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Abstract

Recently, microRNAs (miRNAs) are confirmed to be important molecules within many crucial biological processes and therefore related to vari-
ous complex human diseases. However, previous methods of predicting miRNA–disease associations have their own deficiencies. Under this
circumstance, we developed a prediction method called deep representations-based miRNA–disease association (DRMDA) prediction. The orig-
inal miRNA–disease association data were extracted from HDMM database. Meanwhile, stacked auto-encoder, greedy layer-wise unsupervised
pre-training algorithm and support vector machine were implemented to predict potential associations. We compared DRMDA with five previ-
ous classical prediction models (HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA) in global leave-one-out cross-validation (LOOCV), local
LOOCV and fivefold cross-validation, respectively. The AUCs achieved by DRMDA were 0.9177, 08339 and 0.9156 � 0.0006 in the three tests
above, respectively. In further case studies, we predicted the top 50 potential miRNAs for colon neoplasms, lymphoma and prostate neoplasms,
and 88%, 90% and 86% of the predicted miRNA can be verified by experimental evidence, respectively. In conclusion, DRMDA is a promising
prediction method which could identify potential and novel miRNA–disease associations.
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Introduction

MicroRNAs (miRNA) are a group of short non-coding RNAs (20–
25 nt) having important influence on post-transcription level of gene
expression. They bind to the 30 untranslated regions (UTRs) and
repress target mRNA translation [1–3]. However, they can also up-
regulate gene expression in some situations. Recently, more and
more evidence attach miRNAs with various human diseases [4]. For
instance, mir-340 inhibited breast cancer cell migration and invasion
through targeting oncoprotein c-Met [5]. Also, by targeting Cdc42
and Cdk6, miR-137 inhibited the proliferation of lung cancer cells [6].
What is more, miR-211 promoted the progression of head and neck
carcinomas by targeting TGFbeta R2 [7]. Therefore, predicting dis-
ease-related miRNAs can promote biomarker identification, disease
treatment and prevention [8]. Also, the number of discovered miRNA
accumulated quickly during the past 20 years [9–11]. From the

above, we can come to the conclusion that miRNA–disease associa-
tion prediction becomes important and requires the help of computa-
tional methods [12].

Inspired by computational methods associating biomolecules with
diseases [13–15], lots of computational models were established to
predict miRNA–disease association, based on the assumption that
miRNAs with similar functions are more likely to be associated with
diseases with similar phonotypes [16, 17]. Jiang et al. [18] built a
hypergeometric distribution-based model on the basis of disease phe-
notype similarity network, miRNA functional similarity network and
known human disease–miRNA association network to identify
unknown miRNA–disease associations. However, the model mostly
relied on neighbour miRNA data, which greatly reduced its prediction
accuracy. Later, Shi et al. [19] proposed a computational model using
random walk algorithm on protein–protein interaction (PPI) network
to predict new miRNA–disease associations. This model was based
on the idea that one miRNA was more likely to be associated with a
certain disease when it targeted genes which were related to that dis-
ease. In this way, they integrated PPI network, gene–disease associa-
tions and miRNA-target interactions together to predict novel

#The authors wish it to be known that in their opinion, the first two

authors should be regarded as joint first authors.
*Correspondence to: Prof. Xing Chen

E-mail: xingchen@cumt.edu.cn

ª 2017 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

doi: 10.1111/jcmm.13336

J. Cell. Mol. Med. Vol 22, No 1, 2018 pp. 472-485

http://orcid.org/0000-0001-9028-5342
http://orcid.org/0000-0001-9028-5342
http://creativecommons.org/licenses/by/4.0/


miRNA–disease associations. Mork et al. [20] took protein into con-
sideration and presented miRPD method. In this method, with the
help of protein–disease interactions and protein–miRNA interactions,
both potential miRNAs and proteins associated with diseases can be
predicted. Xu et al. [21] introduced a miRNA prioritization approach
which could perform without known miRNA–disease associations.
Instead of using known associations, they estimated the similarity
between the targets of miRNAs and disease genes to identify potential
associations. Nevertheless, all the models listed in this paragraph had
the same limitation. They used miRNA–target interactions with high
false-positive and false-negative samples, which could significantly
reduce the prediction accuracy.

