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Abstract: Acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome historically
characterized by the presence of severe hypoxemia, high-permeability pulmonary edema manifesting
as diffuse alveolar infiltrate on chest radiograph, and reduced compliance of the integrated respiratory
system as a result of widespread compressive atelectasis and fluid-filled alveoli. Coronavirus disease
19 (COVID-19)-associated ARDS (C-ARDS) is a novel etiology caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) that may present with distinct clinical features as a result
of the viral pathobiology unique to SARS-CoV-2. In particular, severe injury to the pulmonary
vascular endothelium, accompanied by the presence of diffuse microthrombi in the pulmonary
microcirculation, can lead to a clinical presentation in which the severity of impaired gas exchange
becomes uncoupled from lung capacity and respiratory mechanics. The purpose of this review is to
highlight the key mechanistic features of C-ARDS and to discuss the implications these features have
on its treatment. In some patients with C-ARDS, rigid adherence to guidelines derived from clinical
trials in the pre-COVID era may not be appropriate.
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1. Introduction

Acute respiratory distress syndrome (ARDS), as initially described, defined patients
with similar clinical and pathologic findings: refractory hypoxemia; diffuse alveolar in-
filtrates on chest X-ray; severely reduced lung compliance; and, in those who did not
survive, heavy lungs at autopsy, characterized by diffuse alveolar injury with hyaline
membranes [1]. As its manifestations appeared superficially similar regardless of etiology,
it was reasoned that treatment should be essentially the same, and this quickly became a
universally accepted approach [2].

Randomized trials of therapy for such a pathologically and mechanically defined
entity, however, might require up to one thousand patients to demonstrate survival benefit.
Consequently, the need to establish definitions broad enough to permit sufficient enroll-
ment with smaller numbers became evident [3]. Definitional simplification that excluded
such hallmark features of ARDS as low respiratory compliance succeeded in facilitating
enrollment for clinical studies, of course, but this came at the expense of specificity. In a
recent study, for example, 14% of patients meeting the definition for ARDS had no iden-
tifiable pulmonary lesions at post mortem examination [4]. As a result, randomized trials
incorporating these simplified definitions have included patients with an extraordinary
range of respiratory mechanics and severity of illness. Yet, conducting such trials has led
to the impression among many clinicians that “ARDS” represents a distinct disease-like
entity [5].
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Whether all patients with ARDS should be treated similarly and without discrim-
ination regarding etiology is not a new question but rather one with renewed immedi-
acy. The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), has overwhelmed intensive care units with cases of respiratory failure
meeting the broadened diagnostic criteria for ARDS [6]. While the number of patients
requiring invasive mechanical ventilation for ARDS secondary to COVID-19 (C-ARDS)
has declined over time [7], mortality in this population remains high [8]. Many have
argued that C-ARDS should be managed no differently than ARDS of any other etiology,
ignoring that the viral pathogenesis of SARS-CoV-2 may lead to a distinct form of ARDS
that diverges from “typical” ARDS. For C-ARDS patients requiring mechanical ventilation,
current guidelines, derived from studies of ARDS primarily caused by bacterial pneumonia
and septic abdominal disease [9], may not be universally appropriate.

The purpose of this review is to describe how the physiology of C-ARDS, generated
by the unique viral pathobiology of SARS-CoV-2, may differ from non-COVID ARDS,
emphasizing the implications of that difference for both pharmacotherapy and mechanical
ventilation. We underline that rigid adherence to all pre-COVID ventilatory guidelines
may be ill-advised. Finally, we discuss management of refractory C-ARDS and the role of
extracorporeal life support.

2. “Typical” ARDS

ARDS is currently defined by the Berlin Definition (Table 1) [6] and is characterized by
high-permeability pulmonary edema and widespread compressive atelectasis. In response
to injury, immune cells trigger an inflammatory response that leads to disruption of the
alveolar–capillary barrier [10]. Accumulation of protein-rich fluid in alveolar and interstitial
spaces inhibits pulmonary surfactant [11] which, along with increased hydrostatic pressures
from extravascular lung water, results in collapse of underlying lung units. Physiologically,
this manifests as (1) severely impaired gas exchange, with refractory hypoxemia and
hypercarbia secondary to intrapulmonary shunt and reduced functioning surface for gas
exchange [12–14]; and (2) severely reduced lung compliance. Histologically, this initial
phase manifests as “diffuse alveolar damage,” a constellation of findings involving damage
to the alveolar lining and endothelium, the presence of hyaline membranes, interstitial and
alveolar edema, and inflammatory infiltrate [15].

Table 1. Berlin Definition of Acute Respiratory Distress Syndrome. CXR, chest X-ray; CT, computed
tomography; PaO2/FiO2, partial pressure of arterial oxygen to fraction of inspired oxygen ratio; PEEP,
positive end-expiratory pressure; CPAP, continuous positive airway pressure.

Timing Within 1 week of known clinical insult or new or worsening
respiratory symptoms

Chest imaging Bilateral opacities on CXR or CT not fully explained by effusions, lobar/lung
collapse, or nodules

Origin of edema Respiratory failure not fully explained by cardiac failure or fluid overload

Oxygenation

Mild 200 mm Hg < PaO2/FiO2 ≤ 300 mm Hg with PEEP or CPAP ≥ 5 cm H2O

Moderate 100 mm Hg < PaO2/FiO2 ≤ 200 mm Hg with PEEP ≤ 5 cm H2O

Severe PaO2/FiO2 ≤ 100 mm Hg with PEEP ≥ 5 cm H2O

Studies using quantitative computerized tomography (CT) have demonstrated that
not only is the ARDS lung heterogeneous, with normally aerated units co-existing alongside
non-aerated ones [16], but that the location of non-aerated units is strongly influenced
by gravity, owing to the compressive forces of overlying edematous lung tissue. For that
reason, radiographic densities appear to migrate from the paravertebral region when supine
to the parasternal region when prone [17]. These studies have further shown that, in ARDS,
compliance of the integrated respiratory system is determined primarily by the number of
aerated lung units [18]; in other words, low compliance in ARDS is due in large part to the
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lungs being “small” not “stiff” [19]. Collectively, these findings gave rise to the concept of
the “baby lung”, a construct drawing similarity between the volume of aerated tissue in
the low-capacity lung of ARDS and the volume of aerated tissue in the lung of a healthy
child [20]. As total chest dimensions remain unaltered by ARDS, tissue density inversely
parallels the capacity of the baby lung.

