. 2016).

Very recent studies have demonstrated the synergistic 
therapeutic efficacy of ebselen and silver against the multi-
drug-resistant bacteria, including Acinetobacter baumannii, 
Escherichia coli, and S. aureus (Chen et al. 2019; Dong et al. 
2020; Wang et al. 2020).

Increasing evidence indicates the effectiveness of diphe-
nyl diselenide, alone or as adjuvant with classical anti-fun-
gal agents, against diverse strains of fungi. Diphenyl dis-
elenide was effective against 32 Aspergillus isolates (MIC 
64 µg  mL−1), which increased the fungicidal action of the 
drug caspofungin, but was ineffective against an aspergil-
losis mouse model (Melo et al. 2020).

In vitro, diphenyl diselenide was tested against nineteen 
Pythium insidiosum isolates and showed an MIC ranging 
from ∼ 0.5 to 2.0 µg  mL−1, the fungistatic activity was repro-
duced in an animal model of pythiosis (Loreto et al. 2012). 
Moreover, diphenyl diselenide also increased the efficacy of 
flucytosine against 30 clinical isolates of Cryptococcus spp. 
(Rossato et al. 2019).

On clinical C. glabrata strains, the diphenyl diselenide 
MIC ranged from 0.25 to > 64 (5.16 µg  mL−1), values simi-
lar to that of found for fluconazole. Besides, a synergistic 
interaction was observed between diphenyl diselenide and 
the drug amphotericin B (Denardi et al. 2013).

Similar action profile was found against 40 clinical iso-
lates of Sporothrix brasiliensis, in which diphenyl disele-
nide presented an MIC ranging from 4 to 32 µg  mL−1 and 
a synergistic interaction with itraconazole (73%) (Poester 
et al. 2019).

Along with diphenyl diselenide, various other disele-
nide derivatives have been pointed out as effective inhibi-
tors of growth and biofilm formation in fungi and bacteria. 
Herein we highlighted the compounds camphor diselenide, 
2,2′-dithienyl diselenide, bis[ethyl-N-(2′-selenobenzoyl) 
glycinate], bis[2′-seleno-N-(1-methyl-2-phenylethyl) benza-
mide], bis[2-(hydroxyphenylcarbamoyl)]phenyl diselenide, 
and (Z, Z)-3,30-(4-(diseleno)phenylcarbamoyl)acrylic acid, 
that in addition to C. albicans also showed antibiofilm activ-
ity against several bacteria strains, including Enterococcus 
spp., Staphylococcus spp., Streptococcus ssp., and Pseu-
domonas ssp. (Bueno Rosseti et al. 2014; Giurg et al. 2017; 
Pesarico et al. 2013; Rosseti et al. 2015; Sancineto et al. 
2016; Shaaban et al. 2015).

There are also some studies comparing the anti-fungal 
potential of ebselen and diphenyl diselenide, alone or in 
combination with anti-fungal agents. One of them evalu-
ated the effect of both compounds in combination with 
amphotericin B, caspofungin, itraconazole, and voriconazole 
against 25 clinical isolates of Fusarium spp. The MICs found 
for diphenyl diselenide and ebselen were 4–32 µg  mL−1 and 
2–8 µg  mL−1, respectively. The most effective synergic com-
binations were found to ebselen + amphotericin B (88%), 
ebselen + voriconazole (80%), diphenyl diselenide + ampho-
tericin B (72%), and diphenyl diselenide + voriconazole 
(64%) (Venturini et al. 2016).

Likewise, a comparative study toward C. parapsilosis 
showed that ebselen presented higher anti-fungal activity 
than diphenyl diselenide against both echinocandin-suscep-
tible and -resistant strains (Chassot et al. 2016). The efficacy 
of both compounds was also addressed against Trichosporo-
nasahii strains, in which ebselen exhibited an MIC ranging 
from ∼ 0.25 to 8 µg  mL−1 and diphenyl diselenide from ∼8 
to 64 µg  mL−1 (Felli Kubiça et al. 2019).

It is worth mentioning that the mechanisms of antimicro-
bial action proposed for these organoselenium compounds 
generally involve similar effects for both fungi and bacte-
ria. Overall, the studies about the antimicrobial activity of 
different organoselenium compounds have revealed their 
effectiveness in increasing cell membrane permeability, 
inhibiting sulfhydryl enzymes, and inducing redox dysho-
meostasis in the cells mainly through GSH depletion and 
RS overproduction, events that can culminate in death (Di 
Leo et al. 2019).

Chemopreventive activity

A Janus-faced character of the element selenium, initially 
classified as carcinogenic (Nelson et al. 1943) and, subse-
quently, as anticarcinogenic (Shamberger and Frost 1969), 
has a long history. In that, some of the recent chapters 
based on clinical trials, cohort, and epidemiological stud-
ies have shown an inverse association between selenium 
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intake and risk of cancers in humans. Because an exten-
sive discussion of the literature on this field is outside of 
the scope of this review, the readers are directed to some 
comprehensive reviews on this topic (Hatfield et al. 2014; 
Jablonska and Vinceti 2015; Rayman 2020; Stolwijk et al. 
2020).

Since the pioneering studies on the anti-cancer activity of 
organoselenium compounds (El-Bayoumy 1985; Fiala et al. 
1991; Nayini et al. 1989; Reddy et al. 1985, 1987; Tanaka 
et al. 1985), basic research on this topic has moved ahead at 
a rapid pace, bringing perspectives in cancer prevention and 
promotion, cancer drug resistance, and molecular mecha-
nisms behind these effects (Chen et al. 2020; Gopalakrishna 
et al. 2018; Spengler et al. 2019). However, no attempt is 
made here to thoroughly discuss the beginning studies 
on chemopreventive effects of organoselenium, as these 
have been reviewed elsewhere (Nogueira and Rocha 2011; 
Nogueira et al. 2004).

With regard to ebselen, this organoselenium compound 
has been proposed to induce RS formation, calcium dys-
homeostasis, Bax activation, and mitochondria-mediated 
apoptosis in different tumor cells, including multiple mye-
loma, pancreatic tumor, prostate, and leukocytes cancer 
lines (Gandin et al. 2018; Hanavan et al. 2015; Kaczor-Kel-
ler et al. 2020; Santofimia-Castaño et al. 2018). Besides, 
a very recent study reported that ebselen is an inhibitor of 
the 6-phosphogluconate dehydrogenase in leukemia cells, 
an enzyme essential for cell proliferation and tumor growth 
(Feng et al. 2020). Ebselen was proven to be a potent inhibi-
tor of cell growth for the triple-negative model of breast 
cancer (Jupp and Giles 2012).

Ebselen and its derivatives have been also indicated as 
inhibitors of histone deacetylases in tumor cells (Wang et al. 
2017b) and effective in reducing cancer cell migration and 
invasion by targeting multiple kinases with established roles 
in cancer progression (Bijian et al. 2012).

Thioredoxin reductase 1 (TrxR1)-based drugs have been 
proposed as promising anti-cancer therapies, because the 
overexpression of this selenoprotein has been detected in 
many human tumors. Herein, we highlight the compound 
ethaselen, an ebselen derivative, which has been pointed out 
in both in vitro and in vivo studies as a potent anti-prolifer-
ative drug, by inhibiting TrxR1 in various types of tumors 
(Wang et al. 2011a, 2012; Wu et al. 2020). This promising 
action motivated the use of ethaselen in phase I clinical trial 
in China, which includes patients diagnosed with advanced 
non-small-cell lung cancer. The phase 1a/1b finished in 
2008, and currently, the compound will pass to phase 1c, 
where the patients will receive oral ethaselen tablets as 
treatment (600 mg/bid day) (Clinical Trials.gov Identifier: 
NCT02166242). Moreover, a number of methodological 
strategies have been carried out for synthesizing ethaselen 
derivatives with antitumoral activity (Ye et al. 2016).

In addition to TrR1, selenoprotein 15 (sep15) and GPx2 
have been highlighted as important cellular redox regula-
tors potentially involved in preventing and promoting cancer; 
however, the role of selenoproteins in cancer will be not 
addressed herein, but interested readers may refer to a com-
prehensive review published by Hatfield and collaborators 
(Hatfield et al. 2014).

In the search for novel organoselenium compounds with 
chemopreventive activity, a class of zidovudine (AZT)-based 
selenides, named chalcogenozidovudines, was screened as 
antitumoral candidates against human bladder carcinoma. 
This study uncovered 5′-(phenylseleno)zidovudine and its 
p-methyl and p-chloro derivatives as antitumor agents with 
potent apoptosis induction effects (de Souza et al. 2015). 
After a toxicological screening, the p-methyl derivative 
emerged as the most promising candidate for further antitu-
mor studies by exhibiting lower toxicity than AZT on health 
immune cells and acute in vivo treatment (Ecker et al. 2017).

Increasing evidence indicates the chemopreventive activ-
ity of diselenides, especially diphenyl diselenide; as a result, 
one of the first related studies showed the effectiveness of 
diphenyl diselenide in inducing death in the human neuro-
blastoma cell line SH-SY5Y via ERK1/2-mediated apop-
tosis (Posser et al. 2011). The potential cytotoxic effects of 
diphenyl diselenide and diphenyl diselenide-loaded nano-
capsules have also been reported against C6 glioma cells, in 
which both forms attenuated the tumor development. Similar 
results were observed against SK-Mel-103, a resistant mela-
noma cell line. In these studies, diphenyl diselenide at both 
forms caused a loss of viability, increased propidium iodide 
uptake, and nitrite levels in the malignant cells (Ferreira 
et al. 2019a, 2020).

A detailed discussion of the anti-proliferative activity of 
diselenide derivatives in malignant cells has been reviewed 
by others (Álvarez-Pérez et al. 2018; Gandin et al. 2018), 
and these reviews bring a list of compounds indicated as 
promising antitumor agents. Briefly, along with diphenyl 
diselenide on murine hepatoma cells (Hepa 1c1c7), the anti-
proliferative potential of various diaryl, dialkyl, dipyridazi-
nyl, dipyridinyl, and phenylcarbamate diselenides against 
other carcinoma cells have been addressed (Álvarez-Pérez 
et al. 2018; Gandin et al. 2018).

