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Purpose: To develop deep learning classifiers and evaluate their diagnostic performance

in detecting the static gonioscopic angle closure and peripheral anterior synechia (PAS)

based on swept source optical coherence tomography (SS-OCT) images.

Materials and Methods: Subjects were recruited from the Glaucoma Service at

Zhongshan Ophthalmic Center of Sun Yat-sun University, Guangzhou, China. Each

subject underwent a complete ocular examination, such as gonioscopy and SS-OCT

imaging. Two deep learning classifiers, using convolutional neural networks (CNNs),

were developed to diagnose the static gonioscopic angle closure and to differentiate

appositional from synechial angle closure based on SS-OCT images. Area under the

receiver operating characteristic (ROC) curve (AUC) was used as outcome measure to

evaluate the diagnostic performance of two deep learning systems.

Results: A total of 439 eyes of 278 Chinese patients, which contained 175 eyes of

positive PAS, were recruited to develop diagnostic models. For the diagnosis of static

gonioscopic angle closure, the first deep learning classifier achieved an AUC of 0.963

(95% CI, 0.954–0.972) with a sensitivity of 0.929 and a specificity of 0.877. The AUC

of the second deep learning classifier distinguishing appositional from synechial angle

closure was 0.873 (95% CI, 0.864–0.882) with a sensitivity of 0.846 and a specificity

of 0.764.

Conclusion: Deep learning systems based on SS-OCT images showed good

diagnostic performance for gonioscopic angle closure and moderate performance in the

detection of PAS.

Keywords: anterior chamber angle, deep learning, primary angle closure disease, artificial intelligence, swept

source optical coherence tomography
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INTRODUCTION

Glaucoma is themain cause of irreversible blindness (1), affecting
an estimated 76 million people worldwide (2). In Asia, the
prevalence of primary angle closure disease (PACD) is expected
to increase significantly to reach 34million in 2040 (2). PACD has
chronic and acute forms, which may lead to severe eye pain and
rapid loss of vision, or irreversible blindness if untreated (3).

Early intervention and treatment of PACD depend on early
detection, which requires assessment of the anterior chamber
angle (ACA). Gonioscopy is a gold standard for assessing the
ACA configuration and detecting PAS in clinics. However, it is
a contact examination that should not be used on some patients
due to safety concerns.

Swept source optical coherence tomography (SS-OCT) is a
non-contact imaging technique providing high resolution images
of anterior segment structures. Compared to traditional anterior
segment optical coherence tomography (AS-OCT), the laser
wavelength of SS-OCT is 1,310 nm, which enables it to scan
and store 360-degree images of the anterior chamber in a few
seconds with high reproducibility and definition (3). Previous
studies have shown that SS-OCT exhibits moderate performance
for angle closure detection compared with gonioscopy as the
reference standard (4), although not all studies were in agreement
(5). A limitation of AS-OCT for angle closure detection is
its limited ability to distinguish appositional angle closure and
synechial angle closure based on two-dimensional cross-sectional
images. However, a previous study by Leung et al. had indicated
that it was feasible to discriminate synechial angle closure from
the appositional angle closure with dynamic paired dark-light
AS-OCT imaging, which showed that synechial closure often
exhibited an obtuse configuration while appositional closure
assumed an acute configuration (6). This shows the possibility to
explore the way of discriminating these two kinds of angle closure
based on static SS-OCT imaging.

Deep learning, a branch of machine learning, has been used
to detect diabetic retinopathy, age-related macular degeneration,
retinopathy of prematurity, glaucoma, and cataract by learning
images from fundus photographs, perimetry, fundus OCT, and
slit lamp microscopy (7–12). Recent studies have suggested that
AS-OCT combined with deep learning has the potential to detect
narrow ACAs in at-risk people (13, 14), indicating that it is
possible to develop a deep learning system based on SS-OCT
images to detect the appositional angle closure.

