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/e discriminative spatial patterns (DSP) algorithm is a classical and effective feature extraction technique for decoding of
voluntary finger premovements from electroencephalography (EEG). As a purely data-driven subspace learning algorithm, DSP
essentially is a spatial-domain filter and does not make full use of the information in frequency domain. /e paper presents
multilinear discriminative spatial patterns (MDSP) to derive multiple interrelated lower dimensional discriminative subspaces of
low frequency movement-related cortical potential (MRCP). Experimental results on two finger movement tasks’ EEG datasets
demonstrate the effectiveness of the proposed MDSP method.

1. Introduction

/e core task of brain-computer interface (BCI) is to extract
specific useful components from complex electroencepha-
lography (EEG) signal. Currently, the commonly extracted
EEG components include event-related desynchronization/
synchronization (ERD/ERS) [1], steady-state visual evoked
potentials (SSVEPs) [2], event-related potentials (ERPs) [3],
and movement-related cortical potentials (MRCPs) [4].
Among them, MRCP is a slow negative shift that precedes
naturally voluntary movement or motor imaging. /is
negative shift contains two components, i.e., bereitschaft-
spotential (BP) and negativity slope (NS), respectively,
generating from 1-2 s and 0.4 s before movement [5]. Fur-
thermore, MRCP is low frequency signal [6] and always
submerged with the background noise. It, therefore, is
difficult to reconnoiter the signal.

/e detection of MRCP has been widely studied by BCI
researchers. Particularly, discriminative spatial patterns
(DSP) [7] are proposed to enhance the detection of MRCP

patterns. Geometrically, DSP aims to find discriminative
directions onto which projected scatters between any EEGs
are maximized, and meanwhile, projected scatters within
any EEGs are minimized [8]. However, most of the current
DSP-based methods analyze limited spatial information
while ignoring the inherent structure information of original
EEG signal.

In real world, the collected physiological signal usually
has some specialized structures and these structures are
usually in the form of tensors with second or higher order.
For example, an original EEG signal is a second-order
tensor, i.e., matrix, whose rows and columns represent
channels and time series, respectively. When time-frequency
analysis is performed on the signal, the third dimension
representing frequency information will be shown./us, the
data driven method which considers the underlying data
structure is required when analyzing real physiological
signal.

/is paper is motivated by the tensor algebra and tensor
subspace analysis [9–12]. In this work, the EEG data is firstly
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encoded as a tensor with second or higher order by con-
tinuous wavelet transform (CWT). /en, tensor-based
discriminant analysis theory is explored to optimize sub-
spaces algorithm. To uncover the underlying structures in
these problems for EEG analysis, this paper proposes the
multilinear discriminative spatial patterns (MDSP) as a
subspace learning method that includes classification.

In summary, our main contributions are as follows.
Firstly, we extend the DSP algorithm restricted to 2D data to
tensor objects of any order. Secondly, an iterative optimi-
zation method that alternately solves the problem of optimal
projection is customized for MDSP. Finally, against the
special form of features extracted by MDSP, we propose a
new tensor classification method based on nearest neigh-
bors. /e advantages of our MDSP algorithm are as follows:

(1) MDSP is a general multidimensional dimensionality
reduction method. Compared with traditional time-
frequency analysis methods, it can avoid the
undersample problem (the dimensionality of feature
is much larger than the number of training samples)
[13] by working on each order of the training tensors
separately.

(2) MDSP derives multiple interrelated lower dimen-
sional discriminative subspaces. /ese subspaces are
not independent of each other, which is in line with
the inherent structural characteristics of the actual
signal.

2. Related Work

/ere have been theoretical analyses that provide a multi-
linear supplement to linear algebra. And, the work of directly
using linear algebra is very common. Some such models
from [14, 15] propose that linear dimensionality reduction
approaches have been extended smoothly to multilinear
subspace reduction algorithms, following the principle of
multilinear algebra.

