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Abstract: The HECT (Homologous to the E6-AP Carboxyl Terminus)-family protein E6AP
(E6-associated protein), encoded by the UBE3A gene, is a multifaceted ubiquitin ligase that controls
diverse signaling pathways involved in cancer and neurological disorders. The oncogenic role of
E6AP in papillomavirus-induced cancers is well known, with its action to trigger p53 degradation in
complex with the E6 viral oncoprotein. However, the roles of E6AP in non-viral cancers remain poorly
defined. It is well established that loss-of-function alterations of the UBE3A gene cause Angelman
syndrome, a severe neurodevelopmental disorder with autosomal dominant inheritance modified
by genomic imprinting on chromosome 15q. Moreover, excess dosage of the UBE3A gene markedly
increases the penetrance of autism spectrum disorders, suggesting that the expression level of UBE3A
must be regulated tightly within a physiologically tolerated range during brain development. In this
review, current the knowledge about the substrates of E6AP-mediated ubiquitination and their
functions in cancer and neurological disorders is discussed, alongside with the ongoing efforts to
pharmacologically modulate this ubiquitin ligase as a promising therapeutic target.
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1. Introduction and E6AP Structure

Ubiquitination is a major posttranslational modification which governs the fates of modified protein
substrates, i.e., changes in stability, subcellular localization and enzymatic activities [1]. The multi-step
process of ubiquitination involves the activation, conjugation and ligation of a ubiquitin moiety
mediated by E1, E2, and E3 enzymes, respectively. E3 ligases play crucial roles in recruiting substrates
and they primarily determine substrate specificity [1]. Aberrant regulation of E3 ligases disrupts diverse
cellular functions such as cell cycle control, DNA damage response and cell death, and could shift the
balance towards oncogenesis [2]. The human genome encodes more than 600 E3 ligases, which are
classified into a few major families based on their structural similarities: RING (Really Interesting
New Gene), RBR (ring between ring), Ubox and HECT E3 ligases [3]. In this review, we focus on
one of the HECT E3 ligases, E6AP, which is also known as UBE3A and plays roles in oncogenesis,
neurodevelopmental disorders, and other human diseases [4].

HECT-E3s ubiquitinate their specific substrate in a two-step process. First, an HECT-E3 binds to
an E2 in complex with activated ubiquitin, leading to the formation of a thioester linkage between the
C-terminus of ubiquitin and the catalytic cysteine residue in the HECT domain. This transient complex
subsequently transfers ubiquitin to an interacting substrate with the formation of an isopeptide bond [5].
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Structurally, E6AP possesses a Zn2+-binding N-terminal (Amino-terminal Zn-finger of Ube3a Ligase
(AZUL)) domain and a catalytic HECT domain of ~350 amino acids at the C terminus (Figure 1a) [6].
A domain necessary for binding with the human papillomavirus (HPV) E6 oncoprotein is located
between the AZUL and HECT domains [7]. The AZUL domain is involved in substrate recruitment and
also self-inhibitory regulation [8]. Most mutations associated with the neurodevelopmental disorder
Angelman syndrome (AS) are found in the HECT domain, indicating that the loss of catalytic function
of E6AP causes AS [9]. Considering the human E6AP-UBCH7 complex crystal structure (1C4Z.pdb) [6],
we have extracted out the E6AP part by the Biopolymer module implemented in Tripos software
and highlighted AS-associated mutations and the catalytic Cys820 residue (Figure 1b). The N lobe
(labeled in magenta) binds to the specific E2 partner, UBE2L3/UbcH7. Many AS mutation sites
are located in the areas on both the C lobe (labeled in green) and N lobe surrounding Cys820,
while some mutations are found in the E2-binding region of the N lobe, e.g., Thr656 and Phe690 [10].
AS-linked missense mutations have also been reported in the AZUL domain [9,11], suggesting the
significance of the domain in catalytic regulation. Aside from its ubiquitin ligase function, E6AP also
acts as a transcriptional co-activator of steroid hormone receptors such as estrogen, progesterone and
androgen receptors (ER, PR and AR, respectively) [4,12,13]. E6AP contains a nuclear localization signal
that allows it to be localized to the nucleus, and three LxxL motifs, which are important for receptor
interaction [4,14,15]. The transactivating function of E6AP has been mapped to a region outside the
HECT domain (residues 170–680) [4].