This concept has important implications. First, the severity of gas exchange impair-
ment is intrinsically linked to the quantity of non-aerated tissue, with shunt fraction and
physiologic dead space increasing, and PaO2 decreasing, as the percentage of non-aerated
lung rises [21]. Therefore, in typical ARDS, oxygenation and compliance are expected to
deteriorate in direct proportion to one another. Additionally, the loss of ventilatory capacity
means that the entire workload of ventilation is concentrated in an overtaxed baby lung,
increasing the risk for progressive injury and further loss of functional lung units [22]. Pro-
tective strategies for ventilation have therefore been directed towards expanding the size of
the baby lung through alveolar recruitment with the intent of distributing workload among
a greater number of functional lung units, while avoiding exposure to (and unnecessary
repetition of) tidal cycles that excessively strain vulnerable structural microelements.

While imperfect, as there is significant heterogeneity within the ARDS population, we
use the term “typical” to collectively refer to ARDS described in the pre-COVID ARDS
literature, which predominantly focused on patients with bacterial pneumonia and intra-
abdominal disease.

3. Viral Pathogenesis of SARS-CoV-2

Appreciation for the viral pathogenesis unique to SARS-CoV-2 underpins a solid
understanding of physiologic disparities between C-ARDS and non-COVID ARDS. SARS-
CoV-2 expresses multiple structural proteins on its viral envelope, including the spike
protein, a glycoprotein that mediates binding to host cells [23]. Cellular tropism is deter-
mined not only by the expression of angiotensin converting enzyme 2 (ACE2) receptors on
the surface of host cells [24], which the spike protein binds to directly, but also the presence
of transmembrane serine protease (TMPRSS2), which cleaves spike protein and facilitates
viral uptake [25]. Following the release of the viral ribonucleoprotein into the cytoplasm,
viral replicases use endoplasmic reticulum membranes to form double membrane vesicles
for ”protected” viral RNA transcription (termed replication factories) [26,27].

ACE2 receptors are expressed widely throughout the body, but their concentration
is especially high in the pulmonary vascular endothelium and respiratory tract. As a
result, the cells first targeted by SARS-CoV-2 following inhalation are those located in the
nasopharynx and upper airway (e.g., multiciliated cells or sustentacular cells of the olfactory
mucosa) [28,29]. When host immunity fails to clear SARS-CoV-2 infection, it spreads to
the lower respiratory tract, either by aspiration of viral particles from the oropharynx or
gradual progression throughout the tracheobronchial tree; in some cases, it may bypass the
upper respiratory tract altogether [30]. Upon reaching the alveoli, SARS-CoV-2 primarily
affects alveolar type 2 (AT2) cells which, in health, are tasked with both production of
pulmonary surfactant and regeneration of AT1 cells (which constitute the majority of the
alveolar epithelium) [31].

Following infection, host cells initially attempt to control viral spread through innate
immunity. Cytoplasmic pattern recognition proteins detect RNA fragments of SARS-CoV-2,
triggering the release of interferons, pro-inflammatory cytokines and leukocyte recruit-
ment [32]; additional cytokine release occurs when damage-associated molecular patterns
in host cells are released in response to injury [33]. If the innate immune response is dys-
functional, infection will spread, increasing the risk for severe COVID-19; alternatively, if
the adaptive B and T cell responses to innate cytokine and chemokine release are absent,
uncontrolled inflammation may ensue [34].

Alveolar cell injury or death causes disruption of the alveolar epithelium, thereby
setting off an imbalance between coagulation activation and fibrinolysis [26,35]. Fibrin-rich
alveolar exudates form hyaline membranes, which prevent further fluid accumulation into
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the injured alveoli but also hinder the alveolar–capillary oxygen transport [26,36]. Diffuse
alveolar damage is followed by small-vessel endothelial activation and injury secondary
to hypoxia, cytokines, chemokines, damage-associated molecular patterns, and direct
infection by the virus [26,37,38]. Diffuse endotheliitis with inflammatory cell infiltrates may
induce widespread endothelial cell apoptosis, pyroptosis, and microcirculatory dysfunction
contributing to C-ARDS and also promoting extrapulmonary organ/system failure [26,37].
Release of the endothelial tissue factor can activate the extrinsic coagulation pathway [39].
Extracellular RNA, DNA, and exposed collagen can also activate factor XII and the intrinsic
coagulation pathway [40]. Concurrently, platelets seal off the area of endothelial damage to
prevent vascular leakage and secrete coagulation-sustaining factors [41] (Figure 1).
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Figure 1. Severe coronavirus disease 19 is characterized by immune cell-mediated hypercoagulability
and hypofibrinolysis. Hypoxia, cytokines, chemokines, damage-associated molecular patterns, and
direct infection by the virus contribute to alveolar and endothelial cell death, and disruption of the
alveolar–capillary barrier. Exposed extracellular matrix can trigger both the extrinsic coagulation
(via tissue factor (TF)) and the intrinsic coagulation (via collagen/RNA). Recruited monocytes (with
virus-activated NLP3 inflammasomes) and neutrophils amplify the inflammatory response, as well
as the activation of coagulation by expressing active tissue factor (TF) and releasing neutrophil
extracellular traps (NETs), respectively. Complement activation by the virus promotes active TF
expression by neutrophils, and differentiation of cytotoxic CD-16+ T cells. NETs recruit platelets,
which are subsequently activated by NET histones and the C3a and C5a complement fragments;
this results in platelet release of cytokines. Activated platelets secrete coagulation-sustaining factors.
The immunothrombotic process leads to diffuse small-vessel thromboses and thrombocytopenia.
Concurrently, increased expression of plasminogen activator inhibitor (PA1) attenuates fibrinolysis.
AT1, alveolar type 1 cell; AT2, alveolar type 2 cell; ET, endothelial cell; PRR, pattern recognition
receptor; IL, interleukin; CCL, CC chemokine ligand; IFN, interferon. Reproduced in part with
permission from [26]; copyright (2022) by Springer Nature.