More neoterically, the joint solution of tensor and
hotspot technologies to solve specific problems has attracted
widespread attention. For instance, Makantasis et al. [16, 17]
presented a new model that trains the neural network by
tensor decomposition and significantly reduces the number
of samples required in hyperspectral image classification.
Meanwhile, common spatial patterns which are restricted to
2D data have also been extended to the hyperspectral image
of arbitrary order [18]. Regarding the problem of multiview
clustering, Wu et al. [19] firstly constructed a third-order
tensor by stacking similarity matrices from each view and
then captured the low-rank structure information by t-SVD
in the tensor space. Furthermore, they also attempted to
construct new multiview features from view-specific affinity
matrix by low-rank tensor learning [20].

Motivated by the significant performance of tensor in the
field of computer vision, an increasing number of brain
scientists have attempted to apply tensor to BCI community
[21, 22]. Zheng et al. [23] proposed a tensor-based multitask
learning method to assess human cognitive activities from
multiclass EEG signal. To overcome the limitations of noisy

and missing data of EEG, a tensor completion model is
designed [24], which utilizes tensor-based algorithms to
clean and complete data. Van Eyndhoven et al. [25] trained
multilinear subspace learning on multichannel EEG and
tested on a single channel, thus creating a real breakthrough
for practical application.

3. Methods

In this section, we present our tensor-based MDSP method.
Firstly, we briefly review the original DSP method. /en, we
introduce some concepts and definitions related with this
work to help understanding. Finally, the proposed MDSP
and classification extension based on tensor are presented
with detailed mathematical formulas.

3.1.Discriminative Spatial Patterns. Assume that Xi ∈ Rc×t is
the EEG signal of trial i with c as the number of channels and
t is the number of samples in time, yi ∈ 1, 2, . . . , p􏼈 􏼉 is the
class label of Xi, nj is the number of trials of class j, and
n � 􏽐

p
j�1 nj meaning the number of all trials. /us, the

within-class scatter matrix Sw and the between-class scatter
matrix Sb are defined as follows:

Sw � 􏽘

p

j�1
􏽘

i:yi�j

Xi − Mj􏼐 􏼑 Xi − Mj􏼐 􏼑
T
,

Sb � 􏽘

p

j�1
nj Mj − M􏼐 􏼑 Mj − M􏼐 􏼑

T
,

(1)

where Mj � (1/nj) 􏽐
nj

i:yi�j Xi means the average of class j

and M � (1/n) 􏽐
n
i�1 Xi means the average of all classes. DSP

attempts to seek a set of vectors U(U ∈ Rc×d, d≤ c) to
maximize the Fisher criterion given by

J(U) �
tr U

T
SbU􏼐 􏼑
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T
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where tr(.) denotes the operation of matrix trace. According
to the Lagrange multiplier method, U � (u1, u2, . . . , ud) can
be obtained by computing the equation Sbui � λiSwui. As a
result, U is the eigenvectors corresponding to the d biggest
eigenvalues of matrix S−1

w Sb. /us, the filtered feature
Fi ∈ Rd×t corresponding to Xi are given by

Fi � U
T

Xi − M( 􏼁. (3)

3.2. Multilinear Algebra. In this paper, we assume the bold
uppercase symbols represent tensor objects, for example,
X ∈ Rm1×m2×···×mh represents an h-order (also called h-mode)
tensor. Xi1 ,i2 ,...,ih

is the (i1, i2, . . . , ih)th element of X, where
1≤ i1 ≤m1, . . . , 1≤ ih ≤mh. Here, we first introduce two
definitions related to this article.

Definition 1 (mode-k unfolding or unfolding-matriciza-
tion). /e mode-k unfolding is the process of rearranging
the elements of a tensor (along the mode-k) to obtain a
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matrix. For an n-order tensor X ∈ Rm1×m2×···×mk×···×mh , the
mode-k unfolding of this is a matrix
X ∈ Rmk×(m1 ∗m2 ∗ ···∗mk−1 ∗mk+1 ∗ ···∗mh). /e operation of
mode-k unfolding is denoted as Xk⇐ kX.