The purpose of this study was to develop an artificial
intelligence system for ACA detection based on SS-OCT images.
To achieve this aim, two deep learning classifiers were developed,
the first to diagnose static gonioscopic angle closure and the
second to distinguish appositional angle closure from synechial
angle closure.

MATERIALS AND METHODS

This prospective observational study adhered to the tenets
of the Declaration of Helsinki and was approved by the
Institutional Review Boards of Zhongshan Ophthalmic
Center, Guangzhou, China (2018KYPJ007) and registered

at ClinicalTrials.gov (NCT03611387). Informed consent was
obtained from all patients.

A total of 278 participants of the Zhongshan Ophthalmic
Center were enrolled in this study between August 2018 and
August 2020. Patients eligible for inclusion were phakic, over 18
years old, and able to undergo both gonioscopy and SS-OCT
examinations. Exclusion criteria included the history of prior
intraocular surgery and laser treatment, prior history of APAC,
acute ocular inflammation, secondary angle closure, open angle
glaucoma, or corneal opacities that disturbed the visualization
and imaging of ACA. Both eyes of a single participant were
included if they met the above criteria.

Clinical Evaluation
All eyes included in this study underwent a series of standard
ophthalmic examinations, such as ACA evaluation by gonioscopy
and SS-OCT imaging. Gonioscopy was performed by six
glaucoma experts using a 1-mirror gonioscope (Volk Optical
Inc, Mentor, OH, USA) and a 1-mm light beam placed off the
pupil to avoid pupillary constriction. If the pigmented trabecular
meshwork could not be visualized by static examination, dynamic
gonioscopy was performed to evaluate the presence of PAS. The
gonioscopy result combined static and dynamic examination,
and the range of PAS was recorded based on clock position which
was also converted into degree position.

Swept source optical coherence tomography (SS-OCT)
(CASIA SS-1000, Tomey Corporation, Nagoya, Japan) imaging
was performed in a dark room by a trained examiner masked
to gonioscopic findings. During the scanning, the upper eyelids
were gently retracted to decrease superior eyelid artifacts, while
taking care to avoid inadvertent pressure on the globe. Three-
dimensional angle analysis mode was used with 512 A-scans
per line which takes 128 2-dimensional cross-sectional images
per eye.

SS-OCT Images Dataset
The SS-OCT Viewer software (version 4.7; Tomey Corporation,
Nagoya, Japan) was used to export 128 cross-sectional images in
JPEG format from raw image data per eye. Each SS-OCT cross-
sectional image was split into two by a vertical midline with the
right-side image flipped horizontally to match the orientation of
the left-side image. Images with motion artifacts and incomplete
images were excluded from the analysis (Figure 1).

Each ACA image was classified by two trained observers as
an open-angle or static angle closure. In case of disagreement, a
senior glaucoma specialist adjudicated. The static angle closure
in the SS-OCT ACA image was defined as a substantial iris-
angle contact beyond the scleral spur while an open angle in the
ACA image was defined as no iridotrabecular contact anterior to
the scleral spur. This procedure yielded the first SS-OCT dataset
containing ACA images with the open angle and static angle
closure images.

The static angle closure ACA images in the first SS-OCT
dataset were combined with gonioscopy results to reclassify those
ACA images as appositional angle closure or synechial angle
closure. Appositional angle closure in the static angle closure
ACA images was defined as no PAS recorded on gonioscopy.
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FIGURE 1 | Each swept source optical coherence tomography (SS-OCT)

cross-sectional image was split into two anterior chamber angle (ACA) images

with the right-side image flipped horizontally.

Synechial angle closure images were defined as PAS recorded on
gonioscopy. This procedure yielded the second SS-OCT dataset.
ACA images corresponded to within 15 degrees before and after
the starting and ending points of PAS were excluded. The image
handling process is shown schematically in Figure 2.

