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Licorice, the dried root or stolon of Glycyrrhiza glabra or G. ularensis, is commonly

used worldwide as a food sweetener or crude drug. Its major ingredient is glycyrrhizin.

Hypokalemia or pseudoaldosteronism (PsA) is one of the most frequent side effects of

licorice intake. Glycyrrhizin metabolites inhibit type 2 11β-hydroxysteroid dehydrogenase

(11βHSD2), which decomposes cortisol into inactive cortisone in the distal nephron,

thereby inducing mineralocorticoid receptor activity. Among the several reported

glycyrrhizin-metabolites, 18β-glycyrrhetyl-3-O-sulfate is the major compound found in

humans after licorice consumption, followed by glycyrrhetinic acid. These metabolites

are highly bound to albumin in blood circulation and are predominantly excreted into bile

via multidrug resistance-associated protein 2 (Mrp2). High dosage and long-term use of

licorice are constitutional risk factors for PsA. Orally administered glycyrrhizin is effectively

hydrolyzed to glycyrrhetinic acid by the intestinal bacteria in constipated patients,

which enhances the bioavailability of glycyrrhizin metabolites. Under hypoalbuminemic

conditions, the unbound metabolite fractions can reach 11βHSD2 at the distal nephron.

Hyper direct-bilirubin could be a surrogate marker of Mrp2 dysfunction, which results

in metabolite accumulation. Older age is associated with reduced 11βHSD2 function,

and several concomitant medications, such as diuretics, have been reported to affect

the phenotype. This review summarizes several factors related to licorice-induced PsA,

including daily dosage, long-term use, constipation, hypoalbuminemia, hyper direct-

bilirubin, older age, and concomitant medications.
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INTRODUCTION

Licorice, the dried root or stolon of Glycyrrhiza glabra or G. ularensis, is commonly used as
a food sweetener or crude drug worldwide. Wide-range pharmaceutical effectiveness of licorice
includes anti-ulcer, anti-spasmodic, anti-inflammatory, anti-oxidative, anti-virus, anti-microbial,
anti-carcinogenic, and anti-androgenic properties (1). Pseudoaldosteronism (PsA) is, however,
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one of the most frequent side effects of licorice intake
and has been well described by Conn et al. (2). The
clinical presentation of PsA is similar to that of primary
aldosteronism and is characterized by peripheral edema,
hypertension, laboratory hypokalemia, and lower plasma renin
activity, due to the excessive action of mineralocorticoid
receptors. The mineralocorticoid receptor stabilizes epithelial
sodium channels on the apical side of the cortical collecting
duct principal cell, which increases sodium reabsorption,
corresponding to peripheral edema, hypertension, and lower
plasma renin activity (Figure 1), whereas potassium is excreted
as a cationic ion via the renal outer medullary potassium channel,
which results in hypokalemia and, in severe cases, myopathy
or arrhythmia (1). Most cases of licorice-induced PsA are self-
limiting and are resolved once licorice intake ceases, without any
specific treatment. However, some cases can progress to severe
hypokalemia and life-threatening arrhythmia (3).

PATHOPHYSIOLOGY OF
LICORICE-INDUCED PsA

Licorice contains glycyrrhizin (GL), a glycoside of glycyrrhetinic
acid (GA) containing two molecules of glucuronic acid. Licorice
has long been known to exert corticosteroid-like action, and
GL and GA are considered to cause PsA by binding to
mineralocorticoid receptors (2). However, their affinity for the
receptor is significantly lower than that of the original substrate,
aldosterone (4, 5), and the hypothesis that it acts by directly
binding to the receptor at the actual blood concentrations of
GL and GA is unrealistic (1). Furthermore, previous studies
found that licorice-induced PsA did not occur in patients and
animals with adrenal deficiency who had lower blood cortisol
levels (6–10).