In the context of COVID-19 immunothrombosis (Figure 1), recognition of SARS-CoV-2
through pattern recognition receptors of monocytes results in the release of activated tissue
factor at sites of virus localization [26,42]. SARS-CoV-2 stimulates the NLPR3 inflamma-
some, with consequent production of interleukin (IL) 1 beta (IL-1-β) and IL-18 [42,43].
Concurrently, there is increased release of IL-6 from the alveolar epithelium, which in turn
stimulates the production of clotting factors in the liver and tissue factor in the endothe-
lium [26]. Complement activation by SARS-CoV-2 results in (1) upregulated expression
of tissue factor by neutrophils [26,44]; and (2) differentiation of a CD-16 expressing T
cell subpopulation, promoting immune complex-induced degranulation, microvascular
endothelial cell injury, and release of IL-8 and chemokines [26,45]. Activated neutrophils
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release neutrophil extracellular traps (NETs), which directly activate factor XII and bind von
Willebrand factor to promote recruitment of platelets [42]. NET histones, and complement
fragments C3a and C5a, activate platelets, while neutrophil elastase and myeloperoxidase
inactivate anticoagulants such as tissue factor pathway inhibitor [42]. NET-associated
platelets activate the intrinsic coagulation pathway and release large amounts of pro-
inflammatory cytokines [42]. Immune-activated platelets (through pattern recognition
receptors) also propagate the innate immune response and immunothrombosis by releas-
ing platelet factor 4 and high-mobility group box 1 protein, as well as platelet-derived
extracellular vesicles [46]. Immunothrombotic mechanisms are further enhanced by hy-
pofibrinolyis secondary to increased expression of plasminogen activator inhibitor [26,47]
(Figure 1).

Systemic hyperinflammation is the sine qua non of C-ARDS and may be especially
prominent in subsets of patients with (1) risk factors such as age, obesity, cardio-respiratory
comorbidity, diabetes, and immunosuppression [26,48,49]; (2) genetic predisposition
(e.g., variants at chemokine receptor genes or genes involved in interferon induction and
amplification) [26,50–54]; and (3) autoantibodies against type I interferons [55,56]. Be-
sides C-ARDS, severe and potentially lethal COVID-19 may also have extrapulmonary
manifestations including gastrointestinal symptoms, acute cardiac, renal, and liver injury,
rhabdomyolysis, coagulopathy, cardiac arrhythmias, and circulatory failure [26,57]. Lastly,
while some studies have demonstrated systemic inflammation in C-ARDS to be less robust
than non-COVID ARDS [58,59], pro-inflammatory responses are tightly linked to injury of
the pulmonary vascular endothelium and immunothrombosis, both of which are distinct
pathophysiologic features of C-ARDS in terms of their severity and ubiquity [30].

4. Pharmacologic Interventions

Despite hypercoagulability, full therapeutic anticoagulation did not prove superior
to prophylactic anticoagulation in an international randomized controlled trial (RCT) of
severe COVID-19 [60]. In contrast, treatments focusing on the inflammatory component of
COVID-19 thrombosis have been repeatedly associated with improved patient outcomes.
Indeed, “general inhibition” of inflammatory processes with dexamethasone or hydro-
cortisone resulted in a 30–36% reduction in the odds for in-hospital death of critically ill
COVID-19 patients [61,62].

Despite initially discouraging findings [63], a meta-analysis of 19 RCTs reported a
17% reduction in the odds for in-hospital mortality with the IL-6 antagonist tocilizumab
compared to usual care or placebo [64]. When compared to usual care, the addition of
baracitinib, a janus kinase inhibitor, also resulted in shorter recovery time [65], reduced
mortality [66], and lower frequency of adverse events [67]; furthermore, in a meta-analysis
of four RCTs, baracitinib was associated with a 31% reduction in the odds for in-hospital
death [68]. Guided by soluble urokinase plasminogen receptor plasma levels, treatment
with IL-1 alpha and IL-1 beta antagonists also resulted in a 64% reduction in clinically wors-
ened status at day 28, less organ dysfunction at day 7, and lower in-hospital mortality [69].

Collectively, these results highlight not only the clinical relevance of inhibiting key
inflammatory processes that contribute to widespread endothelial dysfunction, diffuse
small-vessel thromboses, and multiorgan failure, but also a broader theme—the treatment
of C-ARDS, whether it be pharmacologic or otherwise, diverges from the treatment of
non-COVID ARDS.

5. Blood Purification Interventions

In septic shock, extracorporeal cytokine removal with Cytosorb has been associated
with lower IL-6 levels [70], reduced norepinephrine requirements [71], and lower observed
vs. expected, 28-day, all-cause mortality [70,72]. These data, along with the recently proven
efficacy of immunomodulating agents and the potentially beneficial effects reported by
COVID-19 case series [73,74], supported the hypothesis that cytokine adsorption might
improve severe COVID-19 outcomes [75,76]. However, in a small RCT of severe C-ARDS
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requiring extracorporeal membrane oxygenation (ECMO), patients treated with Cytosorb
for 72 h had similar IL-6 concentrations and higher 30-day mortality compared to con-
trol [75]. Furthermore, in a second RCT of COVID-19 patients with vasoplegic shock,
Cytosorb treatment for 3–7 days did not expedite shock reversal, and had no significant
effect on markers of inflammation, vasopressor requirements, and 90-day mortality [76].
Notably, these findings are consistent with the results of two prior, small RCTs in septic or
cardiac surgery patients [77,78]. Collectively, Cytosorb RCTs have failed to demonstrate
any clinically meaningful difference between intervention and control groups [75]. Any pre-
viously observed cytokine lowering and hemodynamic stabilization are likely attributable
to the natural course of the disease and adjunctive therapy rather than non-specific cy-
tokine adsorption [75]. Alternative approaches to extracorporeal blood purification such
as heparin-functionalized adsorbents are currently under evaluation with respect to their
efficacy in depleting pathogens and mediators of immunothrombosis [46].

6. Distinct Pathologic Features of C-ARDS

Substantial clinical and biologic heterogeneity exists within the ARDS population [79].
Subphenotypes with distinct clinical features and responses to therapy have been identified
with respect to the initial site of injury (pulmonary or extrapulmonary) [80] and biologic
markers of inflammation (hypo- or hyperinflammatory) [81]. It should thus come as little
surprise that properties unique to the SARS-CoV-2 virus itself might result in a form of
ARDS with distinctive pathophysiology, or that even amongst patients with ARDS of
a single etiology (e.g., C-ARDS), there might be a significant diversity of findings and
responses to treatment (Table 2).