Image pixel values were normalized to range between 0 and
1. Images were randomly rotated between 0 and 15 degrees and
randomly shifted horizontally and vertically as means of images
augmentation (15), to enhance the robustness of the model
during classifier training.

Deep Learning System
Two deep learning classifiers were developed in this study
using a convolutional neural network (CNN) approach. Both
deep learning classifiers were based on the InceptionResnetV2
CNN architecture consisting of 244 convolution layers, 204
batch normalization layers, and four pooling layers. The fully
connected layer with a size of 1,024 linked to a dropout layer
with a retention rate of 0.5 predicted a binary classification result
with a sigmoid activation function and a binary cross-entropy
loss function in the final output layer. The adaptive moment
estimation optimizer with an initial learning rate of 0.001, beta
1 of 0.9, beta 2 of 0.999, fuzzy coefficient of 1e-7, and learning
decay rate of 0 were applied. The thumbnail view of the entire
CNN architecture is shown in Figure 3.

The CNN architecture initialization was performed by the
pre-trained model obtained from ImageNet classification (16).
Each model was trained up to 500 epochs. After each epoch,

the validation loss was evaluated using the validation set and
used as a reference for model selection. The training process
was stopped if the validation loss did not improve over 120
consecutive epochs. The model with the lowest validation loss
was saved as the final model.

All ACA images of eyes included in the first SS-OCT dataset
were randomly segregated into three sub-sets, with 70% of images
for training, 15% of images for validation, and 15% of images
as a test dataset, to develop the first deep learning classifier.
Images in each dataset were independent without crossover or
overlap between datasets. The second deep learning classifier was
developed by randomly allocating ACA images relabeled in the
second SS-OCT dataset into three sub-sets, with 80% of images
as a training set, 10% of images as a validation set, and 10% of
images as a test set.

Test Classifier
At the early stage of this study, a test classifier was developed
that included a small sample and several ACA images. To test
the accuracy of the classifier in distinguishing different widths
of an open angle, we selected two different and independent test
sets. Open angle images in the test set 1 were images with wider
trabecular iris angle 250 um (TIA250) while open angle images
in test set 2 were images with narrower TIA250. Images with
TIA250 >25 degrees were selected in the test set 1 while images
in the test set 2 were those with TIA250 ranging from 11 to 15
degrees (Figure 4).

Statistical Analysis
Model performance was assessed using three critical outcome
measures: accuracy, sensitivity, and specificity. A receiver
operating characteristic (ROC) curve was used to evaluate the
efficacy of deep learning classifiers. The classification threshold
was measured by the Youden index (17). Moreover, the area
under the ROC curve (AUC) with 95% CI was chosen to evaluate
the deep learning models.

RESULT

A total of 77,613 ACA images from 439 eyes were captured that
concluded 165 eyes of normal, 99 eyes of primary angle closure
suspect (PACS), 85 eyes of primary angle closure (PAC), and 90
eyes of primary angle closure glaucoma (PACG). The participant’s
demographics are shown in Table 1.

The first deep learning classifier was developed with 50,650
ACA images as a training set (34,705 open angle images and
15,945 static angle closure images), 11,291 ACA images as a
validation set (8,037 open angle and 3,254 static angle closure
images), and 10,884 ACA images as a test set (7,860 open angle
and 3,024 static angle closure images). To distinguish the static
angle closure and open angle based on ACA images, the first
deep learning classifier achieved an AUC of 0.990 (95% CI:
0.989–0.992) with a sensitivity of 0.9465 and specificity of 0.9533
(Figure 5).

The second deep learning classifier contained the training
set with 21,924 ACA images (10,140 appositional angle closure
images and 11,784 synechial angle closure images), validation
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FIGURE 2 | Each ACA image was first classified into an open angle or static angle closure. Then ACA images of the static angle closure were combined with

gonioscopy to be reclassified into appositional angle closure or synechial angle closure.

FIGURE 3 | The thumbnail view of the entire convolutional neural network (CNN) architecture.