In terms of molecular mechanisms, cell-cycle arresting, 
caspase-independent and dependent apoptosis, p53 activa-
tion, and autophagy via c-Jun N-terminal kinase (JNK) acti-
vation are among the cytotoxic effects reported for diorganyl 
diselenides, including symmetric aromatic diarylseleno and 
acylselenourea derivatives as well as m-trifluoromethyl-
diphenyl diselenide, p-methoxyl-diphenyl diselenide, and 
diphenyl methylselenocyanate (Chakraborty et al. 2016; 
Díaz et al. 2018; Garnica et al. 2018).

Furthermore, one way by which the majority of agents, 
such as ionizing radiation, chemotherapeutic agents, and 
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some targeted therapies, kill cancer cells consists of directly 
or indirectly generating reactive oxygen species (ROS) that 
block the key steps in the cell cycle (Watson 2013). There-
fore, the use of antioxidant dietary supplements, and, con-
sequently, the search for organoselenium compounds that 
could counteract the ROS generation and prevent tissue 
damage, allowing an increase in the maximum therapeutic 
dose of the anti-cancer drug, have been a matter of research 
interest (Panchuk et al. 2014, 2016).

In experimental models of cisplatin chemotherapy, ebse-
len has been proven to reduce ovarian damage and ototox-
icity through modulation of oxidative injury and apopto-
sis (Orzáez et al. 2014; Soyman et al. 2018), whereas a 
naphthalimide-based organoselenium compound enhanced 
cisplatin antitumor efficacy and reduced its toxicity (Ghosh 
et al. 2015).

In an MCF-7-cultured cell model, diphenyl diselenide 
antigenotoxic activity has been associated with the preven-
tion of cancer risk induced by tamoxifen hormone therapy 
(Melo et al. 2013). Besides, a synergistic antitumor action 
was identified when ebselen was associated with radio-
therapy, which was attributed to the induction of apoptosis 
and inhibition of breast cancer cell progression (Thabet and 
Moustafa 2017).

Over the past decades, basic research in the anti-cancer 
potential of naturally occurring organoselenium compounds 
has made progress (Chen and Wong 2009; Ip and Ganther 
1992; Jiang et al. 1999; Lu et al. 1995; Reddy et al. 2000; 
Sinha et al. 1999; Sinha and Medina 1997; Unni et al. 2005, 
2001), and this knowledge has been translated with some 
success to clinical trials (Clark et al. 1996; Duffield-Lillico 
et al. 2003; Lippman et al. 2009; Mix et al. 2015a, b).

Aiming to use higher doses of chemotherapy and over-
come drug resistance, the oral bioavailable methylsele-
nocysteine has been investigated in combination with 
chemotherapeutic agents and proven to be effective against 
organ-specific toxicities induced by cyclophosphamide, cis-
platin, and oxaliplatin, and to enhance antitumor activity 
in animal models of cancer (Cao et al. 2004, 2014). Very 
recently, a phase I randomized double-blinded study com-
pared methylselenocysteine and selenomethionine pharma-
codynamic effects in cancer patients to determine a safe and 
effective dose to be used in combination with anti-cancer 
therapy. However, the dose of 400 μg was considered too 
low to achieve the levels of selenium in plasma (≥ 5 μM), 
which are expected to cause pharmacodynamic effects 
(Evans et al. 2020).

Previously published studies revealed that selenom-
ethionine, the organic form of selenium used SELECT 
trial (Lippman et al. 2009), is ineffective against prostate 
cancer models (Li et al. 2008; Wang et al. 2009), whereas 
methylselenocysteine, classified in the second generation 
of organoselenium compounds, reduces tumor growth and 

castration-resistant progression of prostate tumor (Chris-
tensen et  al. 2013; Liu et  al. 2015b; Zhan et  al. 2013). 
Methylselenocysteine is considered the most effective 
among the other natural occurring selenium-containing 
molecules, because it is efficiently converted to the active 
intermediate methylselenol, requiring one-step activation by 
β-lyase, and does not get as easily serum protein interaction 
(Bhattacharya 2011; Ip 1998; Ip et al. 2000). Moreover, the 
anti-cancer effectiveness of methylselenocysteine and sele-
nomethionine has been associated with the transamination 
reactions that generate α-keto acid selenium metabolites, 
which are potent inhibitors of histone deacetylases (Kassam 
et al. 2011; Lee et al. 2009; Pinto et al. 2014).

In addition to methylselenocysteine, methylseleninic acid 
has been reported as a direct precursor of methylselenol, 
the key metabolite responsible for selenium’s anti-cancer 
activity (El-Bayoumy and Sinha 2004), and effective against 
prostate cancer (Zhao et al. 2004). By inducing lipid peroxi-
dation, methylseleninic acid sensitizes head–neck squamous 
cell carcinoma to radiation (Lafin et al. 2019).

Some of the molecular mechanisms underlying chemo-
preventive activity of naturally occurring organoselenium 
compounds described so far are the modulation of antioxi-
dant defenses (selenoenzymes) and redox status of cells, pro-
grammed cell death, DNA repair, carcinogen detoxification, 
immune system, neo-angiogenesis, regulation of cell prolif-
eration, and tumor cell invasion (Jung et al. 2013; Korbut 
et al. 2018; Pons et al. 2020; Wang et al. 2018a; Weekley 
et al. 2012; Whanger 2004; Zeng and Combs 2008; Zeng 
et al. 2011).

Antidepressant‑ and anxiolytic‑like activities

Ebselen, a safe and well-tolerated organoselenium (Lynch 
and Kil 2009; Parnham and Graf 1987), has attracted tre-
mendous interest over the past decades. Although it never 
reached the market, the possibility to apply for novel appli-
cations or repurposing ebselen is at the core of basic aca-
demic research and clinical trials (Kil et al. 2017; Ogawa 
et al. 1999; Parnham and Sies 2013; Saito et al. 1998; Shar-
pley et al. 2020; Yamaguchi et al. 1998). In 2013, drug-
repurposing studies indicated ebselen as a mood stabilizer; 
this is because it is an inhibitor of inositol monophosphatase 
(IMPase), induces lithium-like effects on mouse behavior, 
crosses the blood–brain barrier, down-regulates serotonin 
(5-HT) 2A receptor in the head-twitch and c-Fos models, 
inhibits glutamine synthase, and decreases myo-inositol con-
centration in the human brain (Masaki et al. 2016a, b; Singh 
et al. 2013, 2016).

More recently, ebselen has been suggested as an anti-
depressant (Antoniadou et al. 2018) and impulsivity low-
ering agent (Barkus et al. 2018) based on its neurophar-
macological lithium-like effects in different animal models 
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of 5-HT2A function. Therefore, Fink and collaborators 
reported that elevated 5-HT2A receptor expression is asso-
ciated with impulsive behavior in rodents (Fink et al. 2015).

The success of ebselen in experimental models of mood 
disorders (Posser et al. 2009) has encouraged the study of 
other organoselenium compounds that share with this com-
pound some properties relevant to the antidepressant- and 
anxiolytic-like activities such as neuroprotective, anti-
inflammatory, and the modulation of neurotransmitter sys-
tems (Nogueira et al. 2003; Nogueira and Rocha 2011).

The antidepressant-like property of diphenyl diselenide, a 
structurally simple compound, was first demonstrated by our 
research group in 2007 (Savegnago et al. 2007b) and, since 
that, substituted diorganoyl diselenides have been reported 
as effective agents in different animal models of depression 
(Acker et al. 2009; Brüning et al. 2015b; Da Rocha et al. 
2012a; Dias et al. 2014; Quines et al. 2016b; Savegnago 
et al. 2008b).

Table 2 illustrates some protocols in which diaryl dis-
elenides were effective at relatively low doses in rodents 
(Bortolatto et al. 2012; Brüning et al. 2011; Heck et al. 
2019; Oliveira et al. 2017; Zborowski et al. 2020), excepting 
m-trifluoromethyl-diphenyl diselenide that was reported to 
be effective at minimal 50 mg  kg−1 dose in an acute proto-
col (Brüning et al. 2011). However, the m-trifluoromethyl-
diphenyl diselenide effective antidepressant-like dose was 
reduced by tenfold when it was administered once daily 
for 8 days in mice (Rosa et  al. 2017) and substantially 
decreased in a TNF-α model of depression (Brüning et al. 
2015b). Moreover, this substituted diaryl diselenide has been 
reported to promote resilience to social avoidance induced 
by social defeat stress (Rosa et al. 2018c) and abolish the 

depressant-like phenotype induced by repeated forced swim 
stress (Rosa et al. 2018b).

Evidence has been found to suggest that the simple substi-
tution of hydrogen by the m-trifluoromethyl group on diphe-
nyl diselenide generates an organoselenium compound that, 
different from the parent compound, modulates the opioid 
system in different animal models of mood disorders (Brün-
ing et al. 2011; Martins et al. 2020; Rosa et al. 2017, 2018b). 
However, neither m-trifluoromethyl- nor p-methoxyl- diaryl 
diselenide was associated with anxiety phenotype after dis-
continuation (Oliveira et al. 2017) and withdrawal syndrome 
in mice (Rosa et al. 2017), which are experienced by users 
of antidepressant drugs.

We highlight herein the ambiguity of results obtained 
with the simplest diaryl diselenide, diphenyl diselenide, in 
different experimental models of anxiety that undoubtedly 
demonstrate its well-documented Janus-faced characteristic 
(Nogueira and Rocha 2010). Results from different groups 
of research indicate that diphenyl diselenide produced an 
anxiolytic-like effect in naive (Ghisleni et al. 2008a) and 
monosodium glutamate-exposed rats (Rosa et al. 2016), 
naive mice (Savegnago et al. 2008b), naive (Ibrahim et al. 
2014b), and hyperglycemic zebrafish (dos Santos et  al. 
2018), and chick subjected to social separation-stress (Prigol 
et al. 2011). On the other hand, administration of diphenyl 
diselenide after repetitive mild traumatic brain injury exacer-
bated anxiety-like response in rats, increasing the telomeres 
and the levels of TNFα (Yamakawa et al. 2020). Moreo-
ver, in Carioca high- and low-conditioned freezing rats, an 
animal model of generalized anxiety, diphenyl diselenide 
induced both anxiogenic- and anxiolytic-like effects (Has-
san et al. 2015).