Cortisol, an adrenocortical hormone, has the same affinity
for mineralocorticoid receptors as aldosterone; however, it
occurs at a higher concentration in the blood. Cortisol is
then decomposed by type 2 11β-hydroxysteroid dehydrogenase
(11βHSD2) in renal tubule cell cytoplasm into cortisone, which
has a lower affinity for the receptor (11), especially at the distal
nephron (12, 13) in the normal state. Inhibition of 11βHSD2
by GL metabolites, rather than direct binding of GL or its
metabolites to mineralocorticoid receptors was thus considered
as the mechanism of licorice-induced PsA (14–16). With GL
metabolites in the 11βHSD2-expressing cells, inhibition of
11βHSD2 results in a higher concentration of cortisol that binds
to and stimulates the mineralocorticoid receptor (Figure 1).
Therefore, the difference between primary aldosteronism and
PsA is the plasma aldosterone concentration, which is lower
in PsA and higher in primary aldosteronism. The aldosterone
concentration is suppressed by negative feedback in licorice-
induced PsA, even though aldosterone metabolism in the liver
could be suppressed by GL or GA (17).

There are several other causes of PsA, including enzymatic
defects in adrenal steroidogenesis (deficiency of 17α-hydroxylase
and 11β-hydroxylase), gain-of-function mutations in the
mineralocorticoid receptor (18), saturation of mineralocorticoid
receptor binding by cortisol (Cushing syndrome), alterations

in 11βHSD2 (syndrome of apparent mineralocorticoid excess),
and genetic alterations in sodium channel expression (Liddle
syndrome) or the sodium-chloride co-transporter (Gordon
syndrome) (19).

GL-METABOLITES THAT TRULY REACH
AND INHIBIT TYPE 2
11β-HYDROXYSTEROID
DEHYDROGENASE

When GL is administered orally, it cannot be absorbed in its
original form owing to its molecular structure, which contains
both hydrophobic and hydrophilic parts. Orally ingested GL
is hydrolyzed to GA by the intestinal bacteria (20–24), and
GA appears as the main metabolite in blood circulation (20).
Both GA and GL inhibit 11βHSD2 in vitro, but the inhibitory
activity of GA is approximately 200 times higher than that
of GL (15). Further, as GL does not appear in blood after
licorice ingestion, GA has been considered as the causative
agent for the onset of licorice-induced PsA that inhibits
11βHSD2 in humans. However, the plasma concentration of
3-monoglucuronyl glycyrrhetinic acid (3MGA) was reported
to be significantly higher in patients with hypokalemia than in
those with normokalemia and chronic hepatitis who had been
orally treated with GL for more than four weeks, even though
the plasma concentration of GA did not differ between the
two groups (25). When GL is injected intravenously into rats,
it is partially metabolized to 3MGA in the liver by lysosomal
β-D-glucuronidase, after which GL and 3MGA are excreted
with bile (26). Although 3MGA did not appear in the blood
circulation and urine of normal Sprague-Dawley rats that were
orally treated with GA, it was found in the blood and urine
of multidrug resistance-associated protein (Mrp) 2-deficient
Eisai hyperbilirubinuric rats (EHBR) (27). Both GA and 3MGA
have high affinity for albumin (28–31); however, only 3MGA is
the substrate of organic anion transporter (OAT) 1 and OAT3,
which are expressed at the basolateral membrane of renal tubular
epithelial cells (31). As a substrate of basolateral transporters,
3MGA is compatible with the intracellular space where 11βHSD2
is located, and is considered a causative agent of PsA. However,
3MGA has not been detected by mass spectrometry in humans
after licorice intake (32–34). Instead, we isolated and identified
22α-hydroxy-18β-glycyrrhetyl-3-O-sulfate-30-glucuronide
(compound 1), 22α-hydroxy-18β-glycyrrhetyl-3-O-sulfate
(compound 2), 18β-glycyrrhetyl-3-O-sulfate (compound 3,
GA3S), and 18β-glycyrrhetyl-3-O-sulfate-30-glucuronide
(compound 4) as other GL metabolites in the urine of EHBR
orally treated with GA (34–36). We also found that the blood
and urinary concentrations of these new metabolites were much
higher than those of 3MGA in EHBR orally treated with GA,
and that their pharmacokinetic behavior was similar to that of
3MGA (34, 35). In humans, GA3S was detected at the highest
concentration in the blood of patients with PsA who developed
rhabdomyolysis due to licorice (34). Further, there were no cases
where compound 1 was detected, while compound 2, GL, and
3MGA were rarely detected. The concentration of GA3S was still
the highest, followed by GA and compound 4 in the serum of
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FIGURE 1 | Molecular mechanism of licorice-induced pseudoaldosteronism. At the distal nephron, especially in the principal cells of the cortical collecting duct, type 2