Recent evidence suggests that E6AP exists in two conformational states of high and low
activity. While the potent activation of E6AP by E6 binding is well known, the binding with
HERC2, another HECT E3, also stimulates the activity of E6AP (Figure 1a) [16,17]. Mutations in
HERC2 which cause degradation of HERC2 have been associated with an AS-like syndrome.
Furthermore, protein kinase A-mediated phosphorylation of Thr485, which is located outside the HECT
domain, inhibits E6AP activity. An autism-linked missense mutation that disrupts this phosphorylation
site causes enhanced E6AP activity [18].
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Figure 1. E6AP domains and their therapeutic significance. (a) Domains in the primary sequence of 
E6AP protein. The numbers in parentheses indicate the corresponding amino acid residues of E6AP 
isoform 1 protein. The C-terminus of E6AP protein has the prototype Homologous to the E6-AP 
Carboxyl Terminus (HECT) domain. This domain has the E2-binding site and the catalytic center 
Cys820. E6-binding domain binds the HPV E6 oncoprotein. The Zn-binding Amino-terminal Zn-
finger of Ube3a Ligase (AZUL) domain is present at the N terminus. The HERC2-binding domain is 
required for the association with the partner HECT E3 HERC2. Small molecule inhibitors targeting 
the E6AP-E6 and E6-p53 interactions that disrupt the E6AP-E6-p53 complex are potential therapeutic 
strategies for human papillomavirus (HPV). Substitution of Phe727 by N-acetyl phenylalanine 
inhibits the oligomerization of E6AP essential for its activity. (b) Crystal structure of the HECT 
domain and the locations of Angelman syndrome (AS)-linked missense mutations. The N lobe is 
colored in magenta and the C lobe is colored in green. The catalytic Cys820 is labeled in red. 
Hereditary and de novo missense mutations found in the indicated amino acids are thought to be 
pathogenic in AS patients. The Biopolymer module of Tripos software was used to generate the figure, 
considering the E6AP part of 1C4z.pdb crystal structure. 
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which is a classic example of the downregulation of tumor suppressors by viral oncoproteins. E6AP 
has been studied for its involvement in not only viral oncogenesis but also non-viral oncogenesis [20–
23], as recently reviewed by Bandilovska et al. [24]. Here, we focus on the roles of diverse targets of 
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infection effectively targets the two major tumor suppressors p53 and Rb in epithelial cells, leading 
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Figure 1. E6AP domains and their therapeutic significance. (a) Domains in the primary sequence of
E6AP protein. The numbers in parentheses indicate the corresponding amino acid residues of E6AP
isoform 1 protein. The C-terminus of E6AP protein has the prototype Homologous to the E6-AP
Carboxyl Terminus (HECT) domain. This domain has the E2-binding site and the catalytic center
Cys820. E6-binding domain binds the HPV E6 oncoprotein. The Zn-binding Amino-terminal Zn-finger
of Ube3a Ligase (AZUL) domain is present at the N terminus. The HERC2-binding domain is required
for the association with the partner HECT E3 HERC2. Small molecule inhibitors targeting the E6AP-E6
and E6-p53 interactions that disrupt the E6AP-E6-p53 complex are potential therapeutic strategies
for human papillomavirus (HPV). Substitution of Phe727 by N-acetyl phenylalanine inhibits the
oligomerization of E6AP essential for its activity. (b) Crystal structure of the HECT domain and the
locations of Angelman syndrome (AS)-linked missense mutations. The N lobe is colored in magenta
and the C lobe is colored in green. The catalytic Cys820 is labeled in red. Hereditary and de novo
missense mutations found in the indicated amino acids are thought to be pathogenic in AS patients.
The Biopolymer module of Tripos software was used to generate the figure, considering the E6AP part
of 1C4z.pdb crystal structure.

2. E6AP in Cancer

The discovery of E6AP lends itself to the seminal finding that the human papillomavirus (HPV)
oncoprotein E6 mediates degradation of the tumor suppressor protein p53 by activating this E3 [19],
which is a classic example of the downregulation of tumor suppressors by viral oncoproteins. E6AP has
been studied for its involvement in not only viral oncogenesis but also non-viral oncogenesis [20–23],
as recently reviewed by Bandilovska et al. [24]. Here, we focus on the roles of diverse targets of E6AP
in various cancers, as summarized in Table 1.

