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Abstract 

Background:  Huntington’s disease (HD) is a neurodegenerative disorder characterized by psychiatric symptoms, 
serious motor and cognitive deficits. Certain pathological changes can already be observed in pre-symptomatic HD 
(pre-HD) patients; however, the underlying molecular pathogenesis is still uncertain and no effective treatments are 
available until now. Here, we reanalyzed HD-related differentially expressed genes from the GEO database between 
symptomatic HD patients, pre-HD individuals, and healthy controls using bioinformatics analysis, hoping to get 
more insight in the pathogenesis of both pre-HD and HD, and shed a light in the potential therapeutic targets of the 
disease.

Methods:  Pre-HD and symptomatic HD differentially expressed genes (DEGs) were screened by bioinformatics analy-
sis Gene Expression Omnibus (GEO) dataset GSE1751. A protein–protein interaction (PPI) network was used to select 
hub genes. Subsequently, Gene Ontology (GO) enrichment analysis of DEGs and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis of hub genes were applied. Dataset GSE24250 was downloaded to verify our hub genes by 
the Kaplan–Meier method using Graphpad Prism 5.0. Finally, target miRNAs of intersected hub genes involved in pre-
HD and symptomatic HD were predicted.

Results:  A total of 37 and 985 DEGs were identified in pre-HD and symptomatic HD, respectively. The hub genes, 
SIRT1, SUZ12, and PSMC6, may be implicated in pre-HD, and the hub genes, FIS1, SIRT1, CCNH, SUZ12, and 10 others, 
may be implicated in symptomatic HD. The intersected hub genes, SIRT1 and SUZ12, and their predicted target miR-
NAs, in particular miR-22-3p and miR-19b, may be significantly associated with pre-HD.

Conclusion:  The PSMC6, SIRT1, and SUZ12 genes and their related ubiquitin-mediated proteolysis, transcriptional 
dysregulation, and histone metabolism are significantly associated with pre-HD. FIS1, CCNH, and their related mito-
chondrial disruption and transcriptional dysregulation processes are related to symptomatic HD, which might shed a 
light on the elucidation of potential therapeutic targets in HD.
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Background
Huntington’s disease (HD) is an inherited neurodegen-
erative disorder characterized by progressive motor and 
cognitive deficits [1]. The pathogenesis of HD is associ-
ated with the abnormal accumulation of mutant hunting-
tin (mHtt), a protein with expansion of CAG repeats at 
the amino-terminus of wild-type huntingtin (Htt) [2]. 
Currently, effective therapies are lacking for HD [3]. In 
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addition, neuronal degeneration can be observed in pre-
symptomatic patients as early as 20 years prior to diagno-
sis [4, 5], indicating that therapeutic intervention could 
occur several years before the manifestation of clinical 
symptoms.

Prediction results of gene expression profiling and 
bioinformatics analysis have become increasingly useful 
in the diagnosis and therapy of various diseases [6–8], 
including those of the nervous system [9]. In addition to 
being used to identify the functional connections among 
genes in an unbiased manner for the in-depth study of 
biological processes, it can also be used to predict up- 
and downstream genes and to explore the relationship 
between gene expression and disease phenotypes [10, 
11].

MicroRNAs (miRNAs, 19–24 nucleotides in length) 
are the most abundant and representative small non-
coding RNAs, which negatively regulate messenger RNA 
(mRNA) levels by binding to the 3′-untranslated region 
[12, 13]. Numerous studies have described dysregulation 
of miRNAs in neurodegenerative diseases, indicating that 
miRNAs may useful in many diseases, including HD [14, 
15].

In the present study, the gene expression profile, 
GSE1751, from the GEO database was reanalyzed with 
respect to HD-related differentially expressed genes 
(DEGs) in whole blood samples between symptomatic 
HD patients, pre-symptomatic HD (pre-HD) individu-
als, and healthy controls using bioinformatics analysis. 
Hub genes were selected for deeper functional analysis by 
constructing a protein–protein interaction (PPI) network 
and used to predict their related miRNAs. As a result, 
sets of genes and miRNAs relating to the pathogenesis 
of HD were identified, increasing our understanding of 
the disease process and shedding light on markers for the 
treatment of HD.

Methods
Data acquisition
The gene expression profile, GSE1751, from the GEO 
database was downloaded (https​://www.ncbi.nlm.nih.
gov/geo, May 18, 2017). GSE1751 is based on the GPL96 
platform (Affymetrix Human Genome U133 Plus 2.0 
Array) and contains a total of 31 peripheral whole blood 
samples, including 12 symptomatic HD cases, 5 pre-
symptomatic HD cases, and 14 healthy controls [16]. 
People who are carriers of the HD mutation but have no 
clinically present signs or symptoms are considered pre-
symptomatic cases [3].

Screening of differentially expressed genes (DEGs)
The R package, “limma” (https​://cran.r-proje​ct.org/), 
obtained from https​://www.bioco​nduct​or.org [17], 

was used to analyze the GSE1751 raw expression data. 
Background correction, quantile normalization, and 
log2-transformation were performed to create a robust 
multi-array average (RMA) and a log-transformed per-
fect match. The Benjamini–Hochberg method was used 
to adjust original p-values, and the false discovery rate 
(FDR) procedure was used to calculate fold changes 
(FC). The DEGs between symptomatic HD (GSM30530 
to GSM30541) and healthy control (GSM30580 to 
GSM30593) groups and between pre-symptomatic HD 
(GSM30542 to GSM30546) and healthy control groups 
were evaluated. The differential gene expression thresh-
old was log2 fold change > 2 and p-value < 0.05.