Definition 2 (mode-k product). /e mode-k product of a
tensor X ∈ Rm1×m2×···×mk×···×mh and a matrix U ∈ Rmk×mk

′ is
denoted as F � X×kU, F ∈ Rm1×m2×···×mk

′×···×mh , where Fi1 ,

i2, . . . , ik−1, j, ik+1, . . . , ih � 􏽐
mk

i�1 Xi1 ,i2 ,...,ik−1 ,i,ik+1 ,...,ih
∗Ui,j, j �

1, 2, . . . , mk
′. To simplify the notation of multimode product

in this paper, we denote that X×1U1×2U2 · · · ×hUh �

X􏽑
h
d�1 ×dUd.

3.3. Multilinear Discriminative Spatial Patterns. As an im-
provement of DSP, MDSP utilizes multiple interrelated
subspaces which can collaborate to discriminate different
classes. Suppose that Xi ∈ Rm1×m2×···×mh is the EEG signal of
trial i; in this paper, h � 2 or 3. /e aim of MRCP is to find a
set of optimal projection matrices U1, U2, . . . , Uk, . . . , Uh

(Uk ∈ Rmk×mk
′
) that leads to the most accurate classification

in the projected tensor subspace, where

Fi � Xi 􏽙

h

d�1
×dUd, Fi ∈ R

m1′× m2′× ··· × mk
′× ··· × mh

′
. (4)

Similar to DSP, MDSP maximizes the between-class
scatter and, at the same time, minimizes the within-class
scatter measured in each optimal projection matrices. /at
is,

J Ud|
h
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Ud|hd�1
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2,

(5)

where Mj � (1/nj) 􏽐
nj

i:yi�j Xi is the average tensor of the
samples belonging to class j and M � (1/n) 􏽐

n
i�1 Xi is the

total average tensor of all the samples.
Equation (5) is equivalent to a high-order nonlinear

optimization problem with high-order nonlinear con-
straints. /erefore, there are dependencies between different
projection matrices to be sought, and it is difficult to find the
optimal solution. Consequently, we have to use an iterative
optimization method to alternately find the discriminant
subspace projection matrices MDSP need. In each iteration,
to seek the optimal projection matrix Uk, we assume that
other projection matrices U1, U2, . . . , Uk−1, Uk+1, . . . , Uh are
known. So, the optimization problem with high-order
nonlinear constraints with equation (5) is changed to

U
∗
k � argmax

Uk

􏽐
p
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h
d�1 ×dUd
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�����

�����
2. (6)

In equation (6), Uk is the only unknown variable. /us,
equation (6) aims to pursue the best projection matrices Uk,
which maximize the interclass scatter and, at the same time,
minimize the intraclass scatter just as the general DSP in

equation (2)./e entire iterative procedure ofMDSP is listed
in Algorithm 1.

3.4. Classification. After learning the best projection ma-
trices, a new high-dimensional sample X can be rewritten as
F through equation (4). /en, the class label of the new
sample is predicted by the average tensor of the closest
category, that is,

j
∗

� argmin
j

F − Mj×1U1 · · · ×hUh

�����

�����. (7)

4. Experiments

In this section, we evaluate the proposed approach for a
binary classification problem. /e objective of the experi-
ments is to detect two-class finger tapping activities (i.e., left/
right finger tapping) from the EEG signal. In our experi-
ments, the tensor-based scheme for finger tapping classifi-
cation is shown in Figure 1.

4.1. EEG Datasets. We handle the detection on two datasets
with the problem of two-class classification (i.e., left/right
finger tapping). We use EEG signal as input data. A brief
description of the two datasets is as follows.

Dataset IV< self-paced 1 s> of BCI competition II (also
called BCI competition 2003) [26] provided 416 trials of
500ms length, which were ended 130ms before
pressing a key, and only 316 trials were provided with
labels and were regarded as the training set. /erefore,
the remaining 100 trials without labels were regarded as
the testing set. /e EEG signals were recorded at
1000Hz and in a version down-sampled at 100Hz
(recommended) with a band-pass filter between 0.05
and 200Hz.
EEG data for voluntary finger tapping movement [27]
is from 14 healthy individuals. /e EEG signals were
recorded for three conditions of right finger tap, left
finger tap, and resting state (in this paper, we only focus
on right finger tap and left finger tap) with 19 channels
and sampling frequency of 1024Hz. /e dataset con-
sists of 40 trials of 6 s in length (−3 s to 3 s) for each
condition and each participant. /e dataset was shared
after preprocessing and artefacts removal using inde-
pendent component analysis. Figure 2 shows the av-
erage waveforms of EEG signals across trials of one
second of a subject.