2.1. HPV-Associated Cancers

HPV induces a variety of human cancers such as cervical and head and neck cancers.
The involvement of E6AP in viral oncogenesis was first established in HPV-associated cervical
cancer [19,25]. The HPV oncoprotein E6 hijacks the E3 activity of E6AP by acting as an allosteric
activator, and mediates polyubiquitination and the subsequent proteasomal degradation of p53 [19,26].
On the other hand, the HPV oncoprotein E7 binds to the tumor suppressor retinoblastoma protein
(Rb) and converts the associated E2F transcription factors from repressors to transactivators [27].
Thus, HPV infection effectively targets the two major tumor suppressors p53 and Rb in epithelial cells,
leading to malignant transformation and cancer development.
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2.2. HCV-Associated Cancers

Chronic inflammation from hepatitis C virus (HCV) infection leads to hepatocellular carcinoma [28].
E6AP promotes HCV-induced oncogenesis by mediating the proteasomal degradation of Rb protein.
The RNA-dependent RNA polymerase of HCV, non-structural protein 5B (NS5B), sequesters Rb in the
cytoplasm where E6AP ubiquitinates and degrades Rb [29]. E6AP also plays a role in antiviral defense
by ubiquitinating and degrading a core HCV protein [30]. In turn, HCV suppresses E6AP expression by
DNA methylation [31]. Thus, E6AP appears to activate antiviral defense, while it promotes oncogenic
transformation induced by HCV.

2.3. Cancers Associated with PML Downregulation

The tumor suppressor promyelocytic leukemia protein (PML) has been identified as a
ubiquitination target of E6AP. E6AP-mediated degradation of PML promotes tumorigenesis in
multiple types of cancer (Figure 2) [20,32]. PML was first identified as a gene fused with the retinoic acid
receptor (RAR) gene in acute promyelocytic leukemia patients with (15; 17) chromosomal translocation.
The fusion gene product suppresses the wild type tumor suppressor PML in a dominant negative
fashion [33,34]. Furthermore, perturbed regulation of PML has been found in a variety of cancers
without chromosomal translocations [35]. PML forms distinct structures in the nucleoplasm called the
PML-nuclear body (NB). PML-NB mediates post-translational modifications of a variety of proteins,
most notably conjugation with the ubiquitin-like protein Small Ubiquitin Like Modifiers (SUMO) [36].
The PML-NB clients regulate diverse cellular processes including gene transcription, DNA repair,
apoptosis, senescence, and anti-viral response (Figure 2) [32–35,37–50]. Among the well-studied
downstream effectors of PML are p53, Rb, signal transducer and activator of transcription 3 (STAT3)
and integrin subunit beta 1 (ITGB1) [38,44,47,49,50].
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Figure 2. E6AP ubiquitinates promyelocytic leukemia protein (PML) and leads to tumor progression.
PML causes tumor suppression by regulating cellular apoptosis [38], DNA damage response [42] and
cellular senescence [46,50]. It inhibits angiogenesis and cell migration [37,44,49]. E6AP-mediated
ubiquitination of PML leads to its proteasomal degradation and promotes tumorigenesis [38].
ATR-Ataxia telangiectasia and Rad3-related protein kinase, HIPK2-Homeodomain Interacting
Protein Kinase 2, TERT- telomerase reverse transcriptase, mTOR-mammalian target of rapamycin,
HIF-1-hypoxia inducible factor.
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2.3.1. Burkitt’s Lymphoma

Hyperactivation of the E3 ligase activity of E6AP is evident in Epstein–Barr virus-associated
Burkitt’s lymphoma. Approximately 60% of Burkitt’s lymphomas show downregulation of PML
expression correlated with high levels of E6AP [20]. Hemizygous disruption of the Ube3a gene
can attenuate murine B-cell lymphomagenesis driven by the Eµ (immunoglobulin enhancer)-Myc
transgene with concomitant upregulation of PML [20], recapitulating the oncogenic role of E6AP in
Burkitt’s lymphoma.

2.3.2. Prostate Cancer

E6AP functions as a transcriptional co-activator of AR, and plays an oncogenic role in prostate
glands [4,51]. E6AP expression is upregulated in a subset of prostate cancers. The oncogenic role
of E6AP in prostate cancer is also associated with ubiquitin-dependent degradation of the tumor
suppressor proteins PML and p27Kip1, which is characteristic in aggressive and late stages of prostate
cancer [21,52]. A recent study that evaluated the transcriptome-and proteome-wide effects of E6AP
knockdown identified new transcriptional and posttranscriptional targets of E6AP in prostate cancer [53].
Among the targets negatively regulated by E6AP is the stress-induced chaperone clusterin (CLU),
which may play a tumor-suppressive role in prostate cancer.

2.4. Non-Small Cell Lung Cancer

In non-small cell lung cancer (NSCLC), E6AP may exert a tumor suppressive function [22].
E6AP expression is decreased in ~20% of NSCLC tissues, which correlates with lower levels of the
cyclin-dependent kinase (CDK) inhibitor p16INK4A. E6AP binds to the transcription factor E2F1 as a
co-factor, repressing the expression of CDC6, a key transcriptional repressor of the INK4/ARF locus
encoding p16INK4A and p14ARF. Therefore, downregulation of E6AP in NSCLC results in the decrease
in p16INK4A expression. NSCLC patients with the characteristic of E6AP-low/CDC6-high/p16-low
exhibit reduced overall survival. Furthermore, this characteristic is associated also with KRAS
mutations in lung adenocarcinomas, implying a prognostic value of E6AP-low/CDC6-high/p16-low in
the adenocarcinoma subtype of NSCLC [22].