Table 2  Potential antidepressant-like activity of diaryl diselenides

Diselenides (mg  kg−1) were intragastrically administered, excepting athat was added in the diet (ppm/diet)
Depression predictive tests: FST forced swimming test, TST tail suspension test, mFST modified forced swimming test, mTST modified tail sus-
pension test, TNF tumoral necrosis factor, b23 months, rats (Wistar), mice (Swiss)

Experimental model Minimal 
effective 
dose

Treatment Predictive tests Species References

Diphenyl diselenide Methimazole 5a 90 days FST Rats Dias et al. (2014)
Monosodium glutamate 10 30 min FST Rats Quines et al. (2016b)

p-Chloro-
diphenyl diselenide

– 10 7 days FST Old  ratsb Bortolatto et al. (2012)
Streptozotocin 5 7 days FST, TST Mice Zborowski et al. (2020)
Dexamethasone 5 7 days FST, TST Mice Heck et al. (2019)

m-Trifluoromethyl
diphenyl diselenide

– 50 30 min FST Mice Brüning et al. (2011)
– 5 8 days FST, mTST Mice Rosa et al. (2017)
TNF-α 0.1 30 min FST, TST Mice Brüning et al. (2015b)

p-Methoxyl-diphenyl diselenide – 5 30 min mFST Mice Sartori et al. (2017)
– 0.1 7 days TST

mFST
Mice Sartori et al. (2017)
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The potential of selenides in tests predictive of depres-
sion and anxiety has received some attention over the past 
decade (Besckow et al. 2020; Donato et al. 2013; Gerzson 
et al. 2012; Jesse et al. 2011; Oliveira et al. 2012; Reis et al. 
2017a; Sampaio et al. 2020; Victoria et al. 2014). Accord-
ing to Table 3, (octylseleno)-xylofuranoside challenged in 
the mouse TST produced an antidepressant-like activity at a 
very low dose. The minimal effective dose of (octylseleno)-
xyloruranoside was, at least, 100-fold lower (Brod et al. 
2016) than those of the other selenides shown in Table 3. 
Of note, ebselen (3–30 mg  kg−1) did not produce an antide-
pressant-like activity in the TST (Posser et al. 2009).

A series of selenophene derivatives were evaluated as 
potential antidepressant molecules (Gai et al. 2012); among 
them, 3-(p-fluorophenylselenyl)-2,5-diphenylselenophene 
was reported to be effective in naive mice as well as in cor-
ticosterone and partial sciatic nerve ligation (PSNL) models 
of depression (Gai et al. 2014a, b, c; Gay et al. 2010). When 
it was subchronically administered, the anxiolytic-like prop-
erty of 3-(p-fluorophenylselenyl)-2,5-diphenylselenophene 
was demonstrated in corticosterone (Gai et al. 2014b), sham-
operated, and PSNL mice (Gai et al. 2014a) (Table 3).

Further investigations of organoselenium compounds, 
that similar to serotonin contain the indole nucleus, uncov-
ered 1-methyl-3-(phenylselanyl)-1H-indole as an antidepres-
sant- and anxiolytic-like molecule in the icv streptozotocin 
model (Bampi et al. 2019, 2020b) (Table 3).

Besides, 1-methyl-3-(phenylselanyl)-1H-indole was 
reported to be effective against depressive-like behavior 
and hyperglycemia in a model of type 1 diabetes induced 
by streptozotocin in mice (Bampi et  al. 2020a). The 

introduction of the p-chloro substituent at the-phenylse-
lanyl group affords 3-[(p-chlorophenyl)selanyl]-1-me-
thyl-1H-indole, an antidepressant-like compound effec-
tive against lipopolysaccharide-induced depression- and 
anxiogenic-like phenotype, without promoting locomotor 
impairment in mice (Casaril et al. 2017, 2019b). It was 
demonstrated that this substituted selenium indole deriva-
tive was also effective in the acute restrain stress-induced 
depressive-like behavior in mice (Casaril et al. 2019a).

In the search for new potential antidepressant-like com-
pounds, the same group synthesized and demonstrated the 
antidepressant activity of another N-heterocycle deriva-
tive, 3-((p-methoxyphenyl)selanyl)-2-phenylimidazo[1,2-
a]pyridine (Domingues et al. 2018, 2019). Very recently, 
an isoquinoline derivative has been reported as an anti-
depressant-like compound that selectively and reversibly 
inhibited cerebral monoamino oxidase (MAO) B activity 
in C57Bl/6 mice (Sampaio et al. 2016, 2020).

It may be mentioned that the drug interaction with mul-
tiple targets, instead of a single one, has raised consider-
able interest in the treatment of complex diseases as mood 
disorders (Koeberle and Werz 2014). On the other hand, 
the lack of target specificity, possibly because organose-
lenium compounds react with a multitude of protein thi-
ols, could result in drugs potentially good for everything 
but effective for nothing. Therefore, the proposed mecha-
nisms to explain the antidepressant- and anxiolytic-like 
properties of the above-reported organoselenium com-
pounds indicate multiple molecular sites of action; most 
of them demonstrated using empirical and non-robust 
methodologies.

Table 3  Potential antidepressant-like activity of selenides

Selenides (mg  kg−1) were intragastrically administered to Swiss mice 30 min before tests, excepting athat means repeated treatment (7 days),
FST forced swimming test, TST tail suspension test, LD light dark test, NSF novelty suppressed-feeding, EPM elevated plus maze, MB marble 
burying

Experimental model Minimal 
effective 
dose

Predictive tests References

Depression Anxiety

(Octylseleno)
xilofuranoside

– 0.001 TST – Brod et al. (2016)

(Fluorophenylselenyl)-2,5-diphenyl 
selenophene

– 50 FST – Gay et al. (2010)
Corticosterone 0.1a FST, TST LD, NSF Gai et al. (2014b)
Partial sciatic nerve ligation 1 FST, TST LD Gai et al. (2014a)

1-Methyl-3-(phenylselanyl)-1H-
indole

Streptozotocin (intracerebro ven-
tricular)

10 FST, Splash – Bampi et al. (2020b)
10a Social interact, TST

Splash
EPM Bampi et al. (2019)

(Chlorophenyl)selanyl]-1-methyl-
1H-indole

Lipopolysaccharide 1 TST
Splash

EPM
MB

Casaril et al. (2019b)

Acute restrain stress 1 TST
Splash

– Casaril et al. (2019a)
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Anti‑inflammatory and anti‑nociceptive activities

Over the last decades, the anti-inflammatory properties of 
ebselen have been well recognized in cellular systems and 
studies with laboratory animals (Aruoma 1997; Baek et al. 
2016; Brüne et al. 1991; Cotgreave et al. 1988, 1989; Dim-
meler et al. 1991; Gao and Issekutz 1993; ICHIKAWA et al. 
1987; Kuhl et al. 1986; Leurs et al. 1989; Safayhi et al. 1985; 
Schewe et al. 1994; Zembowicz et al. 1993; Zhang et al. 
2002), and the pioneer studies were previously summarized 
elsewhere (Nogueira and Rocha 2011; Nogueira et al. 2004; 
Schewe 1995) and need not to be repeated here.

Although a vast body of literature supports the potential 
use of ebselen as a drug that in addition to its antioxidant 
property acts in multiple cellular mechanisms involved in the 
inflammatory process (Parnham et al. 1991; Schewe 1995; 
Smith et al. 2012; Xu et al. 2018), its medical application in 
inflammatory human diseases is until expected. One plau-
sible explanation for the lack of ebselen effectiveness in 
chronic inflammatory diseases is that ROS cause endothelial 
dysfunction and tissue damage (Halliwell 2012), but can also 
help to resolve it (Halliwell 2006; Sareila et al. 2011), which 
illustrates the paradoxical action of antioxidants in certain 
diseases (Halliwell 2013).

As described earlier, simple diaryl diselenides showed 
potent anti-inflammatory activity in vitro and in vivo acute 
inflammatory models (Galet et al. 1994; Nogueira et al. 
2003; Shen et al. 2004; Shin et al. 2009). From these studies, 
structure–activity relationship can be distinguished and indi-
cated m-hydroxyphenyl diselenide as a potent anti-inflam-
matory agent in lipopolysaccharide-activated macrophage 
cells (Shin et al. 2009).

Shortly after, inspired by the Shin study, the anti-inflam-
matory properties of diphenyl diselenide were identified in 
classically activated macrophages. In this study, diphenyl 
diselenide reduced the expression of NO synthase and, 
consequently, the NO production, diminished the levels of 
ROS and arginase activity, and down-regulated classical and 
alternative activation phenotype of macrophages (Rupil et al. 
2012). By modulating pro-inflammatory markers and oxi-
dative stress, diphenyl diselenide has been reported to be 
effective in a mouse model of carrageenan-induced pleurisy 
(Luchese et al. 2012b), ischemia and reperfusion-induced 
cerebral injury (Brüning et al. 2012a), and experimental 
toxoplasmosis (Barbosa et al. 2014; Doleski et al. 2017a, b).

In an experimental model of ulcerative colitis, repeated 
treatment with diphenyl diselenide (50 mg  kg−1, i.g.) was 
found to be more effective than ebselen (50 mg  kg−1) to 
reverse colon damage, neutrophil infiltrate, and oxidative 
stress markers in rats (Petronilho et al. 2016). When sup-
plemented in the diet, diphenyl diselenide reduced the lev-
els of serum pro-inflammatory cytokines (IL-1, TNF-α) and 
increased the IL-10 concentration in middle-aged rats and 

dairy sheep (Biazus et al. 2019; Leite et al. 2015). The mod-
ulation of purinergic signaling and nucleotide-binding oli-
gomerization domain-like receptor (NLRP3) inflammasome 
gene expression was reported as the underlying mechanisms 
by which diphenyl diselenide induced an anti-inflammatory 
response in methyl-mercury chloride-induced immunotoxic-
ity in grass carp (Souza et al. 2019). Moreover, by modulat-
ing splenic purinergic signaling, diphenyl diselenide reduced 
inflammatory and hemorrhagic processes induced by fumon-
isin B1 in silver catfish (Baldissera et al. 2020b).

Recent evidence associates the anti-inflammatory prop-
erties of selenomethionine and its hydroxyl analogue with 
suppression of the NF-κB pathway and the increase in the 
expression of selenoproteins encoding genes in trachea and 
liver of lipopolysaccharide-exposed chicken (Qu et al. 2020; 
Shi et al. 2020) and spleens of Kunming mice exposed to 
lipopolysaccharide (Tang et al. 2019).

