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Recent work has revealed that the wave function of a pure state can be measured directly and that
complementary knowledge of a quantum system can be obtained simultaneously by weak measurements.
However, the original scheme applies only to pure states, and it is not efficient because most of the data are
discarded by post-selection. Here, we propose tomography schemes for pure states and for mixed states via
weak measurements, and our schemes are more efficient because we do not discard any data. Furthermore,
we demonstrate that any matrix element of a general state can be directly read from an appropriate weak
measurement. The density matrix (with all of its elements) represents all that is directly accessible from a
general measurement.

F
or a group of blindfolded observers, who can each only touch one part of the elephant, to construct an
accurate representation of an elephant, the group must combine information about different parts of the
elephant (FIG 1a). In quantum mechanics, to have a complete description of a quantum system, in par-

ticular, a complete knowledge of a quantum state, we must combine information about complementary aspects
(FIG 1b).

An ideal (strong) quantum measurement of a certain observable only gives the probabilities of obtaining the
eigenvalues of the observable, and the statistical results of the measurements reflect the diagonal terms of the
density matrix in the eigenbasis of the observable. Measurements of different (complementary) observables
provide the diagonal terms of the density state for different bases. If we perform measurements for a sufficient
number of bases, we can reconstruct the density state, which is the idea of state tomography.

An important difference exists between the tomography of a quantum state and its classical counterpart, e.g.,
the description of an elephant by blindfolded observers. In this classical example, the description (of the elephant)
by each man is not exclusive, and the different aspects of perception can be simply combined to produce an overall
description of the elephant (FIG 1a). However, quantum physics forbids simultaneous knowledge of comple-
mentary observables because precise knowledge of a certain aspect necessarily implies uncertainty for the
complementary aspects1. Therefore, one cannot simultaneously perform ideal measurements of complementary
observables in quantum physics (FIG 2a). To determine the quantum state of a system, different measurement
setups, each for a particular observable, are required. To determine the general state of a d-dimensional quantum
system, at least d 1 1 different experimental setups are needed. Each setup must be devoted to the measurement of
one of the complementary observables.

An alternative state tomography approach is possible. Instead of obtaining maximum information of a
particular observable by an ideal measurement, we can perform a weak measurement2. The state of the quantum
system is only slightly changed during its weak interaction with the measuring device; therefore, weak measure-
ments of a set of complementary observables can be performed simultaneously3 (FIG 2b). Thus, fewer experi-
mental setups are needed for state tomography via weak measurements4.

Weak measurements have been well described in the literature. Since they were first introduced by Aharonov,
Albert and Vaidman2, weak measurements have been realised in experiments5–7, and have provided new insights
into the study of paradoxes and fundamental problems in quantum theory8–12. Weak measurement has also been
used as a practical tool for amplifying weak signals and signal-to-noise ratios13–20. Signal amplification via weak
measurement usually involves a pre-selection and a post-selection that are nearly orthogonal, and the original
formalism of weak measurement2,21 is not sufficient for the phenomena in this regime because it only retains the
first-order terms of the interaction strength22–24. Extensions to the case of general pre-selection are given in
(Refs. 25, 26). A framework that retains the high-order terms for general pre-selection and post-selection is given
in (Ref. 27), and specific cases are further studied in (Refs. 28–30). A nonperturbative theory of weak pre- and
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post-selected measurements is given in (Ref. 31). The general results
for the weak measurement of a pair of complementary observables
are provided in (Ref. 20). Related concepts, such as the contextual
values32 and modular values33, were also introduced. Weak measure-
ments can also be used for state tomography. Lundeen et al.4 directly
measured the wave function of a pure state by a weak measurement
followed by a post-selection. The scheme was extended to the mixed
state by sequential weak measurements of pairs or triple products of
complementary observables34. The results of the weak measurements
could also be interpreted in terms of the Kirkwood-Dirac representa-
tion via complex joint probabilities35,36. Reviews and additional refer-
ences on weak measurements can be found in (Refs. 31, 37, 38).