2.5. Breast Cancer

E6AP acts as a transcriptional co-activator, promoting the transactivation by ER-α and PR, as well
as AR [4]. E6AP could also ubiquitinate ER-α to target the receptor to proteasomal degradation [23].
In breast cancer, E6AP appears to play conflicting roles in promoting or suppressing cancer progression,
which may be associated with its dual functions. E6AP expression is modestly downregulated in
human invasive breast cancers, correlated with increased expression of ER-α and poorer prognosis
of patients [23,54]. Transgenic mice that overexpress wild-type E6AP in mammary tissues fail to
display any appreciable changes in morphology, while mice expressing a ligase-defective E6AP mutant
develop mammary hyperplasia with concomitant upregulation of ER-α and PR [54]. These data suggest
that, in mammary tissues, the E3 ligase activity of E6AP mostly plays a tumor-suppressive role by
triggering degradation of the oncogenic drivers ER-α and PR, and this action of E6AP overshadows
its potential oncogenic action as a co-activator. The significance of the control of ER-α levels at the
degradation step is supported by another study showing that E6AP and calmodulin reciprocally
control the stability of ER-α protein [55]. Breast cancer cell lines treated with a calmodulin antagonist,
CGS9343B, show enhanced binding of E6AP to ER-α and accelerated degradation of the receptor [55].
In addition to the steroid receptors, a few breast-cancer-related oncoproteins have been identified
to be substrates of E6AP-mediated ubiquitination. The steroid receptor co-activator oncogene AIB1
(amplified in breast cancer 1) is amplified and overexpressed in breast cancer [56–58]. Increased AIB1
expression is correlated with poor prognosis [59–61]. E6AP ubiquitinates and degrades AIB1 in breast
cancer cell lines [62]. E6AP also ubiquitinates and degrades Enolase1 (ENO1), a glycolytic enzyme [63].
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ENO1 expression is increased in breast cancer [64], which is likely to play a role in cancer-specific
alterations in energy metabolism, i.e., Warburg effects, and also in metastasis via enzymatic degradation
of extracellular matrix [65,66].

Table 1. E6AP Substrates in Cancer.

E6AP Substrate Associated Disorder Biological Role References

PML Burkitt’s Lymphoma,
Prostate Cancer

Tumor suppressor, controls numerous proteins in PML-NB,
induces cellular senescence [20,32]

p27 Prostate Cancer Cyclin-dependent kinase inhibitor, prevents progression
from G1 to S phase [21,67]

E2F1 NSCLC Transcription factor, transactivates cell cycle genes including
CDC6, whose product represses the INK4/ARF locus [22]

ER-α, PR Breast Cancer Steroid receptors/transcription factors, drive expression of
proliferative genes [13]

ENO 1 Breast Cancer Metabolic enzyme, controls energy metabolism and
extracellular matrix degradation [63]

AIBI Breast Cancer Oncoprotein, transcriptional co-activator of ER. [57]

p53 HPV related cancers Tumor suppressor, induces growth arrest and apoptosis [19,68]

Clusterin Prostate Cancer Stress induced chaperone protein, tumor suppressor [53]

HHR23A/RAD23A Breast, Lung Cancer Nucleotide excision repair protein [69]

3. E6AP in Neurological Disorders

E6AP/UBE3A is widely known for its involvement in neurodevelopmental disorders.
Genetic alterations in the UBE3A locus are linked with AS and chromosome 15q11.2–q13.3 duplication
syndrome (Dup15q) [70]. Identifying the neuronal substrates of E6AP is important to elucidate
the mechanism of neurological deficits in these disorders and develop effective treatments. Table 2
summarizes the E6AP targets that have been associated with neurological disorders.

3.1. Genetic Alterations in AS and ASD

UBE3A gene dosage is critical for neuronal development. Loss of neuronal UBE3A expression
results in AS, while increased dosage of the gene is associated tightly with autism spectrum disorders
(ASD) (Figure 3). The UBE3A locus on chromosome region 15q11-q13.1 is paternally imprinted in
neurons [70,71]. This is mediated at least partly by an antisense transcript UBE3A-ATS, which is
paternally expressed and silences UBE3A expression (Figure 4) [72]. Consequently, UBE3A is expressed
only from the maternal allele in normal neurons, and the loss of maternal UBE3A expression causes AS,
which is characterized by a cheerful demeanor, developmental delay, impaired speech and seizures.
On the other hand, increased copy numbers of UBE3A due to Dup15q markedly increase the penetrance
of ASD [73] (Figure 3).