FIGURE 4 | TIA250 was marked by an orange angle. (A) The ACA image showed TIA250 between 11 and 15 degrees. (B) The ACA image showed TIA250 >25

degrees.

set with 2,612 images (1,399 appositional angle closure images
and 1,213 synechial angle closure images), and test set with
2,475 images (1,282 appositional angle closure images and 1,193
synechial angle closure images). The performance of the second
deep learning classifier for detecting PAS achieved an AUC of
0.888 (95% CI: 0.876–0.900) with 82.7% sensitivity and 80.7%
specificity (Figure 6).

The test classifier was developed with 20,382 ACA images
(7,798 open angle and 12,785 static angle closure) as the training
set, and 4,320 ACA images (2,160 open angle and 2,160 static
angle closure) as the validation set. The test set 1 contained

2,866 ACA images with 1,807 open angle and 1,059 static
angle closure images; test set 2 contained 3,035 ACA images
with 1,218 open angle and 1,817 static angle closure images.
The AUCs for the test classifier detection of different widths
of open angle were 0.973 (95% CI: 0.972–0.975) in the test
set 1 (constructed by images with wider TIA250) and 0.963
(95% CI: 0.960–0.965) in the test set 2 (constructed by images
with narrower TIA250). The test set 1 showed a sensitivity
of 93.4% and specificity of 94.6% (Figure 7), while the test
set 2 showed a sensitivity of 92.9% and specificity of 87.7%
(Figure 8).
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TABLE 1 | Participants demographics.

Normal eyes PACS eyes PAC eyes PACG eyes

Number 164 112 80 83

Age (years) 59.37 ± 16.46 62.45 ± 7.94 59.75 ± 10.40 59.58 ± 12.60

Males (%) 76 (46.3%) 30 (26.8%) 27 (33.8%) 29 (34.9%)

Females (%) 88 (53.7%) 82 (73.2%) 53 (66.2%) 54 (65.1%)

FIGURE 5 | The test set performance for the detection of static angle closure

and open angle achieved an AUC of 0.990 with a sensitivity of 0.9465 and

specificity of 0.9533.

FIGURE 6 | The test set performance for the detection of PAS achieved an

AUC of 0.888 with 82.7% sensitivity and 80.7% specificity.

DISCUSSION

Medical artificial intelligence has been successfully applied to
the breast cancer diagnosis and classification of skin cancer
(18, 19). With an impressive learning ability and accuracy in

FIGURE 7 | The performance of test set 1 for the test classifier achieved an

AUC of 0.973 with a sensitivity of 93.4% and specificity of 94.6%.

FIGURE 8 | The performance of test set 2 for the test classifier achieved an

AUC of 0.963 with a sensitivity of 92.9% and specificity of 87.7%.

the interpretation of images, natural languages, and speech
processing (20), deep learning has been widely used for medical
image-based artificial intelligence (AI) research. Glaucoma AI
detection mainly utilizes color fundus photographs, fundus OCT,
visual field, and AS-OCT alone or together (10, 11). As is well-
known, if acute PACG is not treated in a timely fashion, it
can rapidly cause irreversible blindness (21). Therefore, the AI
detection of PACD should be focused on early detection as a basis
for treatment.