The results in (Ref. 4) demonstrate that the wave function of a pure
state can be directly obtained from a single experimental setup, and
that one can directly measure both the absolute values and the phases
of the coefficients of a pure state in a certain basis. However, the
scheme proposed in4 applies only to pure states, and it is not efficient
because most of the data are discarded due to the post-selection. Here,
we propose tomography schemes for both pure states and mixed states
via weak measurements. Our schemes are more efficient because we
do not discard any data. We also show that any (diagonal or off-
diagonal) element of the density state can be directly determined as
the average pointer shift in an appropriate weak measurement.

Results
The idea. In the scheme proposed in (Ref. 4), the wave function to be
measured is a continuous function of the position. The essence of the
scheme is reviewed in finite dimensional Hilbert space as follows34,39.
Suppose a quantum system with a d-dimensional Hilbert space is in
an unknown state

yj i~
Xd{1

i~0

yi aij i, ð1Þ

where the coefficients {yi} in a certain basis {jaiæ} need to be
determined. The scheme for measuring the coefficients {yi}
consists of a series of weak measurements of the observables Ai 5

jaiæ Æaij, each followed by the same postselection, i.e., a projection

onto the final state b0j i~
1ffiffiffi
d
p
X

d{1
i~0 aij i. The weak value of the

observable Ai is defined as

Wi~
b0 aijh i ai yjh i

b0 yjh i ~
1ffiffiffi

d
p

b0 yjh i
yi: ð2Þ

Both the real and the imaginary parts of the weak value Wi have
physical meanings and can be determined experimentally because
they correspond to the average shifts of the pointer position and the
momentum, respectively. From Eq. (2), we know that the weak values

Wi are directly proportional to the coefficients yi that we want to

measure and that the factor
1ffiffiffi

d
p

b0 yjh i
can be determined by the

normalisation condition (up to an unphysical overall phase of jyæ).
Therefore, we obtain a direct measurement of the coefficients yi, thus
a direct measurement of the wave function jyæ.

The essential point in this scheme is the choice of the post-selected
state jb0æ. Its overlap with each basis state jaiæ has the same magnitude

and phase; therefore, the factor K~yi

.
Wi~

ffiffiffi
d
p

b0 yjh i does not
depend on i and can be determined by normalisation. Because the
change of the system state due to a weak interaction with the pointer
is negligible, the success probability of post-selection is given by P 5

jÆb0jyæj2. Therefore, only a fraction P of the data is retained, and the
remainder is discarded due to the post-selection. When the dimen-
sion d is large, as in the case of a continuous wave function, the
majority of the data is discarded.

State tomography of a pure state. The part of the data that
corresponds to the failure of the post-selection can be retained.
We replace the final post-selection by a complete projective
measurement onto the basis states {jbjæ}. The inner products bji 5

Æbjjaiæ are fixed when the two sets of the basis states are chosen. We
organise the data according to the final state: if the final state is jbjæ,
then the weak value of Ai 5 jaiæ Æaij is given by

Wji~
bj aij
� �

ai yjh i
bj yj
� � ~

bj aij
� �

bj yj
� � yi~

bji

bj yj
� �yi: ð3Þ

Therefore, for each fixed j, the weak values of different Ai give the
relative ratios of the coefficients yi:

y
jð Þ

i ~Wji
bj yj
� �

bj aij
� �~

Wji

bji
bj yj
� �

: ð4Þ

Because Æbjjyæ does not depend on i, the coefficients yi are directly

proportional to
Wji

bji
, where the weak values Wji are read-outs directly

from the experiments and the constants bji 5 Æbjjaiæ are fixed when

the two sets of basis states are chosen. The super index (j) in y
jð Þ

i
denotes the coefficients yi that we obtain from the jth subset of the

data. Ideally, y
jð Þ

i should not depend on j; however, they may depend
on j due to imperfections and noise in the experiments. The
magnitude of the factor bj yj

� �
~eiQj bj yj

� ��� �� can be removed by
normalisation:

y
jð Þ

i ~eiQj
Wji

bji

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i0

Wji0

bji0

�����
�����

2

:

vuut ð5Þ

(b)

(a)

Figure 2 | (a) A strong measurement only reveals a certain aspect of the
quantum state, (b) while a weak measurement enables us to perceive
(measure) incompatible aspects of the quantum state simultaneously.