4.2. Preprocessing. For both datasets, a low-pass fifth-order
Butterworth filter with cut-off frequency of 7Hz is applied to
obtain MRCPs samples. /en, we use the total segment
(−630ms to −130ms) and part segment (−330ms to
−130ms) before the motor movement for features extraction
in dataset 1. For dataset 2, the data were subsampled to
100Hz from the raw signals before filtering by a zero-phase
low-pass filter. Each EEG trial was segmented from −2 s to
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Input: a training set Χi, yi􏼈 􏼉 of EEG signals, Χi ∈ Rm1×m2×···×mh with the class label yi ∈ 1, 2, . . . , p􏼈 􏼉.
Output: the optimal projection matrices Uk ∈ Rmk×mk

′
|
h

k � 1
(1) initialize U1(t) � Im1 , U2(t) � Im2 , . . . , Uh(t) � Imh, (I means identity matrix).
(2) for t � 1, 2, ..., tmax do
(3) for k � 1, 2, . . . , h do
(4) Gj(t) � (Mj − M)×1U1(t) · · · ×k−1Ut−1(t)×k+1Uk+1(t − 1) · · · ×hUh(t − 1).
(5) Hi,j(t) � (Xi − Mj)×1U1(t) · · · ×k−1Ut−1(t)×k+1Uk+1(t − 1) · · · ×hUh(t − 1).
(6) Gk

j(t)⇐ kGj(t).
(7) Hk

i,j(t)⇐ kHi,j(t).
(8) Sb � 􏽐

p
j�1 nj[Gk

j(t)][Gk
j(t)]T.

(9) Sw � 􏽐
p
j�1 􏽐i:yi�j

[Hk
i,j(t)][Hk

i,j(t)]T.
(10) optimize Uk(t) through SbUk(t) � SwUk(t).
(11) if t > 2 and 􏽐

h
k�1 ‖((Uk(t) − Uk(t − 1))/(Uk(t − 1)))‖2 ≤∈ then

(12) U∗k � Uk(t).
(13) break
(14) end if
(15) end for
(16) end for

ALGORITHM 1: Training procedure of multilinear discriminative spatial patterns.
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Figure 1: /e schematic diagram for EEG classification with MDSP.
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0 s for subsequent analysis. /en, these trials were divided
into 0.5 s sliding window with 0.1 s overlap moving.

In this paper, we utilize CWT to reveal the change of
EEG signal in time and frequency domains. CWTmeasures
the similarity between the input signal and the basic signal
(also called mother wavelet). In the wavelet transform, we
select the complex Gaussian wavelet as mother wavelet and
preset the length of scale sequence as 10. /us, we obtain
EEG tensor representation which is three-order shape
representing the number of channels, time points, and steps
of frequency.

4.3. Parameters’ Selection. In this experiment, MDSP needs
to choose various parameters, namely, each number of filters
in interrelated discriminative subspace, and the start point of
the time window. For dataset 1, we seek the optimal pa-
rameter combination on the training set and evaluate on the
testing set like in the competition. For dataset 2, we choose
the optimal parameters by a 5 × 5-fold cross-validation
method on the EEG data of each subject.

Figure 3 reveals how different parameters affect the
whole process. From Figures 3(a)–3(o), it can be inferred
that 2–4 filters in each dimension achieve better results.
Redundant filters are insignificant for the experiment and
even add redundant information, thereby reducing accu-
racy. /is is consistent with the experience of selecting the
number of filters in other EEG-based subspace algorithms,
such as common spatial pattern (CSP) and DSP. Further-
more, Figure 3(p) presents the best time window (among
0.1–0.8 s before finger tapping), which is also coincident with
the time when the NS potential occurs.