Antinociceptive activity

Increasing evidence indicated that redox modulation is 
important in the sensitization of peripheral nociceptors 
(Bhave and Gereau 2004; Choi and Lipton 2000; Meotti 
et al. 2009), supporting the potential of drugs aimed at 
restoring the redox homeostasis and relieving pain. There-
fore, organoselenium compounds have been screened for 
antinociceptive activity, and some of these findings showed 
that both diphenyl diselenide and ebselen, systemically or 
locally administered, were effective in mouse models of 
nociception (Nogueira et al. 2003; Rosa et al. 2015; Saveg-
nago et al. 2007a, 2008a; Zasso et al. 2005). It is impor-
tant to note that ebselen, different from diphenyl diselenide 
(Savegnago et al. 2007c), produced a synergistic pronocic-
eptive effect when administered with glutamate, which was 
blocked by a reduced glutathione depleting agent (Meotti 
et al. 2009).

p-Methoxyl-, m-trifluormethyl-, and p-methyl-substituted 
diaryl diselenides were reported to be as effective as a non-
substituted diphenyl diselenide in experimental models of 
nociception (Brüning et al. 2014, 2010; Donato et al. 2015; 
Jesse et al. 2009; Oliveira et al. 2016; Pinto et al. 2008), 
suggesting that the characteristics of substituents at the aryl 
moiety do not alter the antinociceptive property of disele-
nides (Araujo et al. 2020; Brüning et al. 2015a; Savegnago 
et al. 2007a).

Over the last decade, considerable efforts have been 
made to synthesize organoselenium compounds with greater 
antinociceptive activity and fewer side effects, resulting in a 
multitude of molecules with relative success, namely imida-
zole diselenide derivative (Chagas et al. 2013b, 2017a, b), 
dipyridil diselenide and its m-amino-substituted derivative 
(Reis et al. 2019; Rosa et al. 2018a), salicylic acid–selenium 
derivative (Chagas et al. 2014), bis-vinylselenide derivatives 
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(Jesse et al. 2007, 2008; Savegnago et al. 2006a), selenos-
teroid derivative (Sari et al. 2014), and quinoline (Pinz et al. 
2016), indole (Birmann et al. 2018), and pyrazole (Oliveira 
et al. 2020) selenide derivatives. However, the organose-
lenium compounds synthesized so far have low aqueous 
solubility and pharmacokinetic and toxicokinetic practically 
unknown (Fischer et al. 1988; Müller et al. 1988; Prigol 
et al. 2013; Sies 1994), limiting the possibility of their thera-
peutic applications.

Therefore, the rationale to incorporate p-methoxyl-
diphenyl diselenide in polymeric nanocapsules was based 
on the enhancing of its pharmacokinetic properties (Sari 
et al. 2017), and resulted in a more prolonged anti-hyper-
nociceptive action and greater restorative effects than the 
free compound in a mouse model of neuropathic pain (Sari 
et al. 2018a, b).

Hepato and gastroprotective activities

In the earlier 50s, Schwarz and Foltz demonstrated the effec-
tiveness of element selenium against dietary necrotic liver 
degeneration in rats (Schwarz and Foltz 1957) and, since 
that, naturally occurring and synthetic organoselenium com-
pounds have been widely investigated as possible hepatopro-
tective molecules (Brzački et al. 2019; Ibrahim et al. 2010; 
Jiang et al. 2016; Kono et al. 2001; Ozaki et al. 1997; Reis 
et al. 2017b; Schwarz and Fredga 1969; Shimohashi et al. 
2000; Tiegs et al. 1998; Wang et al. 1992; Wendel and Tiegs 
1986; Wilhelm et al. 2010, 2011).

Three decade-long studies on the protective action of 
ebselen in a diversity of experimental models of hepato-
toxicity, such as galactosamine (Wendel and Tiegs 1986), 
paracetamol (Qiu-Ju et al. 1994; Rocha et al. 2005),  CCl4 
(Wasser et al. 2001), lipopolysaccharide and Propionibac-
terium acnes (Koyanagi et al. 2001), alcohol (Oshita et al. 
1994; Pivetta et al. 2006), ischemia–reperfusion (Ozaki et al. 
1997), manganese (Ismail 2019), and radiocontrast media 
(Basarslan et al. 2013), have indicated the modulation of 
NF-kB-dependent pathway and activation of the immune 
system as the mechanisms accounted for this action (Shi-
mohashi et al. 2000; Tiegs et al. 1998; Wang et al. 1992).

Diphenyl diselenide and its substituted derivatives have 
been also screened for hepatoprotective activity in 2-nitro-
propane (Borges et al. 2005, 2006; Ibrahim et al. 2010), 
metal (Borges et al. 2008; Dalla Corte et al. 2016), aceta-
minophen (Carvalho et al. 2013, 2017; da Rosa et al. 2012; 
Wilhelm et al. 2009b, c), bisphenol A (Müller et al. 2018), 
thioacetamide (Stefanello et al. 2015b), lipopolysaccharide/
galactosamine (Wilhelm et al. 2009a), and organophosphate 
(Acker et al. 2012; Costa et al. 2013) models of damage in 
rodents.

Regarding the hepatic injury induced by  CCl4, repeated 
administration of p-methylbenzoyl diselenide derivative 

(Filho et al. 2013) and selenocystine (Uzma et al. 2011) 
has proven to be effective, whereas treatment with diphenyl 
diselenide potentiated  CCl4 damage, suggesting that bio-
transformation of this toxicant by cytochromes P450 was 
activated by diphenyl diselenide (Nogueira et al. 2009).

Despite the significance to avoid gastric mucosal irrita-
tion in the design of potential anti-inflammatory drugs and 
the importance of prescribing antisecretory drugs for long-
term use of anti-inflammatory therapy (Graham and Chan 
2008), the gastroprotective activity of organoselenium com-
pounds has been few explored (Ibrahim et al. 2018) over the 
last decade. Therefore, the knowledge on this subject is sup-
ported by previously published studies, which demonstrated 
that ebselen and diphenyl diselenide not only reduce HCl 
secretion, but also inhibit gastric lesions in a great number 
of experimental models (Beil et al. 1990; Ineu et al. 2008; 
Kurebayashi et al. 1989; Leyck and Parnham 1990; Ohta 
et al. 2002; Savegnago et al. 2006b; Tabuchi and Kure-
bayashi 1993; Tabuchi et al. 1994, 1995).

Renoprotective activity

Studies on the renoprotective activity of organoselenium 
compounds remained to be explored; as a result, most of 
the literature of the last 2 decades focuses on ebselen and 
diphenyl diselenide effects on models of renal damage.

With regard to ebselen activity, it protected against 
ischemic renal injury (Noiri et al. 2001) as well as gen-
tamicin- (Dhanarajan et al. 2006), sodium arsenite- (Al-
Brakati et al. 2019), sporadic Alzheimer’s disease (AD) 
model- (Klann et al. 2020), and radiocontrast- (Ozgur et al. 
2012) induced renal damage in rodents. In a model of renal 
ischemia/reperfusion damage, ebselen associated with 
N-acetylcysteine was proven to be effective (Kizilgun et al. 
2011).

Using experimental models of diabetes, beneficial effects 
of ebselen and its m-hydroxyl derivative were demonstrated 
in Zucker diabetic fat rats (Gealekman et al. 2004) and the 
ApoE/GPx1 double knockout mouse (Tan et  al. 2013). 
Although the authors suggest synthetic mimetics as a useful 
therapeutic strategy in reducing diabetic complications, late 
chronic intervention with ebselen reduced oxidative stress, 
but failed to attenuate functional or structural kidney damage 
in the Akita mouse model of nephropathy (Tan et al. 2015).

Since its approval by the Food and Drug Administra-
tion in 1978, cisplatin has been one of the most used drugs 
for solid cancer treatments. However, nephrotoxicity is the 
most well-known and clinically important toxicity of this 
chemotherapeutic (Ghosh 2019). In an attempt to counter-
act the main drawback of the cisplatin use, which limits its 
application, organoselenium compounds have been inves-
tigated in models of renal damage induced by this chemo-
therapy. Ebselen (Lynch et al. 2005; Yoshida et al. 2000), 
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p-methoxyl-diphenyl diselenide (Wilhelm et  al. 2012), 
naphtalamide (Ghosh et al. 2015), selenocyanate isoquino-
line derivative (Ghosh et al. 2013), and diselenole (Borto-
latto et al. 2014) have appeared in the literature as effective 
organoselenium compounds against cisplatin-associated 
nephrotoxicity. In a juvenile rat model of cisplatin-induced 
nephrotoxicity, diphenyl diselenide (12 mg  kg−1, i.g.) was 
reported to be as effective as ebselen (11 mg  kg−1, i.g.) in 
rats (Fulco et al. 2020).

Searching for naturally occurring organoselenium com-
pounds that reduce renal toxicity and enhance the antitumor 
activity of cisplatin, selenomethionine, and methylseleno-
cysteine was highlighted as promising molecules (Cao et al. 
2014; García Sar et al. 2011).

Based on the well-reported effectiveness of diphenyl dis-
elenide against toxicity induced by metals (Brandão et al. 
2008; Santos et al. 2005a, b), the potential renoprotective 
activity of this diselenide was investigated in a mercuric 
chloride model of renal injury (5 mg  kg−1, s.c.). From these 
studies, the Janus-faced duality of diphenyl diselenide was 
recognized; an acute dose of 31 mg  kg−1 (s.c.) potentiated 
mercuric chloride-induced nephrotoxicity (Brandão et al. 
2011), whereas a 5-day repeated dose (5 mg  kg−1, i.g.) pro-
tected against toxic effects of this metal in the kidney of 
mice (da Luz Fiuza et al. 2015). It is acknowledged that 
diphenyl diselenide effects on renal injury induced by mer-
curic chloride depend on the dose of this organoselenium 
and the protocol of administration of both compounds.

Moreover, diphenyl diselenide (7.14  mg   kg−1, i.g.) 
repeated administration for 7 days protected against glyc-
erol induced nephrotoxicity in rats (Brandao et al. 2009), 
whereas its binaphthyl derivative (50 mg  kg−1, i.g.) was 
effective at a higher acute dose in mice (Ibrahim et al. 2011).

Cardioprotective activity

Regarding selenium status, both excess and deficiency are 
associated with some adverse health conditions (Rayman 
2020), and a well-known example relates to cardiovascular 
disorders and increased mortality in individuals who have 
selenium-deficient levels (Bleys et al. 2008; Lubos et al. 
2010). Further of note, Keshan disease, endemic cardiomy-
opathy, and Kashin–Beck disease, deforming arthritis, are 
both associated with selenium deficiency in China (Navarro-
Alarcon and López-Martınez 2000; Xiong et al. 2010).