3.2. Role of E6AP in Neuron Morphology, Synaptic Plasticity and Excitability

E6AP orchestrates a broad range of effects on neuron morphology and functions. Abnormalities in
neuron morphology are evident in AS. Abnormal dendritic spine length and polarization have been
reported in AS model mice [74,75]. X-linked inhibitor of apoptosis (XIAP) has been recently identified
as an E6AP target. XIAP is required for proper dendritic arborization. ASD-model transgenic mice
overexpressing E6AP in neurons exhibit lower expression of neuronal XIAP, leading to caspase
activation, microtubule degradation, and impaired spine maturation with less branching [76].
Learning and memory deficits are characteristic of AS. Altered synaptic plasticity and long-term
potentiation (LTP) defects in hippocampal neurons have been found in AS model mice [77].
Decreased synaptic plasticity is observed in the visual cortex of mice with monocular deprivation [78,79].
The activity-regulated, cytoskeleton-associated protein (ARC), an E6AP target, controls synaptic
function by promoting the internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
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acid (AMPA) receptors. Loss of E6AP expression in AS neurons results in an increase in ARC
expression and a concomitant decrease in synaptic AMPA receptors, implying a mechanism of synaptic
dysfunction in AS [80]. However, it is controversial whether ARC is actually a direct substrate of E6AP.
Another suggested mechanism is that E6AP negatively regulates ARC at the transcriptional level [81]
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The Small Conductance Potassium Channel (SK2) is also important for the induction of LTP and 
synaptic plasticity. SK2 has been shown to undergo E6AP-mediated ubiquitination. In response to N-
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to promote internalization of the channel. UBE3A-deficient AS model mice show higher levels of SK2 
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of E6AP, is a guanine nucleotide exchange factor (GEF) which activates RhoA. Degradation of Ephexin 
V promotes excitatory synapse development. Elevated levels of Ephexin V in AS neurons may lead to 

Figure 4. UBE3A-ATS as a mediator of genomic imprinting in neurons and as a therapeutic target.
UBE3A-ATS is a large transcript which initiates at the Prader-Willi syndrome imprinting center
(PWS-IC). The PWS-IC is not methylated (clear circles) in the paternal allele and allows the initiation of
transcription. The progression of transcription through UBE3A-ATS locus is responsible for the paternal
imprinting of UBE3A in neurons. UBE3A-ATS includes the protein-coding gene SNRPN and genes
encoding small nucleolar RNAs SNORD 116 and SNORD 115. Targeting UBE3A-ATS by topoisomerase
inhibitors, antisense oligonucleotides, artificial transcription repressor TAT-S1, or insertion of stop codon
UBE3AATS-STOP could restore UBE3A expression in AS neurons. The maternal PWS-IC is methylated
(dark circles) and the expression of UBE3A-AS is silenced.

The Small Conductance Potassium Channel (SK2) is also important for the induction of LTP and
synaptic plasticity. SK2 has been shown to undergo E6AP-mediated ubiquitination. In response to
N-methyl-D-aspartate (NMDA) receptor activation, SK2 channels are activated. E6AP ubiquitinates
SK2 to promote internalization of the channel. UBE3A-deficient AS model mice show higher levels
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of SK2 in the hippocampal neurons and decreased synaptic plasticity [82]. Ephexin V, an established
substrate of E6AP, is a guanine nucleotide exchange factor (GEF) which activates RhoA. Degradation of
Ephexin V promotes excitatory synapse development. Elevated levels of Ephexin V in AS neurons
may lead to defective synapse formation and cognitive impairment [83]. Epilepsy is present in 85%
of AS patients [84]. Altered excitatory/inhibitory balance has been reported in AS model mice which
display increased susceptibility to seizures [85,86]. Decreased GABA-ergic inhibitory input has been
found in UBE3A-deficient AS model mice [87], and treatment with GABA agonists reduces the seizure
susceptibility in those mice [88]. However, the E6AP targets that play key roles in controlling GABA
signaling remain to be determined.

Sleep disturbances are reported in 75% of AS patients [89]. Brain and Muscle ARNT-Like 1 (BMAL1)
is a clock protein critical to maintaining the circadian clock, and is a substrate of E6AP-mediated
ubiquitination [90]. UBE3A-deficient mice have elevated levels of BMAL1 accompanied by impaired
circadian rhythm [91].