Note that, the threshold ε is used to check convergence of
the iterative optimization procedures. /e mode-k con-
vergence error at iteration t is

errk(t) �
Uk(t) − Uk(t − 1)

Uk(t − 1)

��������

��������

2

. (8)

/us, the total convergence error is err(t) � 􏽐
h
k�1 errk(t).

/en, the algorithm is treated as convergence when err
(t)≤ ε, where ε � 0.01. /e maximum number of iteration
tmax is chosen to be 50 in our experiments.While the number
of iteration t≥ tmax, we think that the procedure on the
combination of projection subspace does not converge,
namely, filters in different subspaces cannot work well in
coordination. /us, we ignore the combination of
parameters.

4.4. Results and Discussion. Table 1 gives the results of the
three methods with the best parameters on different time
segments for the 100 testing trials. Here, MDSP is referred to
as MDSP (2D) and MDSP (3D) for problems with tensor of
second and third order, respectively. From Table 1, it is
observed that (1) MDSP, whether working on 2D or 3D
signals, significantly outperforms DSP in each experimental
trial. (2) For MDSP, the total segment 0.5 s yields better
result than part segment 0.2 s, which implies that MDSP is
insensitive to the choice of time periods.

Note that the recognition rates of most previous research
studies require better manual selections of time segments. In
our experiments, MDSP has better robustness to the time
segments and automatically selects the best time information
over a longer time segments, thereby reducing the influence
of manual selections. Besides, our experiments focus on only
low frequencies MRCP-based EEG classification (rather
than joint classification of MRCP and ERD-based) because
previous work has proven that MRCP can be well combined
with ERD in BCI [7,28].

Figure 4 shows the effect of the number of iterations for
MDSP on 2D and 3D signals while assuming that all tensor
modes have the same reduced dimensionality for simplicity
(mk
′|hk�1 � 4). Although the convergence of MDSP is not

guaranteed from the mathematical formula, Figure 4(a)
shows that the total error does not increase sharply after
a certain number of iterations on the excellent channel.
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Figure 2: /e average waveforms of EEG signals across trials of one second of a subject. (a) /e waveforms evoked by the right finger tap.
(b) /e waveforms evoked by the left finger tap.
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Figure 3: /e effect of different parameters on performance for MDSP. (a–o) /e effect of the number of filters, where figure (a) means
subject on dataset 1 and figures (b–o) mean subjects 1–14 on dataset 2, respectively. (p)/e effect of the start of time windows of subject 1–4
on dataset 2.
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Additionally, Figure 4(b) displays that MDSP provides a
stable classification accuracy as it approaches convergence.

Table 2 lists the results of five DSP-basedMRCP on dataset
IV, BCI competition II. Among them, RST is named regu-
larized spatial-temporal filter, combining DSP and regulari-
zation ideas. AST is named adaptive spatial-temporal filter,
computing a spatial filter automatically by Gaussian kernel and
linear ridge regression (LRR). PSTF is named pipeline of
spatial-temporal filter, combined by a series of systematic
approaches. Our result is equal to the best result. Furthermore,
MDSP considers the tensor form and can naturally combine
regularization terms to improve accuracy, just like RST.

Figure 5 is the boxplot of the classification obtained with
the three methods on the 14 subjects in dataset 2. /e
boxplot demonstrates that MDSP (3D) performs better than
MDSP (2D) and DSP, and MDSP (2D) is more stable than
DSP though they perform similarly on accuracy. From these,
we conclude that the collaboration of multiple subspaces can
greatly enhance the classification capability.

Statistical analysis was performed with one-way analysis
of variance (ANOVA) and a multiple comparisons procedure
was performed as a post hoc analysis [31]./e statistical results
demonstrated a statistically significant difference in the ac-
curacy for the three methods (p< 0.05). Moreover, the post
hoc analysis showed that MDSP (3D) had a significantly
greater accuracy thanMDSP (2D) andDSP (highest p< 0.05).

It implies that the subspaces derived from frequency-domain
have additional discrimination capability compared with time
domain and spatial domain.

4.5. Computational Cost. For original EEG signal X ∈ Rc×t,
the time complexity of the MDSP is O(c3 + t3) for each loop.
Specifically, Table 3 compares the time complexity and space
complexity of MDSP and DSP. Here, r is the number of
iterations that makes the MDSP optimization procedure
converge and f is the dimensionality of frequency after CWT.