(a)

(b)

Figure 1 | (a) Compatible aspects are combined in classical physics,
(b) while complementary aspects are combined in quantum physics.
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The phase factor Qj has no physical meaning because it corresponds
to the overall phase of the pure state we are attempting to measure.
This factor can be removed by a convention. For example, we require
y0 . 0 (or the coefficient with the largest magnitude be positive).
Using this approach, we retain all of the data and separate the data
into d subsets according to the final states {jbjæ}. For the jth subset of
the data that corresponds to the fixed final states jbjæ, we have an

estimation of the coefficients y
jð Þ

i from Eq. (4) or (5). A different
subset of the data gives a different estimation for the set of
coefficients {yi}. The differences between the estimations indicate
the amount of error or noise in the experiment.

When the basis {jbjæ} is mutually unbiased to the basis {jaiæ}, i.e.,

bji~ bj aij
� �

~
eiwjiffiffiffi

d
p , (5) can be simplified to

y
jð Þ

i ~eiQj e{iwji Wji

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i0

Wji0
�� ��2s

: ð6Þ

The original scheme proposed in4 corresponds to the case in which
b0j i~ 1ffiffi

d
p
P d{1

i~0 aij i, and only the data corresponding to the success-

ful post-selection of jb0æ are retained. Here, we retain all of the data,
and each subset of the weak values corresponding to a fixed final state
gives an estimation of the state to be measured. The probability of
obtaining the final state jbjæ is given by jÆbjjyæj2 because the change of
the system state during the weak interaction is negligible. When the
state jyæ to be measured is almost orthogonal to a certain final state
jbjæ, then the relative frequency to obtain the final state jbjæ in the
post-selection is small. However, the corresponding weak value has a
large magnitude, which could result in a large signal-to-noise ratio
when the dominant noise is due to systematic error or imperfections.

In the above scheme, weak measurements for a complete set of
projective operators {Ai 5 jaiæÆaij} are needed. For the tomography of
a pure-state wave function jyæ, weak measurements of a single
observable instead of a set of observables are sufficient. This single
observable can be chosen as follows (an alternative choice is pre-
sented in the Methods). We consider a pure state jQæ such that its
overlap with each postselected state is nonzero, i.e., ÆbjjQæ ? 0 for
each j. We perform a weak measurement of PQ 5 jQæÆQj. When the
post-selected state is jbjæ, the weak value of PQ is defined as

Wj~
bj PQ yj
��� �
bj yj
� � ~

bj Qj
� �

Q yjh i
bj yj
� � : ð7Þ

Therefore,

bj yj
� �

~
bj wj
� �

Wj
w yjh i~gj w yjh i: ð8Þ

Here, gj~
bj wj
� �

Wj
is completely determined from the experimental

data and our choice because Wj is directly obtained from the experi-
ment and both jQæ and {jbjæ} are fixed by our choice. From Eq. (8), we
can reconstruct the state jyæ:

yj i~
X

j

Kgj bj

�� �, ð9Þ

where K is determined by the normalisation condition up to a phase.