Table 2. Comparative presentation of major characteristic features of typical ARDS and C-ARDS.
ARDS, acute respiratory distress syndrome; C-ARDS, coronavirus disease (COVID) 19-related ARDS;
SARS-CoV-2, severe acute, respiratory syndrome coronavirus 2; PaO2/FiO2, oxygen arterial partial
pressure-to-fraction of inspired oxygen fraction ratio; PEEP, positive end-expiratory pressure; ECMO,
extracorporeal membrane oxygenation. * May predispose to early, profound hypoxemia and the
conceptual risk of pre-intubation, patient self-inflicted lung injury.

Typical ARDS C-ARDS

Etiology
Diverse, pulmonary or extrapulmonary (e.g.,
bacterial or viral pneumonia, severe trauma,

aspiration, sepsis, etc.)

SARS-CoV-2 infection of alveolar type
2 cells (primarily)

Hypoxemia (PaO2/FiO2 ≤ 300 mmHg at a
PEEP level of ≥ 5 cmH2O)

Acute onset (e.g., within <48 h after the clinical
insult), or progressive onset (i.e., within 7 days

after the clinical insult)

Progressive onset (i.e., within 7 or more days
after the onset of COVID-19 symptoms) *

Lung compliance at hypoxemia onset Usually low (e.g., <40 cmH2O/L) Usually high (e.g., >40 cmH2O/L)

Recruitment potential
Low or high, depending on the extent/nature

of lung unit involvement and
associated atelectasis

Initially low—may increase with disease
progression and development of edema

and atelectasis

Functional-to-anatomical shunt
ratio/hyperperfusion of gasless tissue * Usually 0.5–2.0/no Usually > 2.0/yes

Alveolar capillary microthrombosis/new
vessel growth Present/present Diffuse (~9 times more prevalent)/marked

(2.7 times higher)

Clinical benefit from
lung-protective ventilation Proven Highly likely

Clinical benefit from prone positioning Proven Highly likely

Clinical benefit from corticosteroids Likely; more high-quality evidence needed Proven

Clinical benefit from targeted
anti-inflammatory interventions

Uncertain; lack of
intervention-specific evidence Proven

Clinical benefit from ECMO Likely Possible; high-quality evidence still needed
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Reports comparing the pathologic features of C-ARDS to other forms of viral or non-
viral ARDS are fraught with conflicting results, as accounting for the stage of disease and
evolution of practice patterns over time is challenging. One theme that has consistently
emerged, however, is the near-universal presence of pulmonary vascular abnormalities in
patients with C-ARDS [82].

Though often present, pulmonary vascular lesions are not a dominant histopathologic
feature of usual ARDS and are seldom widespread in post mortem lung specimens [15,83].
In patients with C-ARDS, however, they not only occur commonly [84,85] but are extensive,
occupying greater than 25% of the lung parenchyma in over half of the patients examined at
autopsy in one study [86]. While microvascular thrombi may be a shared histologic finding
among all patients with ARDS caused by pulmonary viruses, including influenza A and
SARS-CoV-1 [82], the extent of microthrombosis appears to be far greater in patients with
C-ARDS [38]. This prevalence tends to uncouple gas exchange from mechanical properties,
calling into question the specifics of ventilation management guidelines developed from
clinical trials in the non-C-ARDS setting. Furthermore, the thrombotic burden is not
confined to the microcirculation; the incidence of large-vessel pulmonary emboli is higher
in patients with C-ARDS than in those of ARDS secondary to other viral and non-viral
etiologies [87,88]. Other pulmonary vascular derangements observed at autopsy include
severe endothelial injury [37,38] and the presence of dilated/engorged capillaries [89].

Studies incorporating dual-energy computerized tomographic angiography (CTA),
digital subtraction CTA, and high-resolution CT have further extended these findings.
Pulmonary vascular abnormalities on CT, most notably vessel enlargement, are common in
patients with COVID-19 and may even be present prior to the development of C-ARDS [90].
Enlarged vessels suggestive of vasodilatation can be frequently observed within an area
of ground glass or consolidation [91], contrary to the expected physiologic response to
regional hypoxia (i.e., vasoconstriction). Perfusion imaging confirms that a considerable
fraction of opacified lung parenchyma demonstrates increased uptake (indicating blood
flow) in spite of diminished or even absent ventilation [92]. Perfusion abnormalities, on the
other hand, are detected in areas of normal lung density [90], with one study of mechanically
ventilated C-ARDS patients reporting that perfusion defects were not only present in every
patient studied, but that the median extent of vascular abnormality approached 50% [93].

7. Respiratory Mechanics and Gas Exchange in C-ARDS

Early in the pandemic, Gattinoni and colleagues reported novel findings in their first
16 patients with C-ARDS; these patients had a relatively high tidal compliance (averaging
50.2 mL/cm H2O) associated with significantly elevated shunt fraction (0.50) [94]; further-
more, in the eight patients they evaluated using quantitative CT, the ratio of shunt fraction
to gasless tissue was markedly higher (roughly 2.5 times) than those observed in usual
ARDS [95], consistent with hyperperfusion of gasless tissue.

Chiumello and colleagues performed similar quantitative CT analysis in 32 consecutive
C-ARDS patients receiving mechanical ventilation and compared gas exchange, respiratory
mechanics, and CT variables to those of two historical cohorts of usual ARDS: one matched
1:1 for PaO2/FiO2 (P/F) and one matched 1:1 for compliance [96]. Compared to the C-ARDS
cohort, the historical ARDS cohort matched for P/F had significantly lower compliance
values (39.9 versus 49.4 mL/cmH2O) and gas volumes on CT (930 mL versus 1670 mL).
The historical ARDS cohort matched for compliance, on the other hand, had a higher P/F
when compared to the C-ARDS cohort (160 versus 106.5 mmHg).

These findings are well explained by the pulmonary vasculopathy and diffuse,
inflammation-triggered microthrombosis observed in COVID-related lung disease. In
typical ARDS, airspace flooding, collapse, and consolidation tend to parallel the severity
of oxygenation impairment and fall in compliance. C-ARDS challenges this conceptual
framework; specifically, lung compliance may be well preserved in the early and mild
stages of C-ARDS (at least in a major fraction of these patients), with severe hypoxemia
not occurring primarily as a result of airspace filling and lung unit drop-out, but as the
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consequence of increased perfusion to non-ventilated lung units [89,97–100]. Over time,
however, progression of C-ARDS fundamentally alters the lung’s mechanical properties. In
late phase ARDS, regardless of the cause, lung capacity becomes severely reduced and is
characterized by high dead space, limited recruitability, and low compliance [101].