More generally, for any an nth-order tensor
X ∈ Rm1×m2×···×mk×···×mh , the time complexity of the MDSP is
O(r(􏽐

n
i�i m3

i )) and the space complexity O(􏽐
n
i�i m2

i ). Al-
though the MDSP training procedure requires many loops
to converge, it is acceptable for ordinary computer

Table 1: Comparison (%) for the 100 testing trials with time segments of 0.2 s and 0.5 s.

Accuracy Precision Recall F1_score
0.5 s 0.2 s 0.5 s 0.2 s 0.5 s 0.2 s 0.5 s 0.2 s

DSP 67.0 72.0 66.0 69.1 67.3 77.6 66.6 73.1
MDSP (2D) 77.0 73.0 77.8 72.0 74.1 73.5 74.5 72.7
MDSP (3D) 79.0 75.0 80.4 76.1 75.5 71.4 77.9 73.7

Table 2: Comparison (%) of classification performance of five
studies of DSP-based MRCP.

Methods Accuracy
DSP 72
RST [29] 79
AST [29] 79
PSTF [30] 75
MDSP 79
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Figure 4: /e effect of the number of iterations on performance for MDSP. (a) /e total error versus the number of iterations. (b) /e best
accuracy versus the number of iterations.
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compared with traditional subspace methods, for example,
LDA with the time complexity of O(􏽑

h
i�1 m3

i ) and the space
complexity of O(􏽑

h
i�1 m2

i ).

5. Conclusions

In this paper, we proposed an effective feature extraction
method, calledMDSP, to seek a series of optimal interrelated
projections for discrimination in multiple lower dimen-
sional tensor subspaces. Compared with DSP, MDSP dis-
covers more useful discriminant information by
constructing multiple interrelated subspaces and thus has
better discrimination ability.
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[24] J. Solé-Casals, C. F. Caiafa, Q. Zhao, and A. Cichocki, “Brain-
computer interface with corrupted EEG data: a tensor
completion approach,” Cognitive Computation, vol. 10, no. 6,
pp. 1062–1074, 2018.

[25] S. Van Eyndhoven, M. Bousse, B. Hunyadi, L. De Lathauwer,
and S. Van Huffel, “Single-channel EEG classification by
multi-channel tensor subspace learning and regression,” in
Proceedings of the 2018 IEEE 28th International Workshop on
Machine Learning for Signal Processing (MLSP), pp. 1–6, IEEE,
Aalborg, Denmark, UK, September 2018.

[26] B. Blankertz, K.-R. Muller, G. Curio et al., “/e BCI com-
petition 2003: progress and perspectives in detection and
discrimination of EEG single trials,” IEEE Transactions on
Biomedical Engineering, vol. 51, no. 6, pp. 1044–1051, 2004.

[27] M. Wairagkar, EEG Data for Voluntary Finger Tapping
Movement, University of Reading Dataset, Whiteknights
Lake, UK, 2017.

[28] H. Wang and J. Xu, “Local discriminative spatial patterns for
movement-related potentials-based EEG classification,” Bio-
medical Signal Processing and Control, vol. 6, no. 4,
pp. 427–431, 2011.

[29] J. Lu, K. Xie, and D.-J. McFarland, “Adaptive spatio-temporal
filtering for movement related potentials in EEG-based
brain–computer interfaces,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 22, no. 4,
pp. 847–857, 2014.

[30] E. A. Zeid, A. R. Sereshkeh, and T. Chau, “A pipeline of spatio-
temporal filtering for predicting the laterality of self-initiated
fine movements from single trial readiness potentials,”
Journal of Neural Engineering, vol. 13, no. 6, 2016.

[31] X. Tang, W. Li, X. Li, W. Ma, and X. Dang, “Motor imagery
EEG recognition based on conditional optimization empirical
mode decomposition and multi-scale convolutional neural
network,” Expert Systems with Applications, vol. 149, 2020.

Computational Intelligence and Neuroscience 9