It has been demonstrated that E6AP activates the Wnt signaling pathway with stabilization of
β-catenin [92]. Wnt signaling is critical for normal development and is implicated in the pathogenesis
of ASD [93,94]. TSC2, a negative regulator of mammalian target of rapamycin (mTOR), has been shown
to be a E6AP substrate [95]. mTOR dysregulation has been described in AS and ASD [96].

Among the targets of E6AP that are controlled at the transcriptional level are the E3 ligase
Ring1B [97]. It interacts with the polycomb group repressor complex and ubiquitinates histone H2A to
impact on global gene expression. UBE3A-deficient mice exhibit increased levels of Ring1B and H2A in
cerebellar purkinje neurons, suggesting its involvement in the development of AS neuronal deficits.

E6AP also activates the transcription of the ESR2 gene encoding ER-β [98]. ESR2 is involved
in brain development, while it also plays a neuroprotective role against neurodegenerative insults.
The role of ESR2 in the development and progression of Alzheimer ’s disease (AD) has been well
accepted [99,100]. ESR2 is important for synaptic plasticity and LTP via its regulation of brain-derived
neurotrophic factor (BDNF) [101,102]. Overexpression of ESR2 in a rat model of AD reduced amyloid-β
deposition in the hippocampus and improved the learning and memory of AD rats [99].

26S subunit, non-ATPase 4 (PSMD4), is a subunit of the 26S proteasome and an E6AP substrate [103].
The ubiquitination and degradation of PSMD4 may hamper proteasomal degradation of many cellular
proteins and exert broad-spectrum effects on the proteostasis in neurons. A recent study showed that
PSMD4 binds to the AZUL domain of E6AP and is necessary for its nuclear localization. This study
suggested the nuclear form of E6AP plays an important role in neurodevelopment [104].

Xu et al., identified ALDH1A2, the rate-limiting enzyme of retinoic acid synthesis to be
negatively regulated by E6AP. RA-mediated synaptic plasticity is altered with excessive UBE3A
dosage. Administration of an RA antagonist or overexpression of UBE3A recapitulated the synaptic
defects in ASD, while these defects were rescued by administration of RA [105].

A recent study identified phosphotyrosyl phosphatase activator (PTPA), an activator of protein
phosphatase 2A (PP2A), as a substrate of E6AP-mediated ubiquitination [106]. Neurons in the AS model
mice exhibit increases in PTPA levels and PP2A activity. Hemizygous knockout of the Ptpa gene or
pharmacological inhibition of PP2A can ameliorate the defects in dendritic spine maturation of the AS
model neurons, suggesting the significance of the E6AP-PTPA-PP2A pathway in AS pathophysiology.

Table 2. E6AP Substrates in Neurological Disorders.

Substrates Associated
Neurological Disorder Biological Role References

ARC AS Causes internalization of AMPA receptors at synapse.
Important for synaptic plasticity [80,81,107,108]

BMAL1 Tuberous Sclerosis A clock protein critical to maintain the circadian clock under
the control by the mTOR pathway [90]

TSC2 Tuberous Sclerosis Negative regulator of mTOR pathway, tumor suppressor. [95,96]

Ring1B AS Ubiquitinates histone H2A. May affect global gene expression [97]
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Table 2. Cont.

Substrates Associated
Neurological Disorder Biological Role References

ESR2/ER-β Alzheimer’s Disease Increase LTP and enhances synaptic strength [98,109,110]

Ephexin V AS RhoA GEF, important for excitatory synapse development [83]

Peroxiredoxin1 Alzheimer’s Disease Antioxidant enzyme, protects from oxidative damage [111–115]

SK2 AS, ASD LTP and synaptic plasticity [82,116]

XIAP ASD Required for dendritic arborization, suppresses caspase
activation and microtubule degradation [76,117–119]

PSMD4 AS Subunit of 26S proteasome, controls global proteostasis.
Interacts with the AZUL domain of UBE3A [103]

β-catenin ASD, AS Transcription factor and canonical mediator of Wnt signaling [92]

ALDH1A2 ASD Rate limiting enzyme in RA synthesis [105]

P18 ASD Subunit of Ragulator complex [120]

PTPA AS Activator of PP2A and controls dendritic spine morphology [106]

4. Therapeutic Approaches to Target E6AP and Downstream Effectors

4.1. Challenges in Identifying HECT E3 Inhibitors

HECT E3 ligases are attractive therapeutic targets because of their involvement in a variety of
human diseases. However, the efforts to develop small molecule inhibitors of HECT E3s are still in
their infancy. The complexity of ubiquitination reactions and weak interactions between E3s and their
substrates pose a challenge in identifying inhibitors of HECT E3s by high-throughput screens [121,122].
Small molecule screens have been performed successfully for classical targets such as kinases, proteases,
G-protein coupled receptors (GPCRs), ion channels, and nuclear receptors, which typically possess
well-defined small-molecule binding pockets. Several small-molecule inhibitors of RBR and RING
E3 ligases have been published, including the inhibitors of HOIP, VHL, WWP2 and RNF4 [123–129].
However, small-molecule binding pockets in HECT E3s have been poorly defined. Detailed analysis
of three-dimensional structures of the HECT domain and mutational analyses will facilitate the
development of high-affinity, small-molecule modulators. Here, therapeutic strategies specific to E6AP
are discussed, targeting its E3 ligase and co-activator functions.