11β-hydroxysteroid dehydrogenase (11β-HSD2) is inhibited by glycyrrhetinic acid-3-O-sulphate (GA3S) and possibly other metabolites, resulting in increased levels of

cortisol (F), with similar affinity to the mineralocorticoid receptor as that of for aldosterone. Mineralocorticoid receptors (MR) induce stabilization of epithelial sodium

channels (ENaC) on the apical side, which increases sodium reabsorption. This results in peripheral edema, hypertension, and lower plasma renin activity, whereas

potassium is excreted as a cationic ion via the renal outer medullary potassium channel. The unbound fraction of metabolites under hypoalbuminemia enables them to

efficiently reach 11β-HSD2. Older age is related to lower function of 11β-HSD2, and diuretics affect their phenotype. E, cortisone; AQP, aquaporin; ROMK, renal outer

medullary potassium channel; GA, glycyrrhetinic acid; OAT, organic anion transporter.

patients in a multicenter retrospective case series of milder PsA
(33, 36). Therefore, we considered GA3S to be the most likely
causative agent of PsA.

DIAGNOSIS OF LICORICE-INDUCED PsA

There is no concrete diagnostic criterion for licorice-induced
PsA, and diagnosis is purely based on the clinical presentation of
patients during licorice intake rather than by measuring the GL
metabolite accumulation in blood. Therefore, diagnosing PsA is
challenging, especially in mild cases. The serum concentrations
of GA3S, GA, and compound 4 were found to be negatively
correlated with serum potassium concentration, plasma renin
activity, and aldosterone concentration (33, 36). From these
results, it is suggested that such GL-metabolites could be used
as an objective laboratory marker of “licorice-induced” PsA,
and could be applied to the early detection and prevention of
licorice-induced PsA especially in high risk patients.

As it is difficult to diagnose PsA based only on physical
examination, including peripheral edema and hypertension,
laboratory testing of parameters such as potassium and
aldosterone levels is needed. The grade or occurrence of

peripheral edema and hypertension in patients who consumed
licorice did not correlate well with laboratory abnormalities, such
as hypokalemia, low renin activity, aldosterone concentration,
and GL metabolites (33, 36). Several studies have shown the
expression of mineralocorticoid receptor and 11βHSD1/2 in the
heart and arteries (37–39). Inhibition of 11βHSD2 resulted in an
increased contractile response to phenylephrine (40) and altered
endothelium-dependent relaxation of arteries due to decreased
endothelial nitric oxide and increased endothelin-1 (41). These
observations suggest that renal sodium reabsorption cannot fully
explain hypertension in licorice-induced PsA.

CLINICAL RISK FACTORS FOR
LICORICE-INDUCED PsA

Pharmacokinetics
Daily Dosage
The daily dosage of licorice is a reasonable risk factor for
licorice-induced PsA (42, 43). Of the 147 oral Kampo medicinal
products for ethical use in Japan, 109 (74%) contain extracts with
1.0–8.0 g licorice for daily dose. Their package inserts describe
hypertension, hypokalemia, arrhythmia, and rhabdomyolysis
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as adverse events of licorice-induced PsA. Kampo medicinal
products containing more than or equal to 2.5 g licorice daily
are contraindicated in patients with aldosteronism, myopathy,
or hypokalemia, and those containing <2.5 g licorice daily still
indicate these PsA-related conditions as potential side effects.
As 74% of Kampo medicinal products contain GL, the use of
multiple Kampo medicinal products can result in excessive GL
ingestion, especially if the medicines are prescribed in multiple
hospitals and clinics simultaneously.