Hypercholesterolemia, a very important risk factor to car-
diovascular disease, has been related to selenium deficiency, 
which would lead to the decrease in low-density lipoprotein 
removal from blood and in apolipoprotein B catabolism, 
through down-regulation of low-density lipoprotein recep-
tor activity mRNA expression (Dhingra and Bansal 2005, 
2006; Lee et al. 2003).

In addition to the significance of selenium to cardiac 
health maintenance (Gunes et al. 2017; Rocca et al. 2018; 
Yang et al. 2017), organoselenium compounds have been 
investigated in models of cardiotoxicity and ischemia/reper-
fusion injury, in which redox imbalance triggers a number of 
signaling pathways mediated by reactive oxygen and nitro-
gen species, and, that antioxidants play a role.

Based on the fact that cardiotoxicity is one of the recog-
nized drawbacks of anti-cancer treatments (Dong and Chen 
2018), ebselen was tested and proven to be effective against 
chemotherapeutic daunorubicin-induced cardiomyopathy 
in rats (Saad et al. 2006). From experiments with reconsti-
tuted human heart, cytosolic fractions emerge the molecular 
mechanism of ebselen cardioprotective activity, the inhibi-
tion of reductive anthracycline alcohol metabolite formation 
(Mordente et al. 2015).

The suppression of cardiomyocyte apoptosis, anti-inflam-
matory, and antioxidant activities have been implicated in 
the cardioprotective action of ebselen against ischemia/rep-
erfusion injury in rats (Cheng et al. 2019; Steinbrenner et al. 
2016).

Used as an adjuvant in heart preservation, ebselen was 
added to a cardioplegic histidine–tryptophan–ketoglutarate 
(HTK) solution and proven to enhance myocardial protec-
tion in a piglet model of cardiopulmonary bypass (Liu et al. 
2015a).

Considering that oxidized low-density lipoprotein (LDL) 
is recognized as a key stage in the development of athero-
sclerosis, diphenyl diselenide and its substituted diaryl 
diselenides were investigated in a model of LDL oxidation 
in vitro, in which the antioxidant and antiatherogenic effects 
were reported (de Bem et al. 2008; Straliotto et al. 2013a). 
Shortly after, the same authors demonstrated that diphenyl 
diselenide reduced oxidized LDL-induced cytotoxicity and 
down-regulated NF-kB pathway in murine macrophage cells 
(Straliotto et al. 2013b). In animal models, diphenyl disele-
nide reduced hypercholesterolemia in cholesterol-fed rabbits 
(De Bem et al. 2009) and tyloxapol-exposed mice (Da Rocha 
et al. 2009; Sartori Oliveira et al. 2016). The reduction of 
atherosclerotic plaque formation and endothelial dysfunc-
tion, and antiatherogenic properties of diphenyl diselenide 
were attributed to the increase of the antioxidant defenses in 
the cardiovascular system of low-density lipoprotein recep-
tor knockout (LDLr −/−) mice (Hort et al. 2011; Mancini 
et al. 2014).

Moreover, the cardioprotective activity of diphenyl dis-
elenide was demonstrated in a toxoplasmosis model of car-
diac toxicity (Machado et al. 2016).

The naturally occurring organoselenium compound 
selenomethionine has recently been exploited in HOCl-
induced dysfunction in myoblastic cells. In this study, car-
diac myoblast protection was attributed to the antioxidant 
activity of selenomethionine. However, selenomethionine 
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supplemented (2 mg  kg−1) in the diet had limited efficacy 
in a rat cardiac ischemia/reperfusion injury (Reyes et al. 
2019). In an apolipoprotein E-deficient (ApoE −/−) mouse 
model of atherosclerosis, selenomethionine (2 mg  kg−1) 
added within a high-fat diet-fed decreased the formation 
of atherosclerotic plaque and M1 inflammatory-type mac-
rophages. The translational applicability of this study was 
highlighted by the decrease in the extent of extracellular trap 
release from phorbol myristate acetate (PMA)-stimulated 
mouse bone marrow-derived cells, which was replicated on 
cultured neutrophils isolated from acute coronary syndrome 
patients (Zhang et al. 2020e). Although at a lower concentra-
tion in the diet (0.5 mg  kg−1), selenomethionine was effec-
tive against myocardial oxidative stress and inflammation 
induced by LPS through the miR-128-3p-p38MAPK-NF-kB 
pathway in chicken (Liu et al. 2020a).

Cardiovascular injury has been associated with radiation 
in cancer therapy (Eldabaje et al. 2015), in which the redox 
modulation plays an important role. Therefore, selenom-
ethionine (4 mg  kg−1) was able to protect the rat heart tis-
sue against radiation-induced injury by down-regulating the 
expression of dual oxidase (Duox1 and Duox2); two impor-
tant pro-oxidant enzymes (Kolivand et al. 2019).

Insulin‑mimetic activity

The beneficial or harmful effects of selenium on type 2 dia-
betes are a matter of controversy, resembling the U-shaped 
behavior of this nutritionally essential trace element in ani-
mals and humans. A detailed discussion of the literature on 
this field is outside of the scope of this review, and has been 
reviewed by others (Duntas and Benvenga 2015; Kohler 
et al. 2018; Rayman 2020; Rayman and Stranges 2013; 
Schomburg 2020).

Despite some controversy, high dietary selenium intake 
has been associated with protection against obesity and type 
2 diabetes (Wang et al. 2016a, 2017a), but the mechanisms 
to explain this action are unknown or unclear. The dem-
onstration that activation of redox-sensitive thermogenic 
cascade and the uncoupling protein 1 (UCP1) initiates 
thermogenesis in brown adipose tissue, a tissue metaboli-
cally reprogrammed that requires bioenergetic substrates to 
increase mitochondrial respiration and produce heat via the 
UCP1, further support the evidence that selenium could be 
beneficial in type 2 diabetes and obesity (Lettieri-Barbato 
2019).

Very recently, an elegant study, which applied a mass 
spectrometric tool to identify selenium insertions in pro-
teins, demonstrated the existence of facultative protein 
selenation, which correlates with impacts on thermogenic 
adipocyte function. In this study, selenium as selenocyst-
eine (Sec) was selectively incorporated into regulatory 
sites on key metabolic proteins as an alternative to cysteine 

at position 253 in the UCP1. It is important to highlight 
that UCP1-Sec253 is highly sensitive to redox modulation 
and that increasing the pool of this type of facultative sele-
noprotein coincides with brown adipose tissue-dependent 
energy expenditure (Jedrychowski et al. 2020).

In addition to the selenium role as an integral compo-
nent of several enzymes, such as formate dehydrogenase, 
glutathione peroxidase, selenoprotein P and W, and the 
deiodinases (Beckett and Arthur 2005), the possibility 
to mimic the insulin action has been reported to help in 
explaining the antidiabetogenic properties of inorganic 
forms of this element. For a more in-depth discussion 
of issues that support selenate as an effective insulin-
mimetic, readers are directed to a comprehensive review 
(Stapleton 2000).

Regarding organoselenium compounds, the effectiveness 
of ebselen and diphenyl diselenide has been reported in a 
number of experimental models of diabetes, and its com-
plications (Barbosa et al. 2008, 2006; Bubolz et al. 2007; 
Chander et al. 2004; De-Mello et al. 1996; Gealekman et al. 
2004; Kade et al. 2009; Soares et al. 2014; Zhou et al. 2016).

Over the last 10 years, most of the research has focused 
on the underlying mechanisms of ebselen antidiabetogenic 
properties. Experimental models in which ebselen, besides 
reducing hyperglycemia, stimulates insulin secretion 
(Wang et al. 2014) and hepatic glycogen synthesis (Costa 
et al. 2012), modulates expression of glucose transporter 
(GLUT2) and glucokinase, suppresses gluconeogenesis by 
decreasing phosphoenolpyruvate carboxykinase (PEPCK) 
expression (Park et al. 2014), and prevents islet apoptosis as 
well as preserves mass and function of β-cells, by reducing 
oxidative stress markers and enhancing intranuclear loca-
tion of critical insulin transcription factors (Mahadevan et al. 
2013; Sasaki et al. 2013), are listed in Table 4.

However, when evaluated against oxidative stress-induced 
endothelium-dependent vasodilation in diabetic patients, 
ebselen was proven to be ineffective, at least at the dose 
tested in this trial (150 mg per oral, twice daily) (Beckman 
et al. 2016).

Diphenyl diselenide insulin-like properties have been 
associated with the increase in low-density lipoprotein 
receptor (LDLr) expression and the translocation of glucose 
transporter (GLUT4) through the adenosine monophosphate 
kinase (AMPK) activation (da Rocha et al. 2013a, b), the 
decrease of cholesterol levels and reduction of visceral fat 
(da Rocha et al. 2011; Ribeiro et al. 2013), and the modula-
tion of gluconeogenesis enzymes, in addition to regulating 
hyperglycemia (Acker and Nogueira 2014). Recently, a study 
from our research group demonstrated that the anti-hyper-
glycemic effect of diphenyl diselenide is associated with an 
up-regulation of insulin receptor and glucose transporter 
driven by the product of FoxO genes that were also up-reg-
ulated at the transcriptional level (dos Santos et al. 2020).
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Moreover, both diphenyl diselenide and its p-chloro 
derivative, by inhibiting the hypothalamic 5-hydroxy-
tryptamine (5HT) uptake, increase satiety suggesting their 
potential use as weight-reducing agents (Bortolatto et al. 
2015). The p-chloro derivative satiating action was also 
reported to be most related to the lower orexin levels in the 
hypothalamus than the activation of thermogenesis in brown 
adipose tissue in rats (Bortolatto et al. 2017). From different 
experimental models (Quines et al. 2016a, 2017a,2018; b) 
emerged evidence that p-chloro derivative modulates glu-
cose metabolism as well as reverses metabolic and mito-
chondrial dysfunction. Table 4 lists some experimental mod-
els in which ebselen, diphenyl diselenide, and its p-chloro 
derivative exert insulin-mimetic activity.

With regard to the effects of supplementary organose-
lenium compounds on glucose tolerance, selenomethio-
nine was found to be effective in increasing pancreatic and 
hepatic RNA levels of GPx1 and glucose tolerance, even 
though it was unsuccessful in restoring insulin storage and 
secretion in nicotinamide/streptozotocin-induced mild dia-
betic mice (Ueno et al. 2014, 2018).