Integration of the protein–protein interaction (PPI) 
network and screening of the hub genes
The Search Tool for the Retrieval of Interacting Gene 
(STRING) database [18] was used to construct the PPI 
network of the DEGs in the two groups. Subsequently, 
the Cytoscape [19] software was used to build a PPI 
network, employing the Molecular Complex Detection 
(MCODE) plug-in to screen PPI network modules for 
these two groups of DEGs. The cluster method (No. 14) 
was used to cluster the modules, and the genes with an 
MCODE score ≥ 2 were selected as hub genes.

Gene Ontology and KEGG pathway analysis of DEGs
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) (https​://david​.abcc.ncifc​rf.gov/) [20] 
is a gene functional annotation tool that is helpful for 
understanding biological functions. GO (Gene Ontol-
ogy) function enrichment analysis of the DEGs in the two 
groups was performed, and those with a p-value < 0.05 
were considered significantly enriched. Subsequently, 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database was employed to elucidate the KEGG pathways 
of the hub genes in the two groups.

Prediction of the miRNAs of the intersected hub genes 
and their validation
Finally, these hub genes were input into Targetscan [21] 
(https​://www.targe​tscan​.org/vert_71/) and miRDB [22] 
(https​://www.mirdb​.org/) to predict their possible miR-
NAs. The intersection portion of the two databases was 
selected as our predicted miRNAs. Moreover, based on 
the information in the individual MCODE modules, the 
node with the highest score was selected as the hub gene 
in GSE1751. Each hub gene was also found in the inde-
pendent datasets (dataset GSE24250, HD samples n = 8, 
and HC samples n = 6) based on the downloaded raw 
data files, including the gene expression level, survival 
time, and survival state. Expression levels were divided 
into two groups, the HD group and the control group, 
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according to X-tile [23]. The Kaplan–Meier method was 
used to determine the probability of survival in Graphpad 
Prism 5.0 for Windows.

Results
Differentially expressed genes (DEGs) and the heatmap
Based on the analysis of GSE1751 by R and the cut-off 
criteria, 37 differentially expressed genes were found 
between the pre-HD individuals and the healthy con-
trols (Group 1) and 985 between the HD patients and 
the healthy controls (Group 2). There were 35 upregu-
lated DEGs and 2 downregulated DEGs in group 1, and 
756 upregulated DEGs and 229 downregulated DEGs 
in group 2. Additional file  1: Table  S1 shows the gene 
expression level of all DEGs, indicating up- and down-
regulation as well as the expression differences between 
the two groups.

Functional GO terms and pathway enrichment analysis
The top 3 GO terms related to the biological processes 
(BP) of the DEGs in Group 1 were regulation of seques-
tering of zinc ionic (fold enrichment: 94.78; p-value: 
0.0201), response to zinc ion (Fold Enrichment: 72.91; 
p-value: 0.026), and retrograde transport, endosome to 
Golgi (Fold Enrichment: 19.34; p-value: 0.095). In Group 
2, these BPs were nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay (Fold Enrichment: 
3.56; p-value: 7.60E-07), SRP-dependent cotranslational 
protein targeting to membrane (Fold Enrichment: 3.68; 

p-value: 6.01E−06), and viral transcription (Fold Enrich-
ment: 3.09; p-value: 6.38E−05). Moreover, the top 3 
molecular function (MF) terms in Group 1 were chroma-
tin DNA binding (Fold Enrichment: 30.31; p-value: 0.004) 
and zinc ion transmembrane transporter activity (Fold 
Enrichment: 44.26; p-value: 0.032). These MFs in Group 
2 were protein binding (Fold Enrichment: 1.28; p-value: 
2.49E−19), poly(A) RNA binding (fold enrichment: 1.54; 
p-value: 4.22E−5), and structural constituent of ribo-
some (Fold Enrichment: 2.34; p-value: 8.66E−5). These 
results show that zinc ion and chromatin DNA binding 
are involved in the pre-symptomatic stage and transcrip-
tion and translation processes are important in the symp-
tomatic stage (Figs. 1 and 2).