Long-Term Use
Long-term use (>30 days) is also an important factor for
developing licorice-induced PsA and related symptoms. In
a retrospective cohort study, more than 80% of patients
developed licorice-induced PsA and related symptoms, including
hypokalemia in elderly patients (>60 years old) who received
shakuyakukanzoto, which contains 6.0 g licorice, for longer
than 30 days (44). This observation in the study is reasonable
as the inhibition of 11βHSD plateaued after 2 weeks of GL
ingestion (45).

Absorption

Constipation
When GL is administered orally, it is hydrolyzed to GA by the
intestinal bacteria (20) and then absorbed into blood (Figure 2).
GA3S, a sulfate conjugate of GA which is excreted via bile, is also
hydrolyzed to GA by the intestinal bacteria and is then partially
absorbed from the intestine into the blood circulation to exhibit
enterohepatic circulation. The unabsorbed portions of GA and
GA3S are then excreted in the feces. Thus, large individual
variations in the blood concentration of GA were found even
at the same dosage of GL or licorice. This variation may be
due to the difference in the activity of hydrolyzed GL in the
intestinal bacterial flora among the subjects. The hydrolyzation
ratio also depends on the residence time of GL in the intestinal
tract. The longer GL stays in the intestinal tract, the more it is
hydrolyzed by bacterial β-glucuronidase, resulting in a higher
serum concentration of GA (46).

Distribution
As GL metabolites are highly bound to serum albumin (>99.9%)
in blood circulation (47, 48), they are not excreted in urine
through glomerular filtration. However, they can be transported
from blood circulation into tubular cells via OAT1 and OAT3,
or other transporters and can participate in the inhibition of
intracellular 11βHSD2 as well as their unbound forms (33–35).
Hypoalbuminemia increases the unbound fraction of metabolites
in blood circulation (30), resulting in enhanced distribution into
principal cells where 11β-HSD2 is located (Figure 1). Therefore,
hypoalbuminemia may be an important risk factor for PsA.
Indeed, hypoalbuminemia has been identified as a risk factor in
patients receiving yokukansan, which contains 1.5 g of licorice
daily (49), as well as in other case series (50, 51).

Metabolism
To the best of our knowledge, there are no reports describing
an individual variety of primary or secondary metabolism of GA

in humans. We have previously reported that GA is conjugated
by human liver sulfotransferase 2A1 (dehydroepiandrosterone
sulfotransferase) into GA3S at C-3 (Figure 2). As serum
concentrations of GA and GA3S correlated well, regardless of
sex, sulfate conjugation is suggested to have a limited impact on
inter-individual variation in GA pharmacokinetics (33).

Excretion
When bile excretion of GA3S is suppressed due to Mrp2
dysfunction (Figure 2), GA3S is transferred into the blood
circulation. We have previously highlighted the involvement
of Mrp2 in the biliary excretion of GL metabolites in rats
(27, 34, 35) and possibly in humans (50, 51). GL metabolites
significantly accumulate in the EHBR (27, 34, 35). While this
phenomenon is still controversial in humans, we reported the
co-occurrence of hypokalemia and hyperbilirubinemia, which
could be a surrogate marker for MRP2 dysfunction in several
cases; further, hypokalemia was found to be more common in
patients with hyperbilirubinemia (50, 51). We consider hyper
direct-bilirubin as a rare risk factor for licorice-induced PsA
when compared with hypoalbuminemia, which is more common
in outpatient settings (51).