Based on the idea that similar miRNAs are more likely to be asso-
ciated with similar diseases and vice versa, some other computational
models without using miRNA–target interactions were proposed.
Xuan et al. [22] introduced an HDMP model which calculated the
miRNA–disease associations according to functional similarity of dis-
ease-related miRNA’s k most similar neighbours. Differ from previous
studies, higher weight was assigned to miRNAs in the same cluster
when calculating the miRNA functional similarity matrix as they are
more likely to be associated with similar diseases. This similarity
matrix was an integration of known miRNA–disease associations, dis-
ease phenotype similarity and disease semantic similarity based on
disease term content. However, this property becomes a deficiency
when applied to new diseases without any known related miRNAs and
makes HDMP useless under this circumstance. Despite of that,
HDMP is based on a local similarity measure rather than a global sim-
ilarity measure which has higher efficiency. Chen et al. [23] presented
a model based on global network similarity called RWRMDA, which
predicted miRNA–disease associations according to integrated infor-
mation of miRNA–miRNA functional similarity and known miRNA–
disease associations. The transformation from local similarity
measures to global similarity measures was the most important pro-
gression of RWRMDA. Although it performed better than former stud-
ies, RWRMDA fails to predict when facing new diseases with no
related miRNAs. After adding Gaussian interaction profile kernel simi-
larity into the algorithm, Chen et al. [24] proposed another model
called WBSMDA. WBSMDA combined miRNA functional similarity, dis-
ease semantic similarity, miRNA–disease associations and Gaussian
interaction profile kernel similarity for miRNAs and diseases to obtain
potential disease–miRNA association. One shining point of WDSMDA
is its capability of predicting related miRNAs for new diseases without
known related miRNAs and related diseases for new miRNAs without
known related diseases. To improve the previous algorithm, Chen et al.
[25] introduced a model named HGIMDA. In this model, the miRNA
functional similarity network of HGIMDA was a combination of miRNA
functional similarity network and Gaussian interaction profile kernel
similarities for miRNAs. Also, HGIMDA’s disease similarity network
was obtained in a similar way. In this way, the potential association
between a disease and a miRNA could be inferred from an iterative
equation which combined disease similarity network, miRNA functional
similarity network and known miRNA–disease interaction. HGIMDA’s
good prediction performance had been verified.

Machine learning was used in several studies to predict novel
miRNA–disease associations. For example, Xu et al. [26] built a

miRNA–target-dysregulated network (MTDN) which combined
miRNA–target interactions and expression profiles of miRNAs and
mRNAs. To deal with features extracted from information, support
vector machine (SVM) classifier was implemented to separate
positive miRNA–disease associations and negative ones in MTDN.
However, the difficulty in obtaining negative miRNA–disease asso-
ciations nowadays seriously decreases the accuracy when using
the SVM classifier. Chen et al. [27] proposed a computational
model called RLSMDA based on semi-supervised learning, which
calculated the semantic similarity between different diseases.
RLSMDA is capable of predicting novel miRNA–disease associa-
tions and overcomes the problem of using negative associations
between miRNAs and diseases. However, RLSMDA has difficulty
in optimizing parameters and combining the classifiers from
miRNA space and disease space together. Chen et al. [28] pre-
sented another method, RBMMMDA, based on restricted Boltz-
mann machine (RBM). RBM consists of layers of visible and
hidden units and predicts miRNA–disease association types. When
compared to previous methods, RBMMMDA’s merit is that both
new miRNA–disease associations and corresponding association
types can be obtained. The trouble of RBMMMDA is that complex
parameters are too difficult to learn.

In this study, we developed an efficient computational model
called deep representations-based miRNA–disease association
(DRMDA) prediction. The motivation of this method was to find
out the deep representation under the surface of disease semantic
similarity, miRNA functional similarity and known miRNA–disease
association. After deep representation, some noise within unpro-
cessed data can be eliminated while features about association
can be clearly presented. In this model, we built a stacked auto-
encoder composed of two visible layers and one hidden layer.
Disease semantic similarity, miRNA functional similarity and
known miRNA–disease similarity were integrated and deep repre-
sented in the stacked auto-encoder. SVM was used as a classifier
to sort out the true and false associations according to the out-
come of auto-encoder.