Hub genes selected by PPI network analysis of DEGs
A total of 10 and 5394 nodes were identified from PPI 
network analysis of groups 1 and 2, respectively. Here, 
3 hub genes were found in group 1 [sirtuin 1 (SIRT1), 
suppressor of zeste 12 (SUZ12), and proteasome 26S 
subunit, ATPase 6 (PSMC6)] and 14 were found in 
group 2 [fission mitochondrial 1 (FIS1), chromobox  1 
(CBX1), zinc finger protein 217 (ZNF217), TATA-
box binding protein-associated factor, RNA polymer-
ase I subunit D (TAF1D) DEK, family with sequence 
similarity 60 member A(FAM60A), GABA type A 
receptor-associated protein like 2 (GABARAPL2), 
SIRT1, histone acetyltransferase 1 (HAT1), cyclin H 
(CCNH), histone deacetylase 2 (HDAC2), SUZ12, 

Fig. 1  Gene ontology (GO) KEGG analysis of Group 1 (pre-HD & HC). The length of the orange bar represents the negative Log10 p value
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RRN3 homolog, RNA polymerase I transcription fac-
tor (RRN3), and PEST proteolytic signal-containing 
nuclear protein (PCNP)]. The genes and their scores 
are shown in Additional file  2: Table  S2. Importantly, 
SIRT1 and SUZ12 are unregulated hub genes in both 
groups, but their expression levels were higher in group 
2. The FC values of PSMC6 and SIRT1 in Group 2 were 
approximately twice those in Group 1 and 1.25 times 
that of the SUZ12 gene. The expression levels of these 
three hub genes in HD patients, pre-HD individuals, 
and healthy controls are shown in Fig. 3.

GO and KEGG analysis results of hub genes in two groups
The functional enrichment results of the hub genes in 
the two groups are shown in Additional file 3: Table S3. 
Those in Group 1 mainly participate in the chromatin 
DNA binding process, and those in Group 2 play roles in 
the regulation of transcription, chromatin remodeling, 
cell cycle, proteasome-mediated ubiquitin-dependent 
protein catabolic processes, and histone-related metabo-
lism processes.

The KEGG database was used for pathway analysis of 
the hub genes in the two groups. Those in Group 1 par-
ticipate in 11 pathways, and those in Group 2 participate 

in 17 pathways. Among them, 9 pathways were inter-
sected in the two groups (Fig.  4). All KEGG pathway 
results are shown in Additional file 4: Table S4.

Prediction of miRNAs of the intersected hub genes 
and validation of hub genes
Targetscan and miRDB were used to predict the miR-
NAs of the target genes, SIRT1 and SUZ12, and the 
intersected prediction results of these two databases 
became the final predicted miRNAs; 15 for SIRT1 and 
13 for SUZ12. For the SIRT1 gene, 6 predicted miRNAs 
have previously been reported to have a clear relation-
ship with HD (miR-22-3p, miR-138-5p, miR-9-5p, miR-
132-3p, miR-135b-5p, and miR-135a-5p) [24, 25], and 1 
miRNA for the SUZ12 gene (miR-19b-3p) [26]. All these 
results are shown in Table 1. To verify the 5 hub genes, 
the survival rate was calculated for the two groups in the 
validation dataset (GSE24250) through Kaplan–Meier 
analysis. We can see clearly that the HD patients with 
high expression levels of SIRT1, FIS1, and CCNH have a 
decreased overall survival time compared to those with 
low expression levels. Additionally, the Kaplan–Meier 
analysis curves of the high-expression group do not 
intersect with those of the low-expression group, indicat-
ing that the survival time of the high-expression group 

Fig. 2  Gene ontology (GO) KEGG analysis of Group 2 (HD & HC). The length of the orange bar represents the negative Log10 p value



Page 5 of 10Xiang et al. J Transl Med          (2020) 18:388 	

Fig. 3  Box diagram showing the levels of the PSMC6 (a), SIRT1 (b), and SUZ12 (c) genes. The gene expression levels of PSMC6, SIRT1 and SUZ12 
decreased on sequence HD group, preHD group and HC group

Fig. 4  Venn diagram of the KEGG pathway results of the hub genes in the two groups. The blue cylinder represents group 1 and the green cylinder 
represents group 2. The intersection pathways are shown
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is always lower than that of the low-expression group. 
Figure 5a–c shows that the median survival time (dotted 
line) of the high-expression group is lower than that of 
the low-expression group. However, the P values of the 
three genes in the verification dataset are not statisti-
cally significant (0.2 for SIRT1, 0.1 for FIS1, and 0.2 for 
CCNH). This finding might be due to the small size of the 
validation dataset. The remaining 2 genes showed no sta-
tistical significance between gene expression and clinical 
outcome of HD in the validation dataset.

Discussion
HD is a neurodegenerative disorder with a long symp-
tomatic phase [27]. Although mHtt is expressed dur-
ing embryonic development, clinical HD manifests in 
adulthood [28]. Various studies focusing on the early 
molecular pathogenesis in the pre-symptomatic stage 
may provide new insight into the therapeutic treatment 
of HD [29]; therefore, we attempted to elucidate hub 
genes, miRNAs, of pre-HD and HD. In recent years, bio-
informatics has been increasingly applied to many fields 
including neurology, laying the foundation for further 
experimental verification [11, 30, 31]. In the present 
study, bioinformatics methods were used to predict hub 
genes and miRNAs associated with HD and pre-HD in 
both generation and validation datasets with the hope of 
providing insight into the pathogenesis in both HD and 
pre-HD patients. The results indicate that SIRT1, SUZ12, 
and PSMC6 may be involved in the pathogenesis of pre-
HD, and FIS1, SIRT1, CCNH, and SUZ12 may play roles 

in symptomatic HD. GO term enrichment and KEGG 
analysis demonstrates that PSMC6 and its ubiquitin-
mediated proteolysis pathway play an important role in 
pre-HD. Moreover, CCNH and transcriptional dysregu-
lation, in addition to FIS1 and mitochondrial disruption, 
may participate in the pathogenesis of HD in the late 
stage. Interestingly, the intersected hub genes, SIRT1 and 
SUZ12, and their transcriptional regulation and histone-
related metabolism pathways may play important roles in 
both pre-HD and HD. MiR-22-3p and miR-19b may be 
involved in the pathogenesis through these intersected 
hub genes, respectively.