Neuroprotective activity

The history of ebselen borderline efficacy on brain ischemia 
and stroke clinical trials (Saito et al. 1998; Yamaguchi et al. 
1998) was described by Parnham and Sies (2013), their com-
mentaries, and personal perspectives reordered how the early 
research on this compound unwound.

With regard to the knowledge of the last 30 years, most 
derived from basic research that provided the full picture of 
ebselen neuroprotective effects in a great number of in vitro 
and in vivo models of brain toxicity. However, no attempt 

is made here to thoroughly discuss these reports; these have 
been adequately reviewed elsewhere (Hassan et al. 2016; 
Nogueira and Rocha 2011; Nogueira et al. 2004).

Since the pioneering study of Ünlü et al. (2002), the neu-
roprotective effects of ebselen on a spinal cord injury (SCI) 
model have been investigated. Applying the same dose (Aras 
et al. 2014; Jia et al. 2018; Kalayci et al. 2005) but an SCI 
model quite different from other studies, ebselen was proven 
to have a limited beneficial effect on the regeneration of the 
injury in the spinal cord white matter of rats (Ślusarczyk 
et al. 2019). Conversely, the improvement of motor function 
14 days after the injury and the raise of anti-apoptotic and 
antioxidant markers had been previously reported (Jia et al. 
2018; Kalayci et al. 2005). The authors suggest that these 
conflicting outcomes are explained by the fact that the neu-
roprotective effects of ebselen are not persistent long time 
after the administration (Ślusarczyk et al. 2019).

Glutamate, the main excitatory neurotransmitter in the 
mammalian central nervous system (CNS), in addition to 
have a large array of physiological functions, behaves as a 
potent neurotoxin in pathological conditions in which its 
metabolism is altered; therefore, neuronal death induced 
by glutamate is named excitotoxicity (Magi et al. 2019; 
Watkins and Jane 2006). Moreover, excitotoxicity has been 
implicated in different conditions, such as hypoxic/ischemic, 
traumatic brain injury, epilepsy, hypoglycemia, neuropsy-
chiatric, and neurodegenerative disorders, among others 
(Olloquequi et al. 2018; Sharma et al. 2019; Zhang et al. 
2020d), and organoselenium compounds have been investi-
gated as potential therapeutic alternatives on this pathologi-
cal phenomenon.

Diphenyl diselenide neuroprotective activity had been 
previously reported in the literature (Ghisleni et al. 2003, 

Table 4  Insulin-mimetic activity of ebselen, diphenyl diselenide, and p-chloro diphenyl diselenide in different experimental models

Experimental model References

Ebselen Glucose-stimulated insulin secretion in murine islets Wang et al. (2014)
Post stroke-induced hyperglycemia Park et al. (2014)
Diazinon-induced hyperglycemia Costa et al. (2012)
β-cell mass and function of Zucker diabetic fatty rats Mahadevan et al. (2013)
Metabolism and secretion of β-cells of Goto-Kakizaki non-obese diabetic 

rats
Sasaki et al. (2013)

Diphenyl diselenide Acephate-induced hyperglycemia Acker et al. (2014)
HepG2 and L6 myoblasts cells da Rocha et al. (2013b)
Ovariectomy-induced metabolic disorders da Rocha et al. (2011)
Fructose and hydrochlorothiazide-induced metabolic
Disorders

Ribeiro et al. (2013)

Glucose-induced hyperglycemia in Zebrafish dos Santos et al. (2020)
p-Chloro
Diphenyl diselenide

Feeding behavior Bortolatto et al. (2015)
Monosodium glutamate-induced neuroendocrine obesity Quines et al. (2016a, 2017a

, 2018)
High-fructose load-induced hyperglycemia Quines et al. (2017b)
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2008b; Machado et al. 2006; Nogueira et al. 2001; Posser 
et al. 2008) and, since that, propagated in experimental mod-
els of ischemia/reperfusion (Brüning et al. 2012a), stroke 
(Dobrachinski et al. 2014), auto-immune encephalomyelitis 
(Chanaday et al. 2011), mania (Brüning et al. 2012b), aceta-
minophen- (da Silva et al. 2012), chlorpyrifos- (Adedara 
et al. 2018), mycotoxin- (Baldissera et al. 2020c), manga-
nese- (Adedara et al. 2016), and methyl-mercury- (Baldis-
sera et al. 2020a; de Freitas et al. 2009; Glaser et al. 2013, 
2014; Meinerz et al. 2011) induced neurotoxicity.

The modulation of the glutamatergic system, the anti-
inflammatory property, and antioxidant activity have been 
reported to play a role in diphenyl diselenide neuroprotective 
activity (Dalla Corte et al. 2012; Nogueira and Rocha 2010). 
In an attempt to explore the contribution of TrxR in neuro-
protective effects of diselenides, diphenyl diselenide and its 
derivatives were investigated in the NADPH oxidation assay. 
The results revealed that diselenides were reduced to their 
selenol intermediates, indicating their role as substrates for 
cerebral TrxR (de Freitas and Rocha 2011). Consequently, 
any or all of these mechanisms of action could contribute to 
the neuroprotective action of diphenyl diselenide.

Glutaminase, an enzyme that catalyzes the hydrolysis 
of glutamine to glutamate, has been accounted for the gen-
eration of excitotoxic glutamate in the CNS and associated 
with ischemia, HIV-associated dementia, neurodegenerative 
diseases, and multiple sclerosis. Therefore, drug-like glu-
taminase inhibitors have been screened as potential neuro-
protective agents. Ebselen was found as a potent inhibitor 
of glutaminase; however, due to the multiplicity of biologi-
cal effects and lack of selectivity, Thomas and collaborators 
argue that it may be not a good prototype inhibitor for glu-
taminase inhibition in vivo (Thomas et al. 2013), which was 
confirmed by the Kosten study (Kosten et al. 2019).

In traumatic brain injury models, organoselenium 
compounds have opposite effects, whereas ebselen (3 to 
30 mg  kg−1, i.g) was neuroprotective, reducing nitric oxide 
levels and modulating the TLR4-mediated P38 MAPK sign-
aling pathway (Wei et al. 2014), and diphenyl diselenide (10 
and 25 mg  kg−1, i.p) exacerbated post-concussive anxiogenic 
behavior and increased TNFα levels and longer telomeres 
(Yamakawa et al. 2020).

Given the fact that organoselenium compounds are effec-
tive in experimental models associated with the overproduc-
tion of ROS in the brain (Burger et al. 2006; Fachinetto et al. 
2007; Souza et al. 2010) and antioxidant defenses are over-
whelmed in sepsis (Cassol et al. 2010), diphenyl diselenide 
and ebselen have been investigated in a cecal ligation and 
perforation model of sepsis in rats (Silvestre et al. 2014). 
This study revealed that diphenyl diselenide (50 mg  kg−1) 
reduced oxidative stress, mitochondrial dysfunction, and cre-
atine kinase activity in cerebral structures of sepsis-survivor 
rats, whereas ebselen (50 mg  kg−1) was reported to be less 

effective. The lower effectiveness of ebselen in this model 
was attributed to the reduced viability of rat hippocampal 
astrocytes via its action on the mitochondrial activity (San-
tofimia-Castano et al. 2013), whereas diphenyl diselenide 
positively modulated mitochondrial dysfunction (Dobrachin-
ski et al. 2014) and reduced hepatic lipid peroxidation in a 
rat model of sepsis (Prauchner et al. 2011).

Although using different experimental models of Par-
kinson’s disease, ebselen was reported to be ineffective 
against dopaminergic toxicity induced by 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP) in the nigrostriatal 
tract of mice (Dhanasekaran et al. 2006), whereas diphenyl 
diselenide restored motor impairment, the decrease in ipsi-
lateral striatal tyrosine hydroxylase levels, and mechanical 
and thermal nociception induced by 6-hydroxydopamine in 
rats (Da Rocha et al. 2013a, b; Sampaio et al. 2017b).

Regarding naturally occurring selenide-containing amino 
acids, we are only aware of very few published reports to 
date. In a culture of the hippocampal neurons, selenome-
thionine was effective against neuronal death induced by 
β-amyloid peptide (25–35) and  Fe2+/H2O2 (Xiong et al. 
2007), whereas selenocysteine antagonized oxygen–glucose 
deprivation-induced neurotoxicity (Wang et al. 2018b). The 
antioxidant potential of these amino acids was associated 
with their neuroprotective effects.

As shown by the massive indexed literature in the last 
decade, the effects of organoselenium compounds on mem-
ory have attracted the interest of the scientific community; 
therefore, the neuroprotective effects of these compounds 
on memory will be addressed separately in the next section.

Memory‑enhancing activity

Cognitive decline and Alzheimer’s dementia are conditions 
associated with lower levels of nonmetal element selenium 
(Loef et al. 2011; Cardoso et al. 2017; Rayman 2020; Reddy 
et al. 2017). An argument in favor of selenium supplementa-
tion in this condition (Rayman 2012) is that oxidative dam-
age is a key component in the course of Alzheimer’s disease 
(AD) (Butterfield and Halliwell 2019), even though the etiol-
ogy and pathophysiology of this disease are still unknown.

In this way, experimental models are essential to under-
stand the disease pathogenesis and to perform pre-clinical 
screening of novel therapies; however, often, they repli-
cate only specific memory-associated cognitive impair-
ments, which fail to resemble brain features of AD patients 
(Drummond and Wisniewski 2017). Research efforts in 
this field have uncovered ebselen (Table 5) as an inhibitor 
of acetylcholinesterase (AChE) activity (Luo et al. 2014; 
Martini et al. 2015; Mazzanti et al. 2009) and divalent 
metal transport (DMT1), which has been associated with 
the reduction of iron-induced tau hyperphosphorylation in 
human neuroblastoma SH-SY5Y cells (Xie et al. 2018a, 
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2012). Ebselen has been shown to improve memory and 
hallmarks of the disease in triple-transgenic (Xie et al. 
2017) and sporadic AD models (Martini et al. 2019; Unsal 
et al. 2016), and scopolamine-induced amnesia, as well 
(Martini et al. 2018).

Several strategies have been employed to synthesize a 
series of ebselen derivatives aiming at achieving potential 
anti AD compounds; among them, we highlight the fusion 
of ebselen with donepezil and tacrine, potent AChE inhibi-
tors used in clinical practice (Luo et al. 2013, 2014; Mao 
et al. 2013; Wang et al. 2016b). However, such structural 
changes have not been reported to provide significant thera-
peutic advantages.