As might be expected from the loosely defined and oxygenation-based criteria for
ARDS and the evolving nature of COVID-related lung injury, there is wide overlap be-
tween the mechanics of C-ARDS and usual ARDS; indeed, several studies evaluating their
comparative mechanical properties did not identify distinctive mean differences between
cohorts [102,103], which may in part be a function of the stage of illness in which such
observations were made [104,105].

8. Mechanical Ventilation in C-ARDS

The goals of invasive mechanical ventilation in C-ARDS are to relieve excessive work of
breathing, improve gas exchange, and avoid aggravation of existing lung injury. Repeated
exposure to tidal cycles that cause excessive, fracturing strain of structural microelements
is believed to be the proximate mechanical stimulus for ventilator-induced lung injury
(VILI) [106]; in recent years, a better understanding of the biophysical causes of VILI
has shifted our traditional focus from the inflation pattern of a single tidal cycle toward
avoiding exposure to damaging levels of tidal energy and power [107]. At the bedside,
however, the focus remains on attempting to restrain tidal plateau and driving pressures
below defined numerical thresholds. Unfortunately, this well-intentioned objective is often
pursued through application of inflexible ventilatory targets and without consideration of
the stage of disease.

In many patients with C-ARDS, ventilator strategies shown to be beneficial in clinical
trials of unselected patients with ARDS will be appropriate; for others, however, they may
not apply. The body of C-ARDS literature has expanded at a remarkable pace throughout
the pandemic, providing guidance in certain areas regarding optimal ventilator manage-
ment. Knowledge gained through physiologic studies preceding the C-ARDS era must be
applied judiciously in order to provide individualized care for patients with ARDS of any
etiology—including those with COVID-19.

8.1. Tidal Volume in C-ARDS

Twenty years ago, the ARMA trial [9] demonstrated a 9% absolute reduction in
mortality among mechanically ventilated ARDS patients randomized to an initial tidal
volume of 6 mL/kg predicted body weight, forming the basis for what has become a
standard of care codified in most ARDS guidelines [108,109]. While large tidal volumes
that lead to excessive strain are undoubtedly misguided in any acutely injured lung [110],
several points are worth noting with respect to tidal volume selection in C-ARDS:

(1) Data from the ARMA trial, derived primarily from patients with ARDS secondary
to bacterial pneumonia and sepsis, may not be wholly translatable to patients with
ARDS secondary to novel forms of viral pneumonia with unique pathologic features,
such as C-ARDS.

(2) Even in the ARMA trial, tidal volumes could be liberalized if necessary to facilitate
patient comfort and adequate ventilation.

(3) In three large randomized trials that preceded the ARMA trial, no differences were
found between patients treated with means of 7.2 mL/kg versus 10.6 mL/kg pre-
dicted body weight [111]; 7.2 mL/kg versus 10.4 mL/kg dry body weight [112]; and
7.3 mL/kg versus 10.2 mL/kg predicted body weight [113].

In the subpopulation of C-ARDS patients with less alveolar injury and relatively pre-
served compliance, larger tidal volumes of 7–8 mL/kg predicted body weight may result
in tolerable strain and energy input without the risk of VILI [107]. In such patients, enforc-
ing low tidal volumes can unnecessarily increase dead space [114], lead to reabsorption
atelectasis from hypoventilation, and necessitate additional sedation to facilitate breathing
comfort. However, as the severity of disease progresses and compliance declines, lower
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tidal volumes may be required to prevent the generation of strain that exceeds critical
thresholds of injury.

8.2. Application of PEEP in C-ARDS

Since the severity of gas exchange impairment and loss of compliance in the baby
lung of ARDS reflect the reduced number of lung units available to accept ventilation,
it is logical that interventions leading to an increase in the number of functional lung
units should improve hypoxemia, reduce dead space, and increase compliance. Positive
end-expiratory pressure (PEEP) is applied with the intent of achieving these goals by
preventing collapse of unstable alveoli and thereby stabilizing “recruitment.” Expanding
the ventilatory capacity in this manner additionally serves to distribute energy across a
greater number of lung units, perhaps decreasing the quantity of damaging tidal energy
transferred to the parenchymal matrix and reducing the risk of VILI [19].

Employing PEEP for the purposes of alveolar recruitment, however, hinges on the as-
sumptions that compromised gas exchange is due primarily to loss of otherwise functional
lung units and that these collapsed, or fluid-filled, units will regain function in response to
the application of end-expiratory pressure. In C-ARDS, these assumptions may not hold
true, and if they do, may be strongly dependent on the timing of the intervention [115].

Within the baby lung, the regional effects of PEEP are highly variable, as both recruit-
ment and overdistension occur simultaneously as the lung expands. The net benefit of
PEEP depends on whether recruitment of functional lung units outweighs overdistension
within those that were already functional. When overdistension prevails, gas exchange
is adversely affected as blood flow is directed away from overdistended lung units that
previously participated in gas exchange, resulting in increased dead space and encour-
aging hypercarbia. The effects of net overdistension on oxygenation, on the other hand,
are variable. Oxygenation may initially improve in response to increased PEEP despite
net overdistension, especially if decreased cardiac output leads to reduction in blood
flow through areas of intrapulmonary shunt, making the P/F ratio a poor surrogate for
recruitment [116,117].

When PEEP results in significant net recruitment, respiratory compliance (a correlate of
baby lung size) will improve. However, when PEEP results in significant net overdistension,
compliance will fall as open lung units are shifted past the upper inflection point of their
pressure–volume curve. Under these conditions, the increased energy input associated with
higher PEEP serves only to increase the risk of VILI and hemodynamic perturbations [118].

In recent decades, lung-protective strategies have focused on not only the use of low tidal
volumes for ventilation, but also the application of higher PEEP [108]. “PEEP tables,” in which
PEEP is increased in a stepwise fashion with respect to the inspired oxygen requirement,
assume that impaired oxygenation is secondary to the loss of functional lung units. Based
on their use in clinical trials, such tables are commonly used by clinicians managing ARDS
to select PEEP [119]. In many centers, this practice resulted in the early use of PEEP levels
exceeding 14 cmH2O for C-ARDS [120]. In C-ARDS, however, impaired oxygen exchange
is often strongly influenced by vascular dysfunction—not loss of functional lung units—in
which case high levels of PEEP are not beneficial. In one study of mechanically ventilated
patients with C-ARDS, partitioned respiratory mechanics were measured at low and high
levels of PEEP [121]. Compared to 5 cmH2O, a PEEP of 15 cmH2O resulted in reduced
lung compliance, increased lung strain, and an increased ventilatory ratio (i.e., a surrogate
of physiological dead space defined as the quotient of measured over predicted product of
minute ventilation and PaCO2 [122]). Had PEEP in that study [121] been set in accordance
with the P/F table used in a recent clinical trial [123], it would have been 18 cmH2O.