Since no survival data regarding GSE1751 are avail-
able, an independent validated dataset, GSE24250, was 
employed to elucidate whether the up- or downregula-
tion of hub genes could affect the survival time of HD 
patients. According to the Kaplan–Meier analysis results, 
the upregulation of SIRT1, FIS1, and CCNH has a nega-
tive correlation with survival time in HD patients, which 
is consistent with our results. However, the association of 
SUZ12 and PSMC6 with survival time was not statisti-
cally significant, which may be due to the low incidence 
of HD and the small sample size of our datasets.

In the present study, the PSMC6 gene was highly asso-
ciated with the pre-symptomatic phase of HD. PSMC6, 
also called proteasome regulatory subunit 4 (RPT4), is a 
subunit of the 19S proteasome regulatory protein, which 
can participate in ubiquitin-mediated proteolysis [32, 
33]. Disassembly of the proteasome by Htt aggregates 
has been reported in various studies [34], and overex-
pression of RPT4 has been shown to facilitate aggrega-
tion of mHtt in a cellular model of HD [35]. PSMC6 and 
the related ubiquitin-mediated proteolysis were shown to 
be involved in the pre-symptomatic stage. Interestingly, 
the expression level of PSMC6 in pre-HD patients was 74 
as compared with 123 in HD patients and 20 in healthy 
controls, indicating that PSMC6 is already involved in 
the pre-symptomatic stage of HD and continues to play a 
role in the symptomatic stage.

Moreover, it was found that CCNH and FIS1 were 
highly associated with late-stage HD rather than the 
pre-symptomatic stage. CCNH is assembled with TFIIH 
core proteins and phosphorylates the C-terminal domain 
of RNA polymerase II to facilitate promoter clearance 
[36]. RNA polymerase II has been shown to increase 
in the postmortem HD brain [37] and in  vitro [25]. We 
hypothesize that CCNH may play a role in the patho-
genesis of HD. FIS1 could interact with dynamin-related 
protein 1 (DRP1), which is the primary component of 
mitochondrial fission [38]. An inhibitor of the DRP1–
FIS1 interaction was protective in a mouse model of HD 
[39]. Therefore, CCNH and the related transcriptional 
dysregulation and FIS1 and the related mitochondrial 

Table 1  The predicted and  reported miRNAs of  the  SIRT1 
and SUZ12 intersection genes

The miRNAs marked with “*” have been reported previously

Predicted miRNAs of the SIRT1 gene predicted miRNAs 
of the SUZ12 gene

hsa-miR-22-3p* hsa-miR-3913-3p

hsa-miR-138-5p* hsa-miR-19b-3p*

hsa-miR-9-5p* hsa-miR-19a-3p

hsa-miR-6504-5p hsa-miR-489-3p

hsa-miR-3064-5p hsa-miR-520c-3p

hsa-miR-204-5p hsa-miR-302b-3p

hsa-miR-211-5p hsa-miR-302a-3p

hsa-miR-132-3p* hsa-miR-520d-3p

hsa-miR-199b-5p hsa-miR-520a-3p

hsa-miR-199a-5p hsa-miR-302d-3p

hsa-miR-212-3p hsa-miR-372-3p

hsa-miR-181d-5p hsa-miR-302e

hsa-miR-30e-5p hsa-miR-373-3p

hsa-miR-135b-5p*

hsa-miR-135a-5p*
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disruption may be involved in the pathogenesis of HD 
during the symptomatic stage.

The SIRT1 and SUZ12 genes may play important 
roles during both the pre-symptomatic and sympto-
matic stage in HD patients. The FC values of SIRT1 
and SUZ12 in Group 2 were approximately 2- and 1.25-
times those in Group 1, respectively. SIRT1 belongs to 
a highly conserved family of sirtuins, the overexpres-
sion of which exerts neuroprotection through deacety-
lation of several transcription factors such as PCG-1α, 
p53, and FOXO3a [40–42]. The Sirt1 activator, resvera-
trol (RESV), decreases histone H3 acetylation at lysine 
9 and improves motor coordination in the YAC128 and 
N171-82Q HD mouse model [43, 44]. SUZ12 is the core 
subunit of the polycomb repressive complex 2 (PRC2), 

which can implement gene silencing through meth-
ylation and ubiquitylation of histones [45–47]. There 
exists some evidence showing inhibition of PRC2 in HD 
through the upregulation of histone methylation with the 
participation of SUZ12 [48, 49]. Interestingly, another 
study also found that full-length huntingtin can stimu-
late the histone methylation of PRC2 [50]. Moreover, 
SUZ12 histone ubiquitylation and SIRT1-mediated dea-
cetylation promote ubiquitin-dependent degradation [47, 
51–53]. According to our functional enrichment results, 
SIRT1 and SUZ12 are involved in the pathogenesis of 
HD through several pathways, including transcriptional 
regulation, histone-related metabolism, and proteas-
ome-mediated ubiquitin-dependent protein catabolic 
processes.