To evaluate the effectiveness of DRMDA, we introduced global
leave-one-out cross-validation (LOOCV), local LOOCV and fivefold
cross-validation. DRMDA achieved AUCs of 0.9177 and 0.8339 in glo-
bal LOOCV and local LOOCV, respectively. And the average AUC of
DRMDA in fivefold cross-validation was 0.9156 � 0.0006. Within the
first group of case studies, 88% of top 50 predicted miRNAs for colon
neoplasms, 90% of top 50 predicted miRNAs for lymphoma and 86%
of top 50 predicted miRNAs for prostate neoplasms have been veri-
fied in recent experimental discoveries. Then in the second group of
case studies, we transformed the miRNA–disease association matrix
to make one certain disease a ‘new’ disease without known associ-
ated miRNAs. Under this condition, 96% of the top 50 predicted miR-
NAs for lung neoplasms were verified by recent experimental
discoveries. The last group of case studies used an old edition of
HDMM database, and the verification rate of breast neoplasms group
was 84% in top 50 predicted miRNAs. All the results above have
shown that DRMDA is an accurate way to infer new miRNA–disease
associations, and has considerable advantage when compared with
previous methods.
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Methods and materials

Human miRNA–disease associations

The human miRNA–disease associations data used in DRMDA, which

have been verified by experiments, were extracted from the latest ver-
sion of HMDD database. The data set contains 383 human diseases,

495 miRNAs and 5430 miRNA–disease associations, which are trans-

formed in to matrix A in the following way. If miRNA m(j) is associ-

ated with disease d(i), A(i, j) will be 1, otherwise 0. Furthermore, nd
and nm represent the number of diseases and miRNAs in this study,

which is 383 and 495, respectively.

MiRNA functional similarity

From http://www.cuilab.cn/fles/images/cuilab/misim.zip, we downloaded

miRNA functional similarity scores (calculated based on previous work
[29]) in January 2010, which are transformed into matrix FS, in which

FS (i, j ) stands for the functional similarity score between miRNA m(i )

and m(j ).

Disease semantic similarity model 1

A disease can be described as a directed acyclic graph (DAG) which

include D, the disease itself, T(D), both node D and its ancestor nodes,

and E(D), the corresponding edges including the edges from parent

nodes to child nodes directly. We calculate the semantic similarity value
of disease D in model 1 as follows:

D1ðDÞ ¼
X

d2T Dð Þ
DDðdÞ (1)

DDðdÞ ¼ 1 if d ¼ D
DDðdÞ ¼ maxfD � DDðd 0Þ j d 0 2 children of d if d 6¼ D

�
(2)

where D is the semantic contribution factor. If the distance between D
and the other disease is shorter, the semantic contribution value will

reduce less. As for D and Ditself, there is no reduction and semantic

contribution value is 1. And if disease terms have the same distance

with D, they would have the same contribution to D1(D).
According to the presumption that two diseases are more similar

if they share greater parts of their DAGs, we define disease d(i ) and

d(j )’s semantic similarly in model 1 as following function:

SS1 dðiÞ; dðjÞð Þ ¼
P

k2T ðdðiÞÞ\T ðdðjÞÞ DdðiÞðk Þ þ DdðjÞðkÞ
� �

D1 dðiÞð Þ þ D1 dðjÞð Þ (3)

in which SS1 stands for disease semantic similarity matrix based on

the first computational model.

Disease semantic similarity model 2

According to disease semantic similarity model 1 defined above, the
disease terms having the same distance between disease D have the

same contribution to the semantic value of disease D. However, dif-

ferent disease terms in the same layer of DAG may have different

appearing frequency in DAGs of all diseases. For example, two

diseases appear in the same layer of DAG of disease D and the first
disease appears in less disease DAGs than the second disease. It is

easy to conclude that the first disease is more specific than the sec-

ond disease. Therefore, if the contribution of the first disease to the

semantic value of disease D is assigned higher than the second, the
algorithm will be more accurate according to the consideration

above.

In conclusion, a more specific disease should have a greater contri-
bution to the semantic value of disease D. So the contribution of dis-

ease term d to the semantic value of disease D in model 2 was defined

as follows:

D 0
DðdÞ ¼ �log½the number of DAGs including d

� the number of disease� (4)

Based on the presumption that two diseases are more similar if they
share greater parts of their DAGs, we define disease d(i ) and d(j )’s

semantic similarly in model 2 as follows:

SS2 dðiÞ; dðjÞð Þ ¼
P

k2T ðdðiÞÞ\T ðdðjÞÞ D 0
dðiÞ kð Þ þ D 0

dðjÞ kð Þ
� �

D2 dðiÞð Þ þ D2 dðjÞð Þ (5)

where SS2 is the disease semantic similarity matrix based on the sec-

ond computational model and D2(d(i )) and D2(d(j )) is the semantic
value of disease d(i ) and d(j ), respectively. The entity SS2(d(i ),d(j )) in

row i column j is the disease semantic similarity between disease d(i )

and d(j ) based on disease semantic similarity model 2.