State tomography of a mixed state. To this point, we have only
considered tomography schemes for a pure state. If the state we
like to measure is a general mixed state r, we also have a
tomography scheme via weak measurements. For this case, we
perform weak measurements for a complete set of projective
operators Ai 5 jaiæÆaij, followed by a final projective measurement
onto the basis {jbjæ}. For the initial state r and the final post-selected
state jbjæ, the average shifts of the pointer position and the
momentum in a weak measurement of Ai correspond to the real
and imaginary parts of the weak value25,27

Wji~
tr bj

�� � bj
� ��� �

aij i aih jð Þr
� 	

tr bj

�� � bj
� ��r� � ~

bj aij
� �

ai rj bj

��� �
bj r bj

����� � : ð10Þ

From Eq. (10), one can express the matrix elements of r either by the
basis {jaiæ}

ai r aj

����� �
~
X

k

bk r bkjjh i
bk aj

��� �
bk aijh iWki~

X
k

Pk
bkj

bki
Wki ð11Þ

or by the basis {jbjæ}

bi r bj

����� �
~ bj r bj

����� �X
k

Wjk
bi akjh i
bj akj
� �~Pj

X
k

Wjk
bik

bik
, ð12Þ

where the probability Pj 5 Æbjjrjbjæ corresponds to the frequency of
obtaining the final state jbjæ in the experiment. The weak values Wji

and the probabilities Pj are directly accessible from the experiment.
The relationships in Eqs. (11) and (12) show that the matrix elements
of the mixed state can be written as linear summations of the weak
values that are directly accessible from the experiment.

Partial state tomography. Using the idea of weak measurements, we
can also selectively measure some of the matrix elements (diagonal
and off-diagonal terms) of a state directly. This is especially useful
when we are only interested in one or a few matrix elements of the
state and we do not need to perform state tomography for the entire
density matrix. Suppose we are interested in measuring a particular
matrix element Æajrjbæ. We consider two different cases according to
whether jaæ and jbæ are orthogonal. For the first case, suppose Æbjaæ ?
0. Here, we can simply perform a weak measurement of jaæÆaj, with a
post-selection onto the state jbæ. The weak value is defined as

W~
b ajh i a r bjjh i

b r bjjh i : ð13Þ

Thus,

a rj jbh i~ b rj jbh i
b ajh i W: ð14Þ

W is the weak value, and Æbjrjbæ is the probability of success for post-
selection. Both values are directly obtained from the experiment.
Æbjaæ is only a fixed factor. Therefore, Æajrjbæ is determined by
Eq. (14). For the second case, suppose that Æbjaæ 5 0. We then
perform a weak measurement of the observable C 5 jcæ Æcj with
cj i~ 1ffiffi

2
p aj iz bj ið Þ and a follow-up projective measurement onto a

basis including both jaæ and jbæ as the basis states. We must only
retain the data when the final state is either jaæ or jbæ. If the final state
is jaæ, then the weak value of C is given by

W~
a cjh i c rj jah i

a rj jah i ~
1
2

1z
b rj jah i
a rj jah i


 �
: ð15Þ

If the final state is jbæ, then the weak value of C is given by

W 0~
b cjh i c rj jbh i

b rj jbh i ~
1
2

1z
a rj jbh i
b rj jbh i


 �
: ð16Þ

We have

b rj jah i~ a rj jah i 2W{1ð Þ, ð17Þ

a rj jbh i~ b rj jbh i 2W 0{1ð Þ: ð18Þ

The post-selection probabilities Æajrjaæ and Æbjrjbæ and the weak
values W and W9 are directly accessible from the experiment; there-
fore, we can determine the matrix element Æajrjbæ from either
Eq. (17) or (18), which should agree with each other. Any discrep-
ancies between them could be used as indicators of the noise and
imperfections in the experiment.
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Experimental scheme. Here, we discuss how our schemes can be
realised experimentally. For the weak measurement of an observable
A, the interaction between the measuring device and the system is
generally modelled by a Hamiltonian H~gA6pd t{t0ð Þ, where p
denotes the momentum of the pointer (measuring device). Because
the interaction in a weak measurement does not change the state of
the system significantly, weak measurements of several observables
(whether they are commutative or not) can be performed
simultaneously. The interaction of the simultaneous weak
measurements of a set of observables {Ai} can be introduced by the
Hamiltonian:

H~
X

i

giAi6pid t{t0ð Þ: ð19Þ

Here, pi denotes the momentum of the ith pointer that is coupled to the
observable Ai. {Ai} is an arbitrary set of observables of the system. They
could be a set of commuting observables (for example, Ai 5 jaiæ Æaij) or
even a set of complementary observables. Suppose the initial state of
the system is rs, and the initial state of the pointers is rd 5 r1 fl r2 fl

???, where ri denotes the initial state of the ith pointer. Suppose the
post-selection of the system is a projection Pj (for example, Pj 5 jbjæ
Æbjj). Then the average position shift dqi and the average momentum
shift dpi of the ith pointer are given by (see the derivation in the
Methods)

dqi~giReWji ð20Þ

dpi~2giImWji Dpið Þ2: ð21Þ

The weak value Wji of Ai, for a general initial state rs and a general
postselection Pj, is given by20

Wji~
Tr PjAirs

� �
Tr Pjrs

� � : ð22Þ

The shifts of different pointers can be read out simultaneously, while
either the position shift or the momentum shift is recorded at each
time for each pointer. With the same Hamiltonian, we can obtain all
of the weak values Wji. From these weak values, we can obtain all of
the elements of the density matrix rs according to the state tomo-
graphy strategy proposed in this article.

Example of application. The state tomography schemes proposed
here can also be used to detect a tiny parameter encoded in a
quantum state. For example, to detect a tiny phase difference q
picked up by two orthogonal states of a qubit (a photon) that
passes through a certain medium (a birefringent crystal), we could

prepare a qubit in the initial state
1ffiffiffi
2
p 0j iz 1j ið Þ, and seek to

determine the tiny phase q encoded in the outgoing state
1ffiffiffi
2
p 0j izeiq 1j i
� �

. To determine q, we can perform a weak

measurement of the observable j1æ Æ1j by introducing an

interaction H~g 1j i 1h j6pd t{t0ð Þ between the qubit system and a
measuring device and a follow-up post-selection of the qubit system

onto the state
1ffiffiffi
2
p 0j i{ 1j ið Þ. The weak value is W~1{i

1
q

, and the

average shift of the pointer momentum is given by dp~{2g Dpð Þ2 1
q

.
Although the phase q is small, the average shift of the pointer
momentum is not necessarily small, and this has certain
advantages over the quantum-entanglement based scheme in
Ramsey interferometry40, which relies on the use of GHZ states of
many qubits, which are an expensive resource.

Discussion
In this article, we have proposed several schemes for state tomo-
graphy via weak measurements. An advantage of our schemes is that
we need to measure fewer observables compared with the standard

method of state tomography based on ideal measurements. For
example, a simple standard state tomography requires ideal measure-
ments in at least d 1 1 different bases; therefore, one needs to use at
least d 1 1 different experimental setups. Here, our tomography
strategy requires weak interaction in one basis ({jaiæ}) and post-selec-
tion in another basis ({jbjæ}), and the same interaction Hamiltonian is
used for all data collection.

Compared with the scheme in (Ref. 4), our strategy applies not
only to pure states but also to mixed states. Our strategy is more
efficient because we retain all of the data and thus reduces the num-
ber of experimental runs needed. Compared with the schemes in
(Ref. 34) in which a density matrix is directly measured via sequential
weak measurements of pairs or triple products of observables, our
schemes are based on a single-time weak measurement followed
by a strong complete projective measurement. Our interaction
Hamiltonian in Eq. (19) is straightforward and differs significantly
from those in the schemes of (Ref. 34). In the previous schemes4,34,
the observables Ai 5 jaiæ Æaij require separate weak measurements at
each time for a particular i. In our schemes, the set of observables {Ai}
can be measured simultaneously via the interaction introduced by
the simple Hamiltonian in Eq. (19).

Interestingly, any matrix element of a density state is directly
accessible from a suitable weak measurement. Ideal measurements
give probabilities and expectation values, which are only linear com-
binations of the matrix elements of the density operator. Based on all
of these facts, it is natural to draw the conclusion: what is and can be
really measured in a general (ideal or weak) measurement is the
density matrix (with all its elements), and only the density matrix!