While response to PEEP varies significantly among individual patients with C-ARDS [100],
functional recruitment appears to be diminished relative to usual ARDS [96] and likely is
influenced by the stage of disease and timing of observation [124]. Studies incorporating
quantitative CT have either demonstrated minimal recruitment of additional lung units at
higher levels of PEEP [125] or recruitment without simultaneous improvement in PaCO2,
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suggesting that recruited units are not functional/participating in gas exchange [126].
Indeed, higher levels of PEEP in C-ARDS have been reported to have deleterious effects on
both gas exchange [121,127] and respiratory mechanics [121,125,127–129], consistent with
net overdistension. In the advanced stages of C-ARDS when consolidation is extensive,
even PEEP levels as low as 5 cmH2O may be associated with markedly elevated airway
plateau and driving pressures [101].

These data serve to underscore the importance of tailoring PEEP to the patient’s
individual physiology. To minimize the hemodynamic and mechanical risks associated
with PEEP, it should only be increased if doing so leads to demonstrable recruitment of
functional lung units. While all methods of PEEP titration are imperfect, targeting optimal
compliance is a reasonable strategy. If an increase in PEEP results in improved system
compliance (while tidal volume is held constant), aeratable lung capacity has increased and
recruitment has occurred. Recruitment of functional lung units is additionally associated
with reduced PaCO2 for a given minute ventilation as a result of decreased dead space
ventilation and increased surface area for gas exchange; while physiologic dead space
is not routinely measured in clinical settings, the ventilatory ratio correlates reasonably
well [122], is easily measured, and can be tracked following adjustments in PEEP. Similarly,
the recruitment to inflation (R/I) ratio is a bedside test that has been used to estimate lung
recruitability in response to changes in PEEP [130].

8.3. Body Positioning

Lung tissue mass is not distributed evenly, with 60% being located in the dependent
(dorsal) half of the sterno-vertebral axis when supine [131]. In ARDS, the dorsal lung
is predisposed to compressive atelectasis when supine due to the weight of overlying
edematous tissue. External compression of lower lung units by the abdominal contents
and of medial lung units by the weight of the overlying heart may also occur [132,133].
Atelectasis results in relatively well-perfused but reversibly non-ventilated alveoli [134].
The ventral lung, on the other hand, is predisposed to overdistension during passive
ventilation, not only because it receives a greater proportion of that ventilation, but also due
to the increased regional compliance of the anterior chest wall (relative to the posterior chest
wall), which permits a greater degree of end-tidal distension of adjacent lung units [135].

In the prone position, previously compressed dorsal and medial lung units are re-
cruited, and previously gas-filled ventral lung units become less distended or collapse
altogether. Despite this tendency for collapse of ventral lung units, there is typically net
recruitment, as the loss of ventral lung units is outweighed by recruitment of units in the
dorsal region, which contains a greater mass of lung tissue [136]. Prone positioning further
results in better anatomical matching of the lung and chest wall shapes and compliance
along the vertical axis, leading to less variation in size of individual pulmonary units [135]
(Figure 2). Since the distribution of lung perfusion remains virtually unchanged in the
prone position, these changes result in more homogenous ventilation, with decreases in
both venous admixture and dead space. Proning may also result in reduced lung stress
(i.e., transpulmonary pressure) and strain (i.e., the tidal volume-to-end-expiratory lung
volume ratio) [137], decreasing the risk of VILI.

The use of prone positioning has increased significantly during the COVID pandemic,
with 77% of mechanically ventilated C-ARDS patients with a P/F < 100 being placed
in the prone position [139] compared to only 16% of ARDS patients with a P/F < 100
during the pre-COVID era [140]. It remains one of the few interventions in severe ARDS
associated with survival benefit, as demonstrated by a landmark study showing significant
mortality reduction when patients with ARDS and a P/F < 150 were placed the prone
position for least 16 h daily [141]. While that trial preceded the advent of COVID, recent
investigations performed in C-ARDS patients also suggest a survival benefit, with one
retrospective study demonstrating a small but statistically significant reduction in the risk
of death when C-ARDS patients with a P/F < 200 were proned within the first 2 days of
ICU admission [142].
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Figure 2. Diagrammatic presentation of physiological mechanisms associated with pronation in acute
respiratory distress syndrome (ARDS). (A,C) show the shape of lung units (i.e., alveoli) without the
effect of gravity. (B) In the supine position, the volume of dorsal lung units is significantly smaller than
the volume of ventral lung units, as a result of gravity and pleural pressure; thus, ventral lung units
are more prone to overdistention and dorsal lung units are more prone to compression atelectasis.
(D) In the prone position, gravity and pleural pressure result in a decrease in the volume of the ventral
lung units and an increase in the volume of the dorsal lung units. (E) In the supine position, the
ventral transpulmonary pressure (PTP) may substantially exceed the dorsal PTP (F) Prone positioning
reduces the ventral-to-dorsal PTP gradient thereby augmenting the homogeneity of ventilation.
(G) The reopening, dorsal lung units continue to receive most of the blood flow. (H) The ventral lung
units may exhibit a greater tendency to collapse, but are still relatively underperfused. Reproduced
in concordance with the Creative Commons Attribution License (CC-BY) from [138].

Studies that have investigated the physiologic effects of prone positioning in C-ARDS
patients have generally reported improved oxygenation, with P/F increasing ≥ 20 mmHg
in approximately 75% of patients [139]. Responses to proning are heterogeneous though,
and available data suggest that the mechanisms responsible for improved oxygenation may
differ from those in usual ARDS.

Unlike typical ARDS, net recruitment of C-ARDS lungs following placement in the
prone position is relatively modest and often negligible [143]. Improved system compliance,
typically present when significant net recruitment occurs, has not been observed in most
studies [139,143–146]. While measurements of partitioned respiratory mechanics would be
needed to conclude with certainty that the lack of improvement in system compliance is
not the result of decreased chest wall compliance in the prone position, counterbalancing
a simultaneous increase in compliance of newly recruited lung, an absence of significant
recruitment is suggested by other findings as well.