Since the 2000s and the pioneering work of Rosa et al. 
(2003), diphenyl diselenide and its derivatives have been 
proven to be effective against memory impairment in rodent 
and non-rodent models (Jardim et al. 2017; Pinton et al. 
2010; Souza et al. 2010; Stangherlin et al. 2008; Zamber-
lan et al. 2014; Zborowski et al. 2016). Some examples of 
experimental models are listed in Table 6, in which diphenyl 
diselenide-supplemented diet alone or in association with 
exercise or caffeine improved memory impairment in aged 
rats (Cechella et al. 2014a, b, 2018; Leite et al. 2014) and 
hypothyroidism condition (Dias et al. 2012); when admin-
istered by gavage, it was also effective in an ovariectomy 
model of menopause (da Rocha et al. 2012b).

Table 5  Effects of ebselen on end points of Alzheimer’s disease experimental models

AD Alzheimer’s disease

End points Effects Experimental model References

Acetylcholinesterase Inhibits In vitro Luo et al. (2014); Mar-
tini et al. (2015)

In vivo Mazzanti et al. (2009)
Divalent Metal Transport 1 Inhibits In vitro Xie et al. (2018a, 2012)
Amyloid precursor protein (APP) Reduces In vitro Xie et al. (2018a)
Ferrous iron-induced tau hyperphosphorylation Reduces In vitro Xie et al. (2012)
β-amyloid (Aβ) generation Represses In vitro Xie et al. (2018a)
BACE1 and presenilin Inhibits
Spatial and recognition memory Improves Sporadic

AD
Martini et al. (2019)

Apoptose, oxidative stress (hippocampus) Reduces
Apoptose, oxidative stress (cortex) Reduces Sporadic

AD
Unsal et al. (2016)

β-Amyloid and tau Reduces Triple-transgenic
AD

Xie et al. (2017)
Spatial memory Improves
Acethylcholinesterase Inhibits Scopolamine-induced Amnesia Martini et al. (2018)
Spatial recognition memory Improves

Table 6  Effects of diphenyl diselenide and its derivatives in experimental models of memory impairment

old 24 months old, middle-aged 18 months old, LTM long-term memory, STM short-term memory, MWM Morris water maze, SDPA step-down 
passive avoidance, YM Y maze, AChE acetylcholinesterase activity

Associated with Experimental model Effects References

Diphenyl diselenide – Middle-aged ↑ STM, LTM Cechella et al. (2014a)
 + Exercise
– Middle-aged ↑ STM Leite et al. (2014)
 + Caffeine ↑ LTM
– Old ↑ STM, LTM, pCREB Cechella et al. (2014b)
 + Exercise
– Hypothyroidism ↑ MWM Dias et al. (2012)
– Menopause ↑ MWM, AChE da Rocha et al. (2012b)

p-Chloro-diphenyl diselenide – Old ↑ LTM Bortolatto et al. (2012)
p-Methoxyl-diphenyl diselenide – Sporadic AD ↑ MWM, SDPA,YM Pinton et al. (2011, 2013a, b)

– Aβ-fragment 25–35 ↓cell death, apoptosis, ↑ MWM Pinton et al. (2013c)



1204 Archives of Toxicology (2021) 95:1179–1226

1 3

In primary cultures of murine hippocampal neurons, 
diphenyl diselenide was reported to be tenfold more potent 
than ebselen against neurotoxicity induced by amyloid Aβ 
(1–42), a factor associated with pathophysiological events 
of AD (Godoi et al. 2013).

Moreover, p-chloro diselenide derivative repeated admin-
istration enhanced memory and induced an antidepressant-
like effect in old rats (Bortolatto et al. 2012). Regarding 
p-methoxyl derivative, this organoselenium compound sup-
plemented in the diet or intragastrically administered was 
proven to be effective against sporadic AD models (Table 6) 
(Pinton et al. 2011, 2013a, b, c).

In particular, selenomethionine is the naturally occurring 
organoselenium most studied in models of AD (Attaran et al. 
2020; Zhang et al. 2016a, 2018; Zheng et al. 2017a); its 
effects include increase of neurogenesis, reduction of Aβ, 
tau hyperphosphorylation, and neurofibrillary tangles for-
mation, tau autophagic clearance, activation of glial cells, 
and regulation of metal dyshomeostasis, thereby improving 
learning and memory (Song et al. 2014; Xie et al. 2018b; 
Zhang et al. 2016b, 2017a, b; Zheng et al. 2019a).

A very recent study published by Zhang and collaborators 
proposed a novel mechanism by which selenomethionine 
improves cognitive impairment in AD. Using a selenoprotein 
K (SELENOK) knockout mice and AD model, the authors 
demonstrated that the decrease in SELENOK levels is asso-
ciated with disequilibrium between synaptic and extrasyn-
aptic NMDARs, suggesting that SELENOK is involved in 
the regulation of NMDARs and synaptic plasticity. The same 
study evaluated brain samples from AD patients and found 
reduced levels of SELENOK, but not of TrxR1, indicating a 
correlation between the decreased SELENOK level and AD. 
Selenomethionine restored synaptic deficits by modulating 
NMDARs and SELENOK in the brain of the AD mouse 
model (Zhang et al. 2020f). Table 7 summarizes the animal 
models of AD in which selenomethionine, diphenyl disele-
nide, and p-methoxyl-diphenyl diselenide were successfully 
investigated.

In terms of selenide effects on memory, we are only aware 
of a few published reports to date (Bortolatto et al. 2013b; 
Duarte et al. 2017; Peglow et al. 2017; Ramalho et al. 2018; 
Yan et al. 2019).

Antioxidant activity

The pioneering article of Muller and collaborators, demon-
strating the GPx-like activity of ebselen (Mϋller et al. 1984), 
opened new avenues in the field of organoselenium applica-
tions and, since that, a multitude of synthetic entities with 
different chemical characteristics has been synthesized and 
their antioxidant properties investigated. As a result, major 
databases have been flooded with research articles related 
to antioxidant, GPx-like, radical-, and peroxynitrite-scav-
enging activities of newly developed molecules (Bortolatto 
et al. 2013a; Chagas et al. 2015; Fonseca et al. 2015; Ibra-
him et al. 2012a, b, 2014a,2019; Junior et al. 2017; Luchese 
et al. 2012a; Peglow et al. 2017; Phadnis et al. 2014; Sauer 
et al. 2017; Singh et al. 2019; Stefanello et al. 2015a; Talas 
et al. 2015).

The GPx-like activity, the molecules’ ability to emu-
late the reaction catalyzed by the native enzyme, has been 
viewed, although with some controversy (Barbosa et al. 
2017; Wirth 2015), as the critical mechanism to design 
potential therapeutic agents, and it is undoubtedly the most 
studied property in the last decade (Ninomiya et al. 2011; 
Sarma and Mugesh 2008). In fact, several excellent reviews 
dealing with GPx-like activity have been published in the 
literature during recent years (Bhowmick and Mugesh 2015; 
Elsherbini et al. 2016; Orian and Toppo 2014; Sands et al. 
2018).

The performance of cyclic and acyclic diorganyl sele-
nides, and aryl and heteroaryl diselenides (Bhabak and 
Mugesh 2010; Sands et al. 2018) on the GPx-like assays 
has been investigated trying to overcome their low solubil-
ity in water, instability, and poor availability, which limit 
their therapeutic applications, and specially challenging to 
replicate in vivo conditions that require aqueous media and 
glutathione as the stoichiometric thiol (Sands et al. 2018). 
The studies have addressed synthetic approaches (Saeed 
et al. 2016), the merits of assays for measuring GPx-like 
activity, the nature of peroxides and thiols, the use of differ-
ent solvents, the solubility of the reactants; their catalytic 
activities, redox mechanisms, and structure–activity rela-
tionships (Bhowmick and Mugesh 2018; Elsherbini et al. 
2014; Hodage et al. 2012; Ibrahim et al. 2015; Jiang et al. 
2015; Prabhu et al. 2012; Selvakumar et al. 2011; Singh 
et al. 2014, 2015; Thomas et al. 2012; Yu et al. 2018). The 
GPx-like activity of natural selenium-containing amino 
acids, selenocystine, methylselenocysteine, and selenom-
ethionine has been also investigated and revealed seleno-
cystine as the most efficient mimetic (Kumar et al. 2011).

Table 7  Natural and synthetic organoselenium compounds tested in 
animal models of AD

a Icv streptozotocin-induced Sporadic AD, bAPPswe, PS1M146V, and 
tauP301L
++ means effective

Aβ-fragment 
25–35

Sporadic
ADa

Triple- 
transgenic 
 ADb

Selenomethionine ++
Ebselen ++ ++
p-Methoxyl-
diphenyl diselenide

++ ++
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On the basis of selenium nutritional essentially for 
humans and other mammalian species (Rayman 2000, 2020), 
organic and inorganic sources have been used to the sele-
nium supplementation in the animal industry and the orga-
noselenium forms have been recognized to be more efficient 
in absorption, antioxidant activity, and tissue accumulation 
than inorganic selenium ones (Calvo et al. 2017; Shini et al. 
2015).

Therefore, diphenyl diselenide was effective in enhancing 
serum basal antioxidant status (Table 8) and anti-inflamma-
tory response in dairy sheep (Biazus et al. 2019), suggesting 
its nutraceutical application.

The selenium supplementation in the diet has been related 
with beneficial effects that increase the aquaculture poten-
tial of fish species (Zheng et al. 2018); therefore, diphenyl 
diselenide was effective to increase basal antioxidant tonus 
in tissues of silver catfish (Menezes et al. 2016). When nano-
capsules were applied as carriers of diphenyl diselenide in 
the diet, an improvement in the muscle antioxidant capac-
ity and growth performance of silver catfish were reported 
(Baldissera et al. 2020a, b, c, d) (Table 8).

The use of selenomethionine or its hydroxyl deriva-
tive supplemented in the diet has been also related with 
the enhancing in the antioxidant status in tissues of piglets 
and broilers (Chao et al. 2019; Falk et al. 2020; Wang et al. 
2011b) (Table 8). A mechanistic proteomic study demon-
strated that selenomethionine increases GPxs activities and 
down-regulates Rap1/MAPK/ERK signaling in chicken skel-
etal muscles (Liu et al. 2020b), highlighting the role of these 
pathways in inhibiting oxidative stress.