Fig. 5  Kaplan–Meier analysis of the survival time for SIRT1 (a), FIS1 (b), CCNH (c), PSMC6 (d), and SUZ12 (e) in the validation dataset of 85 cases. The 
results show that the HD patients with high expression levels (blue line) of SIRT1, FIS1, and CCNH have a decreased overall survival time compared 
to those with low expression levels (red line).The remaining 2 genes showed no statistical significance between gene expression and clinical 
outcome of HD in the validation dataset. The dotted line represents the median survival time of those genes with different expression levels
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MiR-22-3p had the highest ranking among the pre-
dicted results for the SIRT1 gene, and has previously 
been reported to be directly related to HD in a mouse 
model [24]. Various studies have confirmed that the 
miR-22-3p/SIRT1 pathway plays an important role in 
the development of HD [42, 54]. As one of the predicted 
miRNAs of SUZ12, miR-19b has been reported previ-
ously. Although we failed to find an association between 
miR-19b and SUZ12, we still think that a correlation 
between miR-19b and SUZ12 may exist in HD [26]. More 
intriguingly, another 26 predicted miRNAs of SUZ12 and 
SIRT1 may also be related to the pathogenesis of HD, but 
further experiments are required.

Conclusion
In our studies, PSMC6 and related ubiquitin-mediated 
proteolysis may participate in the pre-symptomatic phase 
of HD, while CCNH and related transcriptional dysreg-
ulation and FIS1 and related mitochondrial disruption 
may be involved in late-stage HD. SIRT1 and SUZ12 have 
been confirmed to play crucial roles from the pre-symp-
tomatic to the symptomatic stage, and their associated 
transcriptional dysregulation, histone metabolism, and 
proteasome-mediated ubiquitin-dependent protein cata-
bolic processes may be important. However, few studies 
have focused on the role of SUZ12 in HD to date, and 
further experiments are still required.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1296​7-020-02549​-9.

Additional file 1: Table S1. Differentially expressed genes involved in HD 
and preHD samples.

Additional file 2: Table S2. All of the hub genes and their scores in two 
groups.

Additional file 3: Table S3. Gene Ontology (GO) terms enrichment analy-
sis of hub genes in Group 1 and Group 2.

Additional file 4: Table S4. KEGG pathways of the hub genes in two 
groups.

Abbreviations
HD: Huntington’s disease; pre-HD: Pre-symptomatic HD; mHtt: Mutant hun-
tingtin; DEGs: Differentially expressed genes; GEO: Gene expression omnibus; 
PPI: Protein–protein interaction; GO: Gene Ontology; KEGG: Kyoto Encyclo-
pedia of Genes and Genomes; miRNA: MicroRNA; mRNA: Messenger RNA; 
RMA: Robust multi-array average; FDR: False discovery rate; FC: Fold changes; 
STRING: Search Tool for the Retrieval of Interacting Gene; MCODE: Molecular 
Complex Detection; DAVID: Database for Annotation, Visualization, and Inte-
grated Discovery; BP: Biological processes; MF: Molecular function; SIRT1: Sir-
tuin 1; SUZ12: Suppressor of zeste 12; PSMC6: Proteasome 26S subunit, ATPase 
6; FIS1: Fission mitochondrial 1; CCNH: Cyclin H; RPT4: Proteasome regulatory 
subunit 4; DRP1: Dynamin-related protein 1; RESV: Resveratrol; PRC2: Polycomb 
repressive complex 2.

Acknowledgements
We thank Dr. Dimitri Krainc, Harvard University, Boston, MA, USA for the excel-
lent work of the original dataset published in the journal Proc Natl Acad Sci USA 
(https​://doi.org/10.1073/pnas.05049​21102​)

Authors’ contributions
CX and SC: takes responsibility for all aspects of the reliability and freedom 
from bias of the data presented and their discussed interpretation, drafting 
the article. CX and SC contributed equally. BL: takes responsibility for statistical 
analyses, and interpretation of data. SC: takes responsibility for the design of 
the study, full text evaluation and guidance. All authors read and approved the 
final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
(No. 81371271), the “Liaoning BaiQianWan Talents Program” and was also spon-
sored by 345 Talent Project of Shengjing Hospital of China Medical University.

Availability of data and materials
GSE1751 and GSE24250 datasets were downloaded from GEO (https​://
www.ncbi.nlm.nih.gov/geo/)) [16, 55] and expression profiling arrays were 
generated using GPL96 (Affymetrix Human Genome U133 Plus 2.0 Array). R 
packages of “limma” (https​://cran.r-proje​ct.org/), provided by a bioconductor 
project ( https​://www.bioco​nduct​or.org/) [17], were applied to assess GSE1751 
and GSE24250 RAW datasets. We applied online prediction tools utilizing 
Targetscan [21] (https​://www.targe​tscan​.org/vert_71/) and miRDB [22] (https​
://www.mirdb​.org/), to predict potential microRNA targeting.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Neurology, Shengjing Hospital of China Medical University, 
36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, People’s 
Republic of China. 2 Bioinformatics of Department, School of Life Sciences, 
China Medical University, Shenyang, China. 