CO2 exchange often improves in the prone position as a result of decreased dead space
and recruitment of additional lung units. Most studies that have evaluated gas exchange in
the prone position in C-ARDS patients, however, have reported little change in the PaCO2
(or ventilatory ratio) [139,143,145,146]. Compared to typical ARDS, the changes in both
respiratory system compliance and PaCO2 following prone positioning are significantly less
in patients with C-ARDS [99]. In the absence of recruitment, the most plausible mechanism
to explain improved oxygenation is better matching of ventilation/perfusion ratios of
vaso-dysregulated tissue [136].

Timing may also play a significant role in response to prone positioning [99,143]. In
unresolving ARDS, atelectasis and edema may evolve into significant dorsal consolidation
and diffuse fibrosis; in this setting, there is minimal recruitment of dorsal tissue in the prone
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position—only increased ventral atelectasis. A significant percentage of such patients either
experience worsened P/F ratio in the prone position or fail to meet the accepted criteria for
“responsiveness” (improvement in P/F ≥ 20 mmHg) [145].

9. Extracorporeal Life Support for C-ARDS

Extracorporeal life support (ECLS) refers to supplemental gas exchange via an external
circuit. ECMO provides sufficient blood flow rates for either respiratory gas exchange
support alone (venovenous (VV) ECMO) or complemented by circulatory support (venoar-
terial (VA) ECMO). Extracorporeal carbon dioxide removal (ECCO2R) requires lower blood
flow rates than ECMO and yet efficiently clears carbon dioxide (CO2). However, unlike
ECMO, ECCO2R does not effectively re-oxygenate the mixed venous blood. ECMO re-
quires the placement of a central venous cannula, attached to a circuit that pumps blood
under negative pressure and delivers it to an “oxygenator” or “membrane lung” (i.e., a gas
exchange device). Oxygen passing through the device’s hollow and gas-permeable fibers
then transfers across them into the diverted venous blood flow, while CO2 is removed by
diffusing from blood into the unidirectional stream of “sweep” gas passing through the
fiber lumens. The membrane-oxygenated blood is then pumped back into the patient via
a second intravascular cannula inserted so that its tip is placed close to the right atrium,
or via the return channel of a dual-lumen cannula. Both types of external circuit require
anticoagulation. Compared to ECMO, ECCO2R can be achieved using smaller catheters,
thereby reducing the risk of cannulation-related complications. Such cannulation is usu-
ally percutaneous, using a modified Seldinger technique with imaging guidance. As the
application of ECLS is clinically demanding, current evidence suggests that it should be
performed in selected centers with adequate experience [147].

VV-ECMO has proven effective in patients with hypoxemia refractory to optimized me-
chanical ventilation settings and adjunctive therapies, including prone positioning [148,149].
Current criteria for initiating ECMO in C-ARDS are those previously used in the ECMO
to Rescue Lung Injury in Severe ARDS (EOLIA) trial, and comprise: a P/F of <80 mmHg
for >6 h; a P/F of <50 mmHg for >3 h; or an arterial pH of <7.25 with PaCO2 ≥ 60 mmHg
for >6 h [147,148]. In the EOLIA trial, patients with the abovementioned criteria were ran-
domized either to receive VV-ECMO or to continue treatment with conventional mechanical
ventilation [150]. Although the study did not show a statistically significant difference in
60-day mortality between the two groups, the effect estimate favored the intervention group
(relative risk, 0.76; 95% confidence interval, 0.55–1.04; P = 0.09). In addition, 28% of patients
of the control group were crossed over to VV-ECMO for refractory hypoxemia. These facts
could still imply a likely VV-ECMO mortality benefit. Notably, enrolled patients had to be
on mechanical ventilation for < 7 days while other adjunctive therapies, including inhaled
nitric oxide, recruitment maneuvers, high-frequency oscillatory ventilation, and infusion of
almitrine were also allowed [150]. While the majority of the patients had ARDS caused by
pneumonia, bacterial (45%) or viral (18%), approximately 37% of the study population had
ARDS of other etiology.

In accordance with current guidelines, major contraindications to VV-ECMO could
include prolonged (i.e., >10 days) mechanical ventilation, morbid obesity or advanced age
(e.g., >75 years), chronic respiratory failure, heart failure requiring VA-ECMO, heparin-
induced thrombocytopenia, cancer with life expectancy of <5 years, a moribund condition
or a Simplified Acute Physiology Score II of >90, non-drug-induced coma after cardiac
arrest, irreversible neurologic injury, the presence of a treatment limitation decision, pa-
tient/surrogate decline of blood products, expected difficulty with vascular cannulation,
and unavailability of adequate specialized staff and ECMO equipment [150,151]. Current
recommendations do not advise any deviations from conventional ECMO practices applied
to ARDS patients without COVID-19, including anticoagulation [151].

The initial goal of ECMO is to maintain adequate oxygenation. However, the primary
mechanism of benefit may be a decreased risk of VILI, the result of membrane CO2 clear-
ance, lower driving and plateau pressures, and reduced tidal volumes and inflation power
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used during ECMO [149]. Additional clinical goals of ECMO might include minimization
of sedation, early weaning from mechanical ventilation, and patient mobilization. However,
in C-ARDS, discontinuation of sedation could be potentially followed by extreme patient
respiratory effort and risk P-SILI [152] There currently is insufficient evidence to support or
refute early mobilization or extubation with awake ECMO in this setting [151].

Except for very severe ARDS, where hypoxemia is the major concern, there is a
rationale for lowering ventilation volumes and pressures beyond standard values to reduce
further the risk of VILI. As doing so may lead to hypercapnic acidosis, ECCO2R can be
used to avoid impermissible hypercapnia [153]. In April 2020, emergency authorization
was issued for the use of an ECCO2R device in patients with C-ARDS, with or without
mechanical ventilation [154]. This approach is not only physiologically sound, but also can
be less costly and technically easier to apply than ECMO. Nevertheless, in a multicenter
RCT of typical ARDS, the use of ECCO2R was not associated with a reduction in 90-day
mortality [155].