Gaussian interaction profile kernel similarity for
diseases

Gaussian interaction profile kernel similarity originates from the topolog-

ical structure of the known miRNA–disease association network (in-

spired by literature [30]). Based on the assumption that similar
diseases are more likely to be associated with similar miRNAs, we

define IP(d(i )) as the interaction profile of disease d(i ) with each

miRNA, that is the ith row of matrix A. The Gaussian interaction profile

kernel similarities for diseases form matrix KD, and KD(d(i ), d(j )) repre-
sents the similarity between disease d(i ) and d(j ). The following func-

tion calculates that similarity value:

KDðdðiÞ; dðjÞÞ ¼ exp �ad jj IPðdðiÞÞ � IPðdðjÞÞ jj2
� �

(6)

where ad is a parameter controlling the bandwidth of each kernel and

originates from normalizing another bandwidth parameter a0d by the

average number of associated miRNAs for all diseases. In this way, ad
was defined as the following function:

ad ¼ a0d
1
nd

Pnd
i¼1 jj IPðdðiÞÞ jj2

(7)

Gaussian interaction profile kernel similarity for
miRNAs

The algorithm of Gaussian interaction profile kernel similarity for miR-
NAs is similar to that for diseases:

KM mðiÞ;mðjÞð Þ ¼ expð�am jj IP mðiÞð Þ � IP mðjÞð Þ jj2Þ (8)
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am ¼ a0m
1
nm

Pnm
i¼1 jj IPðmðiÞÞ jj2

(9)

In this section, IP(m(i )) represents the whether miRNA m(i ) is asso-

ciated with each disease or not, that is the ith column of matrix A.

Meanwhile, am is obtained by normalizing a0m by the average number of
related diseases among all miRNAs.

Integrated similarity for miRNAs and diseases

After the calculation above, the miRNA functional similarity, disease

semantic similarity and Gaussian interaction profile kernel similarity are

integrated to form the integrated similarity used in next step. Integrated
similarity matrix SD for disease and matrix SM for miRNA are calcu-

lated as follows, respectively:

SD dðiÞ; dðjÞð Þ ¼ SS dðiÞ; dðjÞð Þ dðiÞ and dðjÞ has semantic
KD dðiÞ; dðjÞð Þ otherwise similarity

�
(10)

SM mðiÞ;mðjÞð Þ ¼ FS mðiÞ;mðjÞð Þ mðiÞ and mðjÞ has semantic
KM mðiÞ;mðjÞð Þ otherwise similarity

�
(11)

It should be noticed that the SS matrix here takes the average value
of two kinds of disease semantic similarity matrix.

DRMDA

The method named deep representations-based miRNA–disease asso-

ciation (DRMDA) prediction was developed based on the assumption

that similar diseases are associated with functionally similar miRNAs,
which was similar to the basic assumptions used in the prediction

for the interactions between drugs and target proteins [31, 32].

DRMDA consists of three main steps (see Fig. 1): extracting data,

generating deep representation and giving score by support vector
machine (SVM).

In the first step, miRNAs’ and diseases’ information is obtained

from disease semantic similarity, miRNA functional similarity and
Gaussian interaction profile kernel similarity for disease and miRNA.

As mentioned in the integrated similarity section, we combine these

three similarities together and calculate integrated similarity matrix

SD and matrix SM, which represents integrated disease and miRNA
similarity, respectively. These two matrixes are used in the second

step.

In the second step, all miRNA–disease associations can be repre-

sented by matrix T. If the xth known miRNA–disease association asso-
ciates disease d(i ) and miRNA m(j ), the xth column of matrix T will

consist of the ith column of matrix SD for disease d(i ) and the jth

column of matrix SM for miRNA m(j ). So the number of columns in
matrix T is the same as the number of positive associations, and the

number of rows equals to the sum of the number of miRNAs and the

number of diseases. Based on the literature [33], multilayer architec-

ture neural network was built and trained with greedy layer-wise unsu-
pervised pre-training algorithm [34]. In this way, the dimension of

matrix T is reduced after being processed. Meanwhile, valuable infor-

mation is maximally preserved for next process and noise is filtered.