Received: 19 December 2019   Accepted: 27 September 2020

References
	1.	 MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, 

Barnes G, Taylor SA, James M, Groot N, MacFarlane H. A novel gene 
containing a trinucleotide repeat that is expanded and unstable on Hun-
tington’s disease chromosomes. The Huntington’s Disease Collaborative 
Research Group. Cell. 1993;72(6):971–83.

	2.	 Fusilli C, Migliore S, Mazza T, Consoli F, De Luca A, Barbagallo G, Ciam-
mola A, Gatto EM, Cesarini M, Etcheverry JL, et al. Biological and clinical 
manifestations of juvenile Huntington’s disease: a retrospective analysis. 
Lancet Neurol. 2018;17(11):986–93.

	3.	 Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, Scahill 
RI, Leavitt BR, Stout JC, Paulsen JS, et al. Huntington disease: natural 
history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 
2014;10(4):204–16.

	4.	 Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt 
A, Brandt J, Gourley LM, Liang K, Zhou H, et al. Onset and rate of striatal 
atrophy in preclinical Huntington disease. Neurology. 2004;63(1):66–72.

	5.	 Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. 
Neuropathological classification of Huntington’s disease. J Neuropathol 
Exp Neurol. 1985;44(6):559–77.

	6.	 Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, Mis-
chel PS, Nelson SF. Gene expression profiling of gliomas strongly predicts 
survival. Cancer Res. 2004;64(18):6503–10.

https://doi.org/10.1186/s12967-020-02549-9
https://doi.org/10.1186/s12967-020-02549-9
https://doi.org/10.1073/pnas.0504921102
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cran.r-project.org/
https://www.bioconductor.org/)
https://www.targetscan.org/vert_71/
https://www.mirdb.org/
https://www.mirdb.org/


Page 9 of 10Xiang et al. J Transl Med          (2020) 18:388 	

	7.	 De Preter K, Vermeulen J, Brors B, Delattre O, Eggert A, Fischer M, 
Janoueix-Lerosey I, Lavarino C, Maris JM, Mora J, et al. Accurate outcome 
prediction in neuroblastoma across independent data sets using a multi-
gene signature. Clin Cancer Res. 2010;16(5):1532–41.

	8.	 Kim YW, Liu TJ, Koul D, Tiao N, Feroze AH, Wang J, Powis G, Yung WK. Iden-
tification of novel synergistic targets for rational drug combinations with 
PI3 kinase inhibitors using siRNA synthetic lethality screening against 
GBM. Neuro-oncology. 2011;13(4):367–75.

	9.	 Liang JW, Fang ZY, Huang Y, Liuyang ZY, Zhang XL, Wang JL, Wei H, Wang 
JZ, Wang XC, Zeng J, et al. Application of weighted gene co-expression 
network analysis to explore the key genes in Alzheimer’s disease. J Alzhei-
mer’s Dis. 2018;65(4):1353–64.

	10.	 Zou R, Zhang D, Lv L, Shi W, Song Z, Yi B, Lai B, Chen Q, Yang S, Hua P. 
Bioinformatic gene analysis for potential biomarkers and therapeutic 
targets of atrial fibrillation-related stroke. J Translat Med. 2019;17(1):45.

	11.	 Wei CY, Zhu MX, Lu NH, Peng R, Yang X, Zhang PF, Wang L, Gu JY. Bio-
informatics-based analysis reveals elevated MFSD12 as a key promoter 
of cell proliferation and a potential therapeutic target in melanoma. 
Oncogene. 2019;38(11):1876–91.

	12.	 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene 
lin-4 encodes small RNAs with antisense complementarity to lin-14. 
Cell. 1993;75(5):843–54.

	13.	 Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis 
and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 
2019;20(1):5–20.

	14.	 Reed ER, Latourelle JC, Bockholt JH, Bregu J, Smock J, Paulsen JS, Myers 
RH. MicroRNAs in CSF as prodromal biomarkers for Huntington disease 
in the PREDICT-HD study. Neurology. 2018;90(4):e264–e272272.

	15.	 Bagnoli M, Canevari S, Califano D, Losito S, Maio MD, Raspagliesi F, 
Carcangiu ML, Toffoli G, Cecchin E, Sorio R, et al. Development and 
validation of a microRNA-based signature (MiROvaR) to predict early 
relapse or progression of epithelial ovarian cancer: a cohort study. 
Lancet Oncol. 2016;17(8):1137–46.

	16.	 Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, 
Hogarth P, Bouzou B, Jensen RV, et al. Genome-wide expression profil-
ing of human blood reveals biomarkers for Huntington’s disease. Proc 
Natl Acad Sci USA. 2005;102(31):11023–8.

	17.	 Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky 
M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: 
archive for functional genomics data sets-update. Nucleic Acids Res. 
2013;41(Database issue):D991–D99595.

	18.	 Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, 
Lin J, Minguez P, Bork P, von Mering C, et al. STRING v9.1: protein–pro-
tein interaction networks, with increased coverage and integration. 
Nucleic Acids Res. 2013;41(1):D808–D815815.