The effect of ECMO on outcomes of C-ARDS patients has been evolving and repeat-
edly evaluated during the pandemic. In a 2021 systematic review of 22 observational
studies, ECMO outcomes of C-ARDS were similar to those of non-COVID-19 patients [156].
However, subsequent studies and meta-analyses reported rises of up to 15% in the mortality
rates during the second wave as well as after the first year of the pandemic [157–159]. This
finding has been attributed to (1) the evolving viral strains of SARS-CoV-2; (2) the evolution
of pharmacological treatment during the later phases of the pandemic (e.g., the addition
of immunomodulatory therapies); and (3) the broader and longer use of non-invasive
ventilation in the C-ARDS population [158]. Changes in COVID-19 treatment strategies
may have contributed to the selection of patients with refractory disease and/or more
severe P-SILI for ECMO treatment [157]. The main risk factors for mortality reported in
the literature for C-ARDS patients on ECMO include older age, the presence of multiple
comorbidities and systemic acidosis, the need for renal replacement therapy and high vaso-
pressor infusion rates, and finally the occurrence of bleeding complications [156,160]. Other
frequent complications include thromboembolic events, infections, ventilator-associated
pneumonia, bacteremia, and ECMO circuit-related mechanical problems [157,158]. The
occurrence of neurological complications and in particular of intracranial hemorrhage,
although rare, affecting 6–12% of the patients, has been associated with a mortality rate
of 90%, implying that C-ARDS patients on ECMO could benefit from early non-invasive
neuromonitoring protocols [161].

Despite the similar guidelines for patient selection and implementation of ECMO
in C-ARDS and typical ARDS, there are some significant differences between these two
groups. There are more practical difficulties affecting the medical and nursing teams caused
by the risk of transmission and the use of personal protective equipment during C-ARDS
ECMO. C-ARDS patients have a higher risk of thrombosis and a higher prevalence of
right ventricular failure [162]. The use of immunomodulatory and/or immunosuppressive
therapies is also more frequent in C-ARDS, and a longer duration of support is likely to
be necessary for these patients [163]. It is currently acknowledged that successful lung
recovery is possible after prolonged VV-ECMO (>28 days) [164]. Distinct clinical courses of
C-ARDS ECMO have been described. Some patients with C-ARDS achieve lung recovery
shortly after the initiation of ECMO (i.e., within a few days), while others require prolonged
ECMO, posing unique clinical challenges. While a delayed lung recovery may be possible
in such patients on prolonged ECMO, alternative trajectories such as lung transplantation,
or transition to comfort-based care, may need to be considered [151,165].

The combination of prone positioning and ECMO (PP-ECMO) may also be consid-
ered [166,167]. In a physiological study of C-ARDS, PP-ECMO was associated with higher
P/F ratio, better respiratory system compliance, and lower driving pressure and mechanical
power of ventilation; improvements in respiratory mechanics persisted after supine reposi-
tioning [168]. In a retrospective, multicenter, cohort study of C-ARDS patients featuring
propensity score matching, PP-ECMO was associated with improved oxygenation, reduced
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intrapulmonary shunt, tolerance of longer ECMO duration, and lower in-hospital mortal-
ity [169]. Further high-quality research is still needed to determine the potential clinical
usefulness of PP-ECMO in C-ARDS. Table 3 summarizes currently available therapeutic
options for C-ARDS.

Table 3. Evidence-based treatments for coronavirus disease 19 (COVID-19)-related acute respiratory
distress syndrome (ARDS). PaO2/FiO2, oxygen arterial partial pressure-to-inspired oxygen fraction ratio;
PEEP, positive end-expiratory pressure. * Time interval corresponds to the maximum recommended
duration of therapy. † To be reduced to 2 mg if estimated glomerular filtration rate is 60 mL/min or less.

Intervention Mechanism of Action Evidence for Efficacy

Remdesivir day 1: 200 mg IV days 2–10:
100 mg IV

Inhibition of the viral RNA-dependent,
RNA polymerase

Shortens the time to recovery in hospitalized
COVID-19 patients

Dexamethasone
days 1–10 *: 6 mg IV

Anti-inflammator linked to the activation of
the glucocorticoid receptor

Reduces the probability of in-hospital death in
critically ill COVID-19 patients

Tocilizumab single dose: 8 mg/kg IV
(max. 800 mg) Interleukin 6 antagonism Reduces the probability of in-hospital death in

critically ill COVID-19 patients

Baracitinib
days 1–14 *: 4 mg † oral or enteral Janus kinase inhibition Reduces the probability of in-hospital death in

critically ill COVID-19 patients

Anakinra
days 1–10 *: 100 mg subcutaneously Interleukin 1 alpha/beta antagonism Reduces the probability of in-hospital death in

critically ill COVID-19 patients

Prone positioning for at least 16 h per day until
PaO2/FiO2 ≥150 mmHg at PEEP ≤10 cmH2O

and FiO2 ≤ 0.6

Attenuation of lung stress and strain
Reversal of compression atelectasis

Increased homogeneity of ventilation
Improved ventilation/perfusion matching

Reduces the probability of in-hospital death in
moderate to severe ARDS

Extracorporeal membrane oxygenation
Minimization of lung stress and strain (“lung

rest”) with very low tidal volumes and
ventilation pressures

Possible mortality benefit in severe ARDS

10. Conclusions

Typical ARDS is characterized by high-permeability edema, widespread atelectasis,
and a loss of compliance that relates directly to the reduced capacity of aerated lung units.
COVID-19, a novel etiology of ARDS, has distinct pathologic findings consistent with
severe injury to—and dysfunction of—the pulmonary vasculature as a result of SARS-CoV-
2-induced endothelial injury and immunothrombosis. The lungs of patients with C-ARDS
may be more likely to overdistend than to recruit in response to customary levels of PEEP. A
subpopulation of patients with C-ARDS may present with severely deranged gas exchange
that is uncoupled from the comparatively mild parenchymal injury. Just as typical ARDS
encompasses a broad range of clinical findings, so too does C-ARDS, often transitioning
in its more advanced stages to a form indistinguishable from typical ARDS. Some have
argued that all patients with ARDS, regardless of etiology, should be treated identically.
This approach, however, ignores the physiologic variability that not only exists between
patients, but also within individual patients depending on the phase of the disease.

Randomized trials in ARDS have identified several interventions that lead to improved
outcomes. These studies have enrolled patients with significant heterogeneity though and
as such, a significant degree of heterogeneity in treatment effect is to be expected [170].
They report the mean intervention effects observed in a population, but with regard to
benefit, wide individual variability exists. Randomized trials have provided safe starting
points from which to approach mechanical ventilation in the individual, but such rules are
not inviolable. A more holistic approach, taking into consideration the unique physiology
of individual patients, is warranted—as exemplified by C-ARDS.
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