As miRNA data and disease data have sparse distribution, sparse
auto-encoders were stacked in our neural network model (see Fig. 2,

motivated by literature [35, 36]).

A neural network consists of many computational units called ‘neu-

ron’, each stands for an input vector X = (x1, x2,. . ., xn) and the output
kW ;bðxÞ ¼ f ðWT xÞ ¼ f

Pn
i¼1 Wixi þ b

� �
. So the matrix W connects dif-

ferent neurons between neighbour layers. The sigmoid function is com-

monly used as an activation function between neighbour layers.
Meanwhile, a conventional auto-encoder would try to learn a function

kW,b(x) � x, which means it finds an approximation of the identity func-

tion to give an approximate output. The identity function seems a typi-

cally trivial function trying to learn but by placing constraints on the
network. If the number of units in the first visible layer is n, which is

the sum of number of diseases and number of miRNAs, and the num-

ber of units in the first hidden layer is set as m, after transformed

through matrix W between these two layers, the n-dimensional input
will become a m-dimensional vector which is a deep representation of

the former one. Because of the special structure within the input vector,

the reconstruct function can find the relationship among unprocessed
information. The cost function of non-sparse auto-encoder is calculated

as follows:

JðW ; bÞ ¼ 1

n

Xn
i¼1

1

2
jj kW ;b x ðiÞ

� �
� x ðiÞ
� �

jj2
� �" #

þ d
2

Xnh
h¼1

Xnj
j¼1

Whj

� �2
(12)

where J (W, b) stands for the cost function, x(i ) stands for the ith unit
of the first layer, nh and nj stand for the number of rows and column of

matrix W between the first and second layers, respectively. The first

term makes kW,b(x) � x and the second term prevents over-fitting when

d balances the importance of these two terms. Normally, auto-encoder
is aimed to minimize J(W,b) so that output kW,b (x) can approximate

the raw data x as much as possible. Furthermore, large hidden units

still could be used to discover valuable information if a new sparsity
term was added to the overall cost function to complete sparse auto-

encoder as follows:

JsparseðW ; bÞ ¼ JðW ; bÞ þ b
Xn2

j¼1
KLðq jj q̂j Þ (13)

q̂j ¼
1

n

Xn
i¼1

að2Þj xðiÞ
� �h i

(14)

KLðq jj q̂j Þ ¼ q log
q
q̂j

þ ð1� qÞlog 1� q
1� q̂j

(15)

where b alters the weight of sparsity penalty term, q is the sparsity

parameter, n2 stands for the number of neurons in the second layer,

aj
(2) stands for the jth neuron of the second layer and Eq. (13) is the

Kullback–Leibler divergence between two Bernoulli random variables
with different means.

The auto-encoders were stacked layer by layer to form a net-

work, which means the output of one layer is the input of the next
layer. We constructed a three-layer network and its parameters are

shown in Table 1. Layer by layer, the original data gets its deep

representation, and the network enriches useful information from

original data.
Calculating association scores is the last step of DRMDA. SVM is a

powerful classification algorithm originally developed by Vapnik et al.

and it has been proved extremely effective in chemical and biological

classifications [36–38]. Firstly, negative miRNA–disease associations
were randomly selected from miRNA–disease samples except positive
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miRNA–disease associations, and the number of negative associations

is the same as positive associations. Then, the positive and the negative
associations form matrix PT and NT in the same way as matrix T.

Matrix PT and NT are processed by auto-encoder whose parameters are

learnt in the second step, and the results from auto-encoder are used
to train the classifier which originates from an open source package

called LIBSVM [39]. In this way, SVM is trained on all positive associa-

tions together with negative associations, which has the same number

as positive associations. After training of SVM, a hyperplane for separa-
tion is calculated for the next step. Finally, miRNA–disease samples

except positive miRNA–disease associations, also named as candidate

samples, are scored. For each miRNA–disease candidate sample, the

distance between the hyperplane for separation and the input data point
is calculated. This distance determines the absolute value of the score

of this miRNA–disease sample and which side of hyperplane the point

is on decides whether the score is positive or negative. If a sample
point is on the same side with most positive associations and has