	19.	 Spinelli L, Gambette P, Chapple CE, Robisson B, Baudot A, Garreta H, 
Tichit L, Guenoche A, Brun C. Clust&See: a Cytoscape plugin for the 
identification, visualization and manipulation of network clusters. Bio 
Syst. 2013;113(2):91–5.

	20.	 da Huang W, Sherman BT, Lempicki RA. Systematic and integrative 
analysis of large gene lists using DAVID bioinformatics resources. Nat 
Protoc. 2009;4(1):44–57.

	21.	 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by 
adenosines, indicates that thousands of human genes are microRNA 
targets. Cell. 2005;120(1):15–20.

	22.	 Wang X. Computational prediction of microRNA targets. Methods Mol 
Biol. 2010;667:283–95.

	23.	 Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool 
for biomarker assessment and outcome-based cut-point optimization. 
Clinical Cancer Res. 2004;10(21):7252–9.

	24.	 Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee 
SK, Kim M, et al. Altered microRNA regulation in Huntington’s disease 
models. Exp Neurol. 2011;227(1):172–9.

	25.	 Sinha M, Ghose J, Das E, Bhattarcharyya NP. Altered microRNAs in 
STHdh(Q111)/Hdh(Q111) cells: miR-146a targets TBP. Biochem Biophys 
Res Commun. 2010;396(3):742–7.

	26.	 Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, 
Porta S, Sumoy L, Ferrer I, Estivill X. A myriad of miRNA variants in 
control and Huntington’s disease brain regions detected by massively 
parallel sequencing. Nucleic Acids Res. 2010;38(20):7219–35.

	27.	 Kerschbamer E, Biagioli M. Huntington’s disease as neurodevelopmen-
tal disorder: altered chromatin regulation, coding, and non-coding 
RNA transcription. Front Neurosci. 2015;9:509.

	28.	 Arteaga-Bracho EE, Gulinello M, Winchester ML, Pichamoorthy N, 
Petronglo JR, Zambrano AD, Inocencio J, De Jesus CD, Louie JO, 
Gokhan S, et al. Postnatal and adult consequences of loss of huntingtin 
during development: Implications for Huntington’s disease. Neurobiol 
Dis. 2016;96:144–55.

	29.	 Wiatr K, Szlachcic WJ, Trzeciak M, Figlerowicz M, Figiel M. Huntington 
disease as a neurodevelopmental disorder and early signs of the 
disease in stem cells. Mol Neurobiol. 2018;55(4):3351–71.

	30.	 Liu M, Xu Z, Du Z, Wu B, Jin T, Xu K, Xu L, Li E, Xu H. The Identification of 
key genes and pathways in glioma by bioinformatics analysis. J Immunol 
Res. 2017;2017:1278081.

	31.	 Mukherjee S, Klaus C, Pricop-Jeckstadt M, Miller JA, Struebing FL. A micro-
glial signature directing human aging and neurodegeneration-related 
gene networks. Front Neurosci. 2019;13:2.

	32.	 Bauer VW, Swaffield JC, Johnston SA, Andrews MT. CADp44: a novel 
regulatory subunit of the 26S proteasome and the mammalian homolog 
of yeast Sug2p. Gene. 1996;181(1–2):63–9.

	33.	 Tanahashi N, Suzuki M, Fujiwara T, Takahashi E, Shimbara N, Chung CH, 
Tanaka K. Chromosomal localization and immunological analysis of a 
family of human 26S proteasomal ATPases. Biochem Biophys Res Com-
mun. 1998;243(1):229–32.

	34.	 Labbadia J, Morimoto RI. Huntington’s disease: underlying molecu-
lar mechanisms and emerging concepts. Trends Biochem Sci. 
2013;38(8):378–85.

	35.	 Rousseau E, Kojima R, Hoffner G, Djian P, Bertolotti A. Misfolding of 
proteins with a polyglutamine expansion is facilitated by proteasomal 
chaperones. J Biol Chem. 2009;284(3):1917–29.

	36.	 Moslehi R, Mills JL, Signore C, Kumar A, Ambroggio X, Dzutsev A. 
Integrative transcriptome analysis reveals dysregulation of canonical 
cancer molecular pathways in placenta leading to preeclampsia. Sci Rep. 
2013;3:2407.

	37.	 van Roon-Mom WM, Reid SJ, Jones AL, MacDonald ME, Faull RL, Snell RG. 
Insoluble TATA-binding protein accumulation in Huntington’s disease 
cortex. Brain Res Mol Brain Res. 2002;109(1–2):1–10.

	38.	 Chan DC. Dissecting mitochondrial fusion. Dev Cell. 2006;11(5):592–4.
	39.	 Zhao Y, Sun X, Qi X. Inhibition of Drp1 hyperactivation reduces neuropa-

thology and behavioral deficits in zQ175 knock-in mouse model of Hun-
tington’s disease. Biochem Biophys Res Commun. 2018;507(1–4):319–23.

	40.	 Jiang M, Zheng J, Peng Q, Hou Z, Zhang J, Mori S, Ellis JL, Vlasuk GP, Fries 
H, Suri V, et al. Sirtuin 1 activator SRT2104 protects Huntington’s disease 
mice. Ann Clin Transl Neurol. 2014;1(12):1047–52.