Methods
An alternative scheme for the tomography of a pure state via the weak
measurement of a single observable. In the main text, we see that it is sufficient to
perform a weak measurement of a single observable for the tomography of a
pure-state wave function jyæ. This single observable could be chosen alternatively as
follows. We introduce a single observable

A~
X

i

li aij i aih j, ð23Þ

where the eigenvalues li are not degenerated, i.e., li ? lj if i ? j. We simply perform a
weak measurement of the observable A and retain all of the data corresponding to
different final states jbjæ. When the final state is jbjæ, the weak value of A is given by

Wj~
bj Aj jy
� �

bj yj
� � ~

P
i bj aij
� �

li ai yjh i
bj yj
� � ~

P
i bjiliyiP

i bjiyi
ð24Þ

From Eq. (24) we have X
i

bjili{Wjbji

� 
yi~0: ð25Þ

We define a unitary matrix b with the matrix elements given by the coefficients bji and
introduce the diagonal matrices l 5 diag{l0, l1, ??? , ld21}, w 5

diag{w0, w1, ??? , wd21} and the vector ~y~ y0,y1,:::,yd{1ð ÞT , where T denotes the
transpose. Then, Eq. (25) can be written as

bl{wbð Þ~y~0: ð26Þ

With the notation M 5 bl 2 wb, we have M~y~0. Thus, the state tomography in this

case is to find the vector~y corresponding to the zero eigenvalue of M. The matrix M
depends on w, which is determined by the weak values that are directly read out from
the experiments. Due to noise and imperfections in the experiments, matrix M may

not have a zero eigenvalue. Instead, multiplying M~y~0 by M{ from the left, we have

M{M
� �

~y~0: ð27Þ
Therefore, the vector ~y is the eigenvector in the kernel space of the non-negative

matrix M{M. The vector ~y is uniquely determined if M{M has a one-dimensional
kernel space. It is not determined, and another set of measurements must be
performed if M{M has a kernel space of more than one dimension. However, it is also
possible that the matrix M{M determined from the experiment may not have a kernel

space. In such a case, we choose the most likely one, i.e., we choose the vector~y as the
eigenvector corresponding to the smallest eigenvalue of M{M. The value of the
smallest eigenvalue of M{M indicates the amount of noise and imperfection in the
experiment.
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Derivation of the position shift and the momentum shift. Here, we derive the
position shift and the momentum shift in (20) and (21), respectively. The time
evolution operator corresponding to the interaction Hamiltonian in (19) is given by
U~e{i

P
i

gi Ai6pi . If the system is successfully post-selected by Pj , which occurs with
a probability (to the first order of gi) of

Pj~Tr Pj6I
� �

Urs6rdU{� �
~Tr Pjrs

� �
1z2

X
i

giImWji pih i
 !

ð28Þ

the final (unnormalised) state of the pointers is given by (to the first order of gi)

r0d~Trs Pj6I
� �

Urs6rdU{� �
ð29Þ

~Tr Pjrs

� �
rd{i

X
i

gi Wjipird{W�
ji rdpi

�  !
: ð30Þ

Here, Trs (Tr) denotes the trace over the system (whole) Hilbert space. The average
position shift of the ith pointer, conditional on the successful post-selction by Pj , is

given by dqi~
Tr qip0dð Þ
Tr r0dð Þ

{ qih i. A straightforward calculation to the first order of
gi gives

dqi~giReWjizgiImWji pi{ pih i, qi{ qih if gh i: ð31Þ

When the initial states of the pointers are well-behaved states, such as Gaussian states,
the second term on the right-hand side of (31) vanishes, and we immediately have
(20). Similarly the average momentum shift of the ith pointer, conditional on the

successful post-selection byPj, is given by dpi~
Tr pir

0
d

� �
Tr r0d
� � { pih i, which yields (21) to

the first order of gi.
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