The antioxidant property of diphenyl diselenide 
(3 mg  kg−1, 60 days) has been evaluated in models of oxida-
tive stress induced by environmental concentrations of pesti-
cides, atrazine (Marins et al. 2018), quinclorac (de Menezes 
et al. 2012), and clomazone (Menezes et al. 2013), in fishes.

As mentioned above, the GPx-like activity of organose-
lenium compounds has been not believed to be enough to 
justify their antioxidant properties in biological systems 
(Bartolini et al. 2015b; Wirth 2015). As a result, over the 
past few years, the mechanisms underlying organoselenium 
antioxidant effects have attracted interest. In 2015, Thomas 
and collaborators published an elegant study analyzing the 
charge density around Se–N and Se–C covalent bonds and 
the Se···O chalcogen-bonding modes in ebselen, which 
provides insights into the mechanism of drug action in this 
class of organoselenium antioxidants. This study revealed 
the optimized structures of ebselen with water and ROS, 
which would lead to the Se–N-bond cleavage (Thomas et al. 
2015) (Scheme 3). The Se–N-bond cleavage is favored by 
the interaction between the nucleophile and the selenium 
atom, which weak the Se–N bond.

Table 8  Effects of organoselenium compounds in basal antioxidant status

CAT  catalase, SOD superoxide dismutase, GST glutathione S-transferase, GPx glutathione peroxidase, ROS reactive oxygen species, LP lipid 
peroxidation, IL interleukin, ACAP antioxidant capacity against peroxyl radicals, PC protein carbonyl, AA ascorbic acid, T-AOC total antioxidant 
capability, MDA malondialdehyde, GSH glutathione

Supplementation Species Antioxidant markers Other effects References

Diphenyl diselenide 3 µmol  kg−1 (s.c)
5 doses

Sheep ↑CAT, ↑SOD, ↑GST, ↑GPx
↓ROS, ↓LP

↑ IL-10
↑milk fat

Biazus et al. (2019)

3 mg  kg−1

60 days
Silver catfish ↑AA, ↑NPSH

↓ROS, ↓PC
Menezes et al. (2016)

Diphenyl diselenide nanocap-
sules

3 mg  kg−1 feed
30 days

Silver catfish ↑CAT, ↑SOD, ↑ACAP, ↓ROS, 
↓LP

↑[Se] Baldissera et al. (2020d, 
a, b, c)

Selenomethionine 0.15 mg  kg−1

40 days
Broilers ↑GSH, ↑SOD, ↑GPx,

↑T-AOC
↓MDA

↑[Se]
↑meat quality

Wang et al. (2011b)

OH-selenomethionine 0.5 mg  kg−1

28 days
Piglets ↑GPx

↓MDA
↑[Se] Chao et al. (2019)
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A molecular mechanism accounted for the organosele-
nium compounds antioxidant activity is the effect as “thiol 
modifier" by the activation of the Keap1/Nrf2 signaling 
pathway. In fact, increasing evidence has indicated that 
ebselen and diphenyl diselenide, by behaving as soft elec-
trophiles, can oxidize critical cysteinyl residues in Keap1 
that activates the Nrf2 signaling pathway and the subsequent 
transcription of antioxidant enzymes in cells (de Bem et al. 
2013; dos Santos et al. 2020). This molecular mechanism 
of “adaptive stress response” activating the Nrf2 pathway, 
thereby leading to increased cellular protection, has also 
been demonstrated for other diselenide derivatives (Barto-
lini et al. 2015a).

Conclusion

Regarding its effects on mammalian cells, selenium is an 
element with two faces. Its deficiency is associated with 
an increased risk of diseases, including cancer, viral infec-
tion, and cardiovascular pathologies. In contrast, chronic 
exposure to dietary levels of selenium just above the ideal 
levels can increase the risk of cancer, neurodegenerative 
diseases, and type 2 diabetes. A great quantity of literature 
data has indicated a role for selenium in immunological and 
inflammatory responses; however, the exact molecular role 
played by selenium in these pathophysiological processes 
is still elusive. From the point of view of nutrition, the ideal 
selenium body burden is still unknown, but it seems evi-
dent that the ideal blood and body levels of selenium are 
narrow. Supplementation with either organic or inorganic 
forms of selenium should be implemented only after labora-
tory determination of deficient blood selenium levels. The 
supplementation should be discontinued or diminished as 
soon as the ideal level is attained. The narrow ideal levels 
of selenium ingestion are related to its unique reactivity in 
the physiological milieu. Metabolically, inorganic selenium 
(e.g., selenite or  Se+4 and selenate or  Se+6) is metabolized 
to selenide  (HSe–), which can be incorporated in selenopro-
teins as selenocysteinyl residues. An excess of selenide can 
generate reactive and toxic metabolites that can deregulate 
cell physiology via disruption of thiol-containing proteins 
(for instance, methylselenyl radical). Our knowledge on how 
an excess of selenium ingestion interferes with the normal 
physiology of the 25 human selenoproteins is still very lim-
ited. In contrast to inorganic selenium forms, the metabolism 
of organic forms of selenium will depend greatly on their 
chemical structure. For instance, selenomethionine can be 
metabolized to methylselenol, selenocysteine, and selenide 
(Fig. 4), but an excess of selenomethionine can also gener-
ate reactive intermediates (Fig. 4) and even cause death in 
animals and humans. Other naturally occurring selenium 
compounds (methylselenocysteine, selenocystine, etc.) 

can also be metabolized to inorganic selenium, but some 
synthetic organoselenium compounds (for instance, ebse-
len) do not release the selenium from its organic moiety. 
Differences in the metabolism of synthetic organosele-
nium compounds can have nutritional and pharmacologi-
cal consequences and we have little knowledge about the 
metabolism of the majority of synthetic selenium-containing 
organocompounds. Another point that has not been studied 
is the potential metabolism of organoselenium compounds 
by intestinal microorganisms (Takahashi et al. 2020). This 
is of particular importance, because the oral route has been 
shown to be a potential route to administer pharmacologi-
cal active selenium compounds (Nogueira and Rocha 2011). 
Indeed, we do not know which of them can contribute to the 
inorganic pool of selenium in vivo (either directly or after 
metabolic changes in the gastrointestinal tract) (Fig. 4). It is 
important to emphasize that organic forms of selenium will 
contribute to selenoprotein synthesis only when they can be 
metabolized to selenide (Fig. 4).

Fig. 4  Main metabolites of common dietary inorganic selenium 
forms (selenite or  Se4+ and selenate or  Se6+) and from selenomethio-
nine (SeMet) to selenide  (HSe–). Selenide is the key intermediate in 
the incorporation of selenium into the organic moiety of serine form-
ing the selenocysteinyl residue at the level of the specific t-RNA 
(Sec-t-RNA[Sec][Ser]]) that will be incorporated in the structure of 
selenoproteins. Selenomethionine (a naturally occurring organic form 
of selenium) can be metabolized directly to methylselenol or via the 
transulfuration pathway to a minor amount of selenocysteine (SeCys) 
(Burk and Hill 2015), which due to its reactivity is expected to be 
oxidized to selenocystine (CysSeSeCys). The methylselenol can be 
demethylated to selenide, and SeCys and CysSeSeCys can also be 
metabolized to selenide. The methylselenol intermediate can be fur-
ther methylated to dimethylselenide (which can be excreted via inha-
lation) and trimethylselenium cation (which is excreted in the urine). 
The methylselenol can also be oxidized to dimethyldiselenide or can 
form the extreme reactive selenyl radical. The elusive metabolism of 
synthetic organoselenium compounds into the inorganic selenide pool 
is indicated by a quotation mark
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The remarkable interest in organic molecule-containing 
selenium was reinvigorated in the late 1970s when ebselen 
(a molecule originally synthesized in 1924) was shown to 
be a mimetic of GPx and an antioxidant. Contrary to the 
expectations of the researchers, ebselen was not a source 
of selenium for GPx biosynthesis, but it was an interesting 
compound with pharmacological potential both as an anti-
inflammatory and antioxidant agent in a variety of in vitro 
and in vivo models of diseases (Parnham and Sies 2013). In 
the late 1990s, ebselen was tested in 3 human clinical trials 
to treat brain ischemia and stroke with a borderline efficacy. 
However, its efficacy was not considered sufficient to justify 
its clinical use in brain ischemia and related pathologies. 
Despite the clinical failures of ebselen, it was proven to be 
a safe drug for human use. To date, there are approved and 
ongoing clinical trials with ebselen to treat bipolar disorder 
and moderate and severe COVID-19. Here, in this review, 
we have discussed some organoselenium compounds with 
potential pharmacological applications, including some 
ebselen derivatives and several diselenides. Although ebse-
len and diselenides can have some overlapping pharmaco-
logical properties, their molecular targets are not identical. 
However, they have similar anti-inflammatory and antioxi-
dant activities, possibly, via activation of transcription fac-
tors regulating the expression of antioxidant genes. In short, 
our knowledge about the pharmacological properties of sim-
ple organoselenium compounds is still elusive. However, 
contrary to our early expectations that they could imitate 
selenoproteins, organoselenium compounds seem to have 
non-specific modulatory activation of antioxidant pathways 
and specific inhibitory effects in some thiol-containing pro-
teins. For instance, the inhibition of 5′-IMPase (an enzyme 
that is a target of lithium) via oxidation of a critical cysteinyl 
residue in the protein is thought to be involved in the antide-
pressive effects of ebselen (Singh et al. 2013). Of potential 
significance for the treatment of SARS-CoV-2 infection, 
ebselen has been shown to inhibit the two thiol-containing 
virus proteases (the main protease and the papain-like pro-
tease) and to decrease the virus replication in vitro (Jin et al. 
2020; Sies and Parnham 2020). The thiol-oxidizing proper-
ties of organoselenium compounds have been considered the 
molecular basis of their chronic toxicity; however, the acute 
use of organoselenium compounds as inhibitors of specific 
thiol-containing enzymes can be of therapeutic significance. 
In summary, the outcomes of the clinical trials of ebselen 
as a mimetic of lithium or as an inhibitor of SARS-CoV-2 
proteases will be important to the field of organoselenium 
compounds synthesis. In addition, the development of com-
putational techniques that could predict rational modifica-
tions in the structure of ebselen and other organoselenium 
compounds to increase their specificity is also required to 
construct a library of thiol-modifying agents with selectivity 
toward specific target proteins.
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