	41.	 Smith MR, Syed A, Lukacsovich T, Purcell J, Barbaro BA, Worthge SA, 
Wei SR, Pollio G, Magnoni L, Scali C, et al. A potent and selective Sirtuin 
1 inhibitor alleviates pathology in multiple animal and cell models of 
Huntington’s disease. Hum Mol Genet. 2014;23(11):2995–3007.

	42.	 Tang Q, Len Q, Liu Z, Wang W. Overexpression of miR-22 attenuates oxida-
tive stress injury in diabetic cardiomyopathy via Sirt 1. Cardiovasc Therap. 
2018;36(2):e12318.

	43.	 Naia L, Rosenstock TR, Oliveira AM, Oliveira-Sousa SI, Caldeira GL, Carmo 
C, Laco MN, Hayden MR, Oliveira CR, Rego AC. Comparative mitochon-
drial-based protective effects of resveratrol and nicotinamide in Hunting-
ton’s disease models. Mol Neurobiol. 2017;54(7):5385–99.

	44.	 Ho DJ, Calingasan NY, Wille E, Dumont M, Beal MF. Resveratrol protects 
against peripheral deficits in a mouse model of Huntington’s disease. Exp 
Neurol. 2010;225(1):74–84.

	45.	 Rai AN, Vargas ML, Wang L, Andersen EF, Miller EL, Simon JA. Ele-
ments of the polycomb repressor SU(Z)12 needed for histone H3–K27 
methylation, the interface with E(Z), and in vivo function. Mol Cell Biol. 
2013;33(24):4844–56.

	46.	 Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in 
life. Nature. 2011;469(7330):343–9.

	47.	 Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova TB, 
Anil-Kirmizitas B, Bassett A, Kooistra SM, Agger K, et al. Jarid2 binds mono-
ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb 
complexes PRC1 and PRC2. Nat Commun. 2016;7:13661.

	48.	 Dong X, Tsuji J, Labadorf A, Roussos P, Chen JF, Myers RH, Akbarian S, 
Weng Z. The role of H3K4me3 in transcriptional regulation is altered in 
Huntington’s disease. PLoS ONE. 2015;10(12):e0144398.



Page 10 of 10Xiang et al. J Transl Med          (2020) 18:388 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	49.	 Schmitges FW, Prusty AB, Faty M, Stutzer A, Lingaraju GM, Aiwazian J, Sack 
R, Hess D, Li L, Zhou S, et al. Histone methylation by PRC2 is inhibited by 
active chromatin marks. Mol Cell. 2011;42(3):330–41.

	50.	 Seong IS, Woda JM, Song JJ, Lloret A, Abeyrathne PD, Woo CJ, Gregory G, 
Lee JM, Wheeler VC, Walz T, et al. Huntingtin facilitates polycomb repres-
sive complex 2. Hum Mol Genet. 2010;19(4):573–83.

	51.	 Han L, Wang P, Zhao G, Wang H, Wang M, Chen J, Tong T. Upregula-
tion of SIRT1 by 17 beta-estradiol depends on ubiquitin-proteasome 
degradation of PPAR-gamma mediated by NEDD4-1. Protein Cell. 
2013;4(4):310–21.

	52.	 Ling S, Li J, Shan Q, Dai H, Lu D, Wen X, Song P, Xie H, Zhou L, Liu J, et al. 
USP22 mediates the multidrug resistance of hepatocellular carcinoma via 
the SIRT1/AKT/MRP1 signaling pathway. Mol Oncol. 2017;11(6):682–95.

	53.	 Liu H, Liu N, Zhao Y, Zhu X, Wang C, Liu Q, Gao C, Zhao X, Li J. Oncogenic 
USP22 supports gastric cancer growth and metastasis by activating 

c-Myc/NAMPT/SIRT1-dependent FOXO1 and YAP signaling. Aging. 
2019;11:9643.

	54.	 Zou Q, Tang Q, Pan Y, Wang X, Dong X, Liang Z, Huang D. MicroRNA-22 
inhibits cell growth and metastasis in breast cancer via targeting of SIRT1. 
Exp Ther Med. 2017;14(2):1009–166.

	55.	 Hu Y, Chopra V, Chopra R, Locascio JJ, Liao Z, Ding H, Zheng B, Matson 
WR, Ferrante RJ, Rosas HD, et al. Transcriptional modulator H2A histone 
family, member Y (H2AFY) marks Huntington disease activity in man and 
mouse. Proc Natl Acad Sci USA. 2011;108(41):17141–6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Bioinformatic gene analysis for potential therapeutic targets of Huntington’s disease in pre-symptomatic and symptomatic stage
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Data acquisition
	Screening of differentially expressed genes (DEGs)
	Integration of the protein–protein interaction (PPI) network and screening of the hub genes
	Gene Ontology and KEGG pathway analysis of DEGs
	Prediction of the miRNAs of the intersected hub genes and their validation

	Results
	Differentially expressed genes (DEGs) and the heatmap
	Functional GO terms and pathway enrichment analysis
	Hub genes selected by PPI network analysis of DEGs
	GO and KEGG analysis results of hub genes in two groups
	Prediction of miRNAs of the intersected hub genes and validation of hub genes

	Discussion
	Conclusion
	Acknowledgements
	References