In this study, we successfully established a deep learning
system to identify the ACA status in terms of open angle,
appositional angle closure, and synechial angle closure based on
SS-OCT images. In contrast to the previous research on ACA AI
detection (13, 14), we focused on high accuracy detection of static
angle closure based on SS-COT images.
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Previous studies have used AS-OCT for angle closure
diagnosis. Fu et al. developed two angle closure detection
systems, one of which was a quantitative feature-based support
vector machine classifier and another was a deep learning
classifier with a VGG-16 network, based on a total of
41,35 Visante AS-OCT images (13). The former achieved an
AUC of 0.90 with a sensitivity of 79% and a specificity
of 87% while the latter achieved an AUC of 0.96 with a
sensitivity of 0.90 and a specificity of 0.92, demonstrating
better detection accuracy with deep learning than with the
linear support vector machine classifier. Xu et al. tested
multiclass convolutional network classifiers to automatically
detect the angle closure based on 4036 SS-OCT images (14) and
found that three CNN classifiers showed excellent performance
with AUC from 0.90 to 0.93. Recently, an Angle Closure
Evaluation Challenge provided a dataset containing 4,800 AS-
OCT images for several teams to develop AI classifiers (22).
Nine teams established different deep learning models for angle
closure detection which achieved AUCs from 0.9 to 0.96 with
sensitivities between 0.79 and 0.94 and specificities from 0.87
to 0.91.

The InceptionResnetV2 network, which achieved the highest
accuracy of image classification in the ImageNet Large Scale
Visual Recognition Challenge (16), is a modified InceptionV3
network and develops deeper neural networks by importing
the residual connection to obtain better performance. In the
present study, a test classifier based on the InceptionResnetV2
network was developed to discriminate different widths of
open angle and closed angle. In discrimination between static
angle closure and open angle with wider TIA250, this classifier
achieved an AUC of 0.973, and a slightly lower AUC of
0.963 was achieved for discrimination between static angle
closure detection and open angle with narrower TIA250. This
performance indicates that the differentiation between open
angle with narrower TIA250 and static angle closure is more
difficult than between open with wider TIA250 and closed
angles, but both showed that the network does work in different
situations. The training dataset was then increased to develop
the first deep learning classifier to discern open angle from the
static angle closure, the result of which was a very high AUC
of 0.990. Therefore, deep learning achieved reliable performance
in detecting the static angle closure based on AS-OCT images
but requires large sample sizes and deeper training to improve
its capability.

Although deep learning systems have helped to reliably detect
the static angle closure, it remains difficult to distinguish the
appositional angle closure from the synechial angle closure
based on static AS-OCT images. Therefore, the second deep
learning classifier based on the SS-OCT dataset combined with
dynamic gonioscopy as a reference standard was trained to
distinguish between the appositional and synechial angle closure
and achieved a moderate AUC of 0.888. Recently, another
study focused on classifying the appositional and synechial
angle closure. Hao et al. developed five traditional machine
classifiers and 13 CNN deep learning models based on 8,848
AS-OCT images collected in bright and dark environments (23).
In their study, the best result of traditional machine classifiers

was an AUC of 0.64, while all CNN deep learning models
achieved higher AUCs of up to 0.84. The results of Hao’s et
al. (23) research and the second deep learning classifier in our
study show that deep learning holds potential in measuring
PAS based on SS-OCT images. Additional datasets and model
training are required to develop a deep learning system to
reliably distinguish between the appositional and synechial angle
closure. In addition, we found that all heatmaps of these two
deep learning classifiers focused on the ACA (as figures showed
in Supplementary Materials), which were similar to previous
studies and supported that iridocorneal junction provided highly
discriminative structure features on the angle closure detection
(13, 14). However, we still could not identify the precise features
between the appositional angle closure and synechial angle
closure from heatmaps. So, further study is needed to learn
what enables deep learning classifiers to distinguish the different
statuses of ACA.

Our study has some limitations. The performance of the two
classifiers was within a research environment and may differ
when tested using real world datasets. Another limitation of our
study is that it included a Chinese sample, and the results may
not apply to the other population settings. Therefore, a multi-
center study with larger datasets and multiple devices is needed
to evaluate the generalizability and accuracy of the deep learning
system for ACA status detection.

In conclusion, we developed two deep learning classifiers
based on SS-OCT images, which showed excellent performance
in distinguishing gonioscopic angle closure from open
angles but moderate performance on the detection of
peripheral anterior synechiae. SS-OCT holds potential in
the evaluation of precise angle structure status so that it may
be used for screening high-risk glaucoma populations in
the future.
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