4.2. Therapeutic Strategies for HPV-Induced Cancers

HPV-induced cancers are still highly prevalent. Although the HPV vaccines have been widely
introduced, it will take decades for their preventive effects against cancers to become dominant.
Thus, target-based therapies against HPV-induced cancers are still in critical need. Disruption of the
E6AP–E6-p53 complex serves as an attractive therapeutic target, as it would ultimately re-activate p53,
leading to growth arrest and apoptosis of HPV-transformed cells.

The crystal structure of E6AP-E6-p53 ternary complex was identified by Zapien et al. [130].
This structure provides a framework for the design of inhibitory therapeutic strategies against E6-E6AP
and E6-p53 interfaces (Figure 1a). A recent study demonstrated that the binding with E6 causes a
conformational change in E6AP structure, which facilitates the binding of p53 in close proximity to
the catalytic center of E6AP [131], providing further insight into the mechanism of E6AP activation.
There have been multiple small molecule approaches for targeting the E6-p53 and E6AP-E6 interfaces
as well as for inhibiting the E3 ligase activity of E6AP, as discussed below.

Mutagenesis of critical residues at the E6–p53 interface abrogates p53 degradation. According to
the structural model, p53 is bound on a cleft spanning both the N-terminal and C-terminal
domains of E6 [130]. N-terminal residues of E6 that are located in the central region of the
p53-binding cleft, i.e., Asp44, Phe47 and Asp49, play a critical role in this interaction and are
highly conserved among high-risk mucosal HPV genotypes [130]. Given the importance of this
region in HPV-induced oncogenesis, this interface has become an attractive target for small molecule
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development. Compound 12 has been identified as an inhibitor of the E6-p53 interaction that can
reduce the viability and proliferation of HPV-positive cells [132].

The LxxLL-containing alpha helix of E6AP within the HECT domain binds to a hydrophobic
binding groove in E6 [133]. This binding pocket offers a favorable niche for small molecules.
Flavanoid compounds, Luteolin and CAF024, which mimic leucines in the conserved alpha helical
motif of E6AP have been found to inhibit the E6–E6AP interaction [134]. Molecular modelling and
simulation studies have revealed some additional inhibitors of the E6–E6AP interaction [135]. It has
been demonstrated that the space between the two Zinc finger domains of E6 constitutes the LxxLL
binding pocket [136]. Beerheide et al., identified compounds that eject Zn specifically from E6 and
disrupt the E6–E6AP interaction. One such compound, 4,4′-dithiodimorpholine, reduced the viability
of tumorigenic HPV cells with p53 upregulation.

Other approaches to inhibit E6 activity include peptides that interact with the E6AP-binding
groove [137]. Intracellular antibodies or “Intrabodies” have also been shown to inhibit the growth
of HPV-positive cancer cells [138]. However, the large size and complex structure of intracellular
antibodies is a limitation in successful drug development [139].

Biochemical and structural analyses of E6AP have shown that the fully active form of E6AP is a
trimer, and E6 oncoprotein promotes the trimerization. The interaction between the Phe727 residue in
the HECT domain of E6AP and a hydrophobic pocket of E6 is critical to the formation of this trimer.
N-acetyl phenylalanine blocks E6AP trimerization by substituting Phe727 and inhibits its E3 activity
at a high concentration (Ki = 12 mM) [8]. Another approach using compounds mimicking natural
products to inhibit the E3 ligase activity of E6AP has been described. Macrocyclic N-methyl peptide
inhibitor, CM11-1, can inhibit E6AP activity to catalyze ubiquitination of Prx1 and p53 [9].

4.3. Targeting UBE3A in Neurodevelopmental Disorders

Current therapies for AS are only directed toward mitigating symptoms, such as anti-seizure
medications and physical therapies. There have been multiple approaches to develop mechanism-based
therapies for AS (Figure 4).