Other Factors
Age
Older age may affect several processes of GL metabolism, and
licorice-induced PsA is common in elderly patients (43, 52). As
age-dependent decrease in 11 βHSD2 activity in hypertensive
patients has been reported (53), alteration in enzyme activity in
aging is another risk factor for elderly subjects (Figure 1). In
addition, elevation of serum cortisol concentrations occur in
elderly whichmay be associated with decreased negative feedback
at the hippocampus related to decreased glucocorticoid receptor
concentration (54). This phenomenon could result in the
inhibition of 11βHSD2 and also explains why licorice-induced
PsA is common among elderly patients. To the best of our
knowledge, there is no case report of licorice-induced PsA in
pediatric patients meaning that licorice and GL is safe to use
in children.

Female Sex
Several other factors have been proposed as risk factors for
licorice-induced PsA, including female sex (55, 56), lower body
weight (43), and reduced body surface area (57), which have
not been well explained and might be confounding factors (52).
Theoretically, constipation is common in female patients, and
the higher dosage administered despite lower body weight and
surface area compared with that in male patients even with the
same daily dosage of licorice.

Concomitant Use of Medications
Concomitant use of medications, including antihypertensives,
especially thiazide, loop diuretics, aldosterone blockers,
angiotensin-converting enzyme inhibitors, and angiotensin
receptor blockers, affects the phenotype of PsA. For example,
concomitant use of potassium-losing diuretics increases the
risk of hypokalemia in patients treated with yokukansan, an
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FIGURE 2 | Pharmacokinetics of glycyrrhizin-metabolites. Licorice, the root or stolon of Glycyrrhiza glabra or G. ularensis, contains glycyrrhizin (GL), a glycoside of

glycyrrhetinic acid (GA) with two molecules of glucuronic acid. When GL is administered orally, it is hydrolyzed to GA by the intestinal bacteria and then absorbed into

blood circulation. GA in blood circulation is not excreted into the urine but is transferred into the liver, sulfated to GA-3-O-sulphate (GA3S) by sulfotransferase (SULT)

2A1, and excreted into bile via multidrug resistance-associated protein (MRP) 2. In humans, GA3S is detected at a higher concentration than GA. In the intestine,

GA3S is hydrolyzed to GA by the intestinal bacteria and is partially absorbed from the intestine into blood circulation to exhibits enterohepatic circulation, whereas the

unabsorbed portion of GA3S is excreted in the feces. Orally taken GL is effectively hydrolyzed to GA by intestinal bacteria in constipated patients, which enhances its

bioavailability. Hyper direct-bilirubin could thus be a surrogate marker of multidrug resistance-associated protein 2 dysfunction.

extract prepared with 1.5 g licorice (43, 49). Loop diuretics
block Na-K-2Cl cotransporters, and thiazides block Na-Cl
transporters in the distal nephron. Although these diuretics
can prevent peripheral edema and hypertension, they increase
intraductal flow into the collecting duct and stimulate sodium
reabsorption (58), which increases potassium excretion and
induces hypokalemia in patients taking licorice-containing
products. Systemic glucocorticoid use can also aggravate the
inhibition of 11βHSD2 that is similar to Cushing syndrome.

Conversely, potassium-sparing medications such as
aldosterone blockers, angiotensin-converting enzyme inhibitors,
and angiotensin receptor blockers prevent licorice-induced
hypokalemia. Concomitant use of these medications thus
hinders the early detection of licorice-induced PsA.

Dementia
Dementia also makes early detection of PsA difficult (43).
Therefore, medical specialists, including pharmacists and nurses,
should be aware of hypertension or peripheral edema in the
patient, even though these physical signs are not very sensitive
or specific for licorice-induced PsA.

CONCLUSIONS

We summarized the current understanding regarding the
pathophysiology of licorice-induced PsA and listed several
factors that affect the pharmacokinetics of GL metabolites,
including the daily dosage, dosing period, constipation,
hypoalbuminemia, and hyperdirect-bilirubin. Further, older
age and several concomitant medications are risk factors for
licorice-induced pseudoaldosteronism. Importantly, a deep
understanding of the crude drugs in Kampo preparations and
the pathophysiology of licorice-induced PsA is necessary for
the prevention and early diagnosis of PsA. Clinicians should be
aware of PsA and balance the merit and demerit of using licorice
or GL for therapy.
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