4.3.1. Approaches to Target UBE3A-ATS

Efforts have been ongoing to reverse the paternal silencing of UBE3A in AS with mutations or
deletions on the maternal allele. Several topoisomerase inhibitors, including topotecan, have been
demonstrated to inhibit the transcription of the nuclear-localized long non-coding RNA Ube3A-ATS
and allow the expression of UBE3A from the paternal allele [140]. Although the pleiotropic effects of
topotecan that inhibit the transcription of many other synaptic genes is a concern [141,142], the observed
effects of topoisomerase inhibitors on UBE3A regulation are encouraging for the future development
of drugs that can unleash expression of the imprinted UBE3A allele.

Antisense oligonucleotides (ASO) offer an approach for gene therapies with high specificity, while
the delivery of nucleotides remains challenging. ASO targeting Ube3a-ATS can effectively unsilence
the paternal UBE3A allele in neurons, and ameliorate some cognitive deficits (e.g., “freezing”) in AS
model mice. However, the ASO shows no effects on other behavioral defects [143]. Recently, the FDA
granted the Orphan Drug designation for the UBE3A-ATS-targeting oligonucleotides to facilitate
drug development.

An alternate approach to unsilence the paternal allele was to provide dietary supplements of
methionine to increase methylation, thereby repressing the transcript which includes UBE3A ATS.
However, two clinical trials with methionine supplementation reported no significant difference in
the clinical outcome between the control and the treatment groups [144,145]. Forced activation of the
UBE3A promoter or repression of UBE3A-ATS using artificial transcription factors is another feasible
strategy. An artificial transcription factor, TAT-S1, which represses the locus encoding UBE3A-ATS,
has been shown to increase Ube3a expression throughout the brain of AS model mice [146].
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4.3.2. Therapeutic Interventions of Downstream Effectors

Several experimental studies evaluated the effects of therapeutic interventions of effectors
downstream of UBE3A in AS models. Reducing the expression levels of ARC alleviated audiogenic
seizures in Ube3a-deficient mice, whereas there were no observed changes in motor deficit or ultrasonic
vocalizations [108]. Excessive inhibitory phosphorylation of calmodulin-dependent protein kinase
II (CAMKII) has been implicated for impaired synaptic plasticity in AS [147]. Levodopa can prevent
the CAMKII phosphorylation and reduce the seizure propensity and deficits in motor performance,
hippocampal learning and plasticity in the AS model mice [148]. A clinical trial of Levodopa for AS is
on-going, and its data are awaited (NCT01281475). Ampakines, the modulators of AMPA receptors,
have been shown to increase BDNF release and improve hippocampus-dependent learning behavior
in AS model mice, suggesting their potential to alleviate LTP in AS. Blocking SK2 channels may also
improve LTP, memory and learning behavior and restored activity dependent on actin polymerization.
Systemic injection of a SK2 channel blocker has been shown to restore fear conditioning in the
AS model [82,116,149]. The significance of the mTOR pathway in brain development and synaptic
plasticity has been well established [96,150]. Hyperactivation of mTORC1 and hypoactivation of
mTORC2 in UBE3A-deficient mice is apparently associated with motor dysfunction and deficits in LTP,
fear conditioning and memory, which could be restored by the mTORC1 inhibitor Rapamycin as well
as the mTORC2 activator A-443654 [151].

It has been shown that E6AP regulates mTORC1 signaling by targeting p18, a subunit of the
Ragulator complex [120]. Hyperactivation of mTORC1 is also observed in ASD associated with
mutations in genes upstream of mTOR, e.g., tuberous sclerosis complex (TSC), fragile X syndrome,
and neurofibromatosis. Rapamycin has been shown to be effective for ASD associated with PTEN
mutations, as well as for the ASD model mice [150,152].

5. Concluding Remarks

Therapeutic targeting of E3 ligases requires a multi-faceted approach including comprehensive
profiling of the ubiquitination substrates, thorough analyses of the enzyme structures and efficient
development of small molecule modulators. In this review, we have discussed the roles of
E6AP/UBE3A in the pathophysiology of cancers and neurodevelopmental disorders, and highlighted
the E6AP-substrate interactions and downstream pathways that could be therapeutic targets.
With the development of novel substrate profiling technologies such as Orthogonal Ubiquitin
Transfer [153], more information about previously undefined E6AP substrates is expected soon.
While proteasome inhibitors are widely used in clinic [154–157], small molecules targeting E3 ligases
are still in developmental or preclinical phases. Novel screening technologies will further build the
avenue to therapeutic discoveries, such as activity-based probes, high-throughput crystallography,
and sophisticated uses of mass spectrometry. In addition to inhibitors of E3 activities or protein–protein
interactions, the promising techniques of targeted protein degradation, such as proteolysis targeting
chimeras (PROTACs) and specific and nongenetic IAP-dependent protein erasers (SNIPER) [158–160],
will widen the strategies to target the ubiquitination system in human diseases.
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