relative long distance with hyperplane, this sample will get a rather high

score.
The parameters of SVM training and auto-encoder are stored for later

prediction. For prediction, all miRNA–disease samples except positive

associations form a matrix AT in the same way as matrix T in the sec-
ond step. Matrix AT is processed by auto-encoder and SVM classifier,

whose parameters have been learnt previously. Each sample gets a

score after being processed, and for each disease, miRNAs are ranked

by score. The higher a miRNA ranks in the list for a certain disease, the
more likely that miRNA is associated with that disease. Within this step,

the score of a candidate sample is compared with all other candidate

samples, which includes those samples randomly selected as negative

associations. According to previous study [36], the Radial Basis Func-
tional (RBF) kernel had better performance than other kernels. However,

the distance calculation is rather complicated when using RBF kernel.

Our computational capacity cannot afford that, so the lineal kernel was
used as substitute.

Fig. 1 Flow chart of DRMDA model to obtain potential miRNA–disease associations according to the known associations in HMDD database.
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Results

Performance evaluation

Based on the known miRNA–disease associations in HMDD database,
three validation schemas were used to evaluate the performance of
DRMDA: global LOOCV, local LOOCV and fivefold cross-validation. To
compare DRMDA’s performance with previous models, we selected
five classical computational methods: HGIMDA [25], RLSMDA [27],
HDMP [22], WBSMDA [24], RWRMDA [23] to compete with DRMDA

in cross-validation. Each known miRNA–disease association was
regarded as test sample in turn while other known associations were
treated as training samples. All of unknown miRNA–disease associa-
tion were regarded as candidate samples. After processed by DRMDA
model, each miRNA–disease pair would get a score. The score of the
test sample was compared with the scores of all candidate samples in
global LOOCV; however, test sample was only compared with candi-
dates which contained the same disease in local LOOCV. In fivefold
cross-validation, the known miRNA–disease association list was ran-
domly divided into five separate parts. One of the five parts would be
selected as test samples in turn, while other parts were considered as
training samples. The score of each miRNA–disease pair in the test
part was compared with the scores of all candidate samples, respec-
tively. This process was repeated for five times, so each association
in the known miRNA–disease association list was compared with can-
didate samples once. In these three evaluation methods, whether the
rank of test sample within candidate samples exceeded the preset
threshold or not was the criterion of correctly prediction.

According to the data we calculated above, the receiver operating
characteristic curve (ROC) was drawn to compare DRMDA and
other five methods. The x-axis stands for false-positive rate (FPR,

Fig. 2 A stacked auto-encoder composed of two visible layers and one hidden layer.

Table 1 Parameters within stacked auto-encoder

Parameters Value

Neurons in layer 2 250

Neurons in layer 3 80

Weight of sparsity penalty term 5

Sparsity 0.05
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1-specificity), and specificity represents the rate of negative miRNA–
disease associations whose ranks were lower than the threshold. The
y-axis stands for true-positive rate (TPR, sensitivity), while sensitivity
represents the percentage of positive miRNA–disease associations
whose ranks exceeded the preset threshold. The area under the ROC
curve (AUC) is a parameter to estimate the accuracy of the model. If
AUC = 1, it means this model gets exactness rate of 100%, while
AUC = 0.5 tell us that this model is predicting randomly. As a result,
the AUC value in global LOOCV test of DRMDA, HGIMDA, RLSMDA,
HDMP and WDSMDA was 0.9177, 0.8781, 0.8426, 0.8366 and
0.8030, respectively. As for local LOOCV, the AUC value of DRMDA,
HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA was 0.8339,
0.8077, 0.6953, 0.7702, 0.8031 and 0.7891, respectively (See Fig. 3).
DRMDA, RLSMDA, HDMP and WBSMDA received an average AUC
value of 0.9156 � 0.0006, 0.8569 � 0.0020, 0.8342 � 0.0010 and
0.8185 � 0.0009, respectively in fivefold cross-validation. In conclu-
sion, DRMDA is a more effective miRNA–disease association predic-
tion method than previous methods.

Case studies

To evaluate the prediction efficiency of DRMDA in real cases, three
groups of case studies were implemented. In the first group of case
studies, miRNA–disease associations originated from latest HDMM
database were used as training samples and DRMDA would give

score to every miRNA–disease sample based on training results. Then
for each disease, miRNAs were ranked according to the score. In the
second group, we altered the miRNA–disease matrix to make a cer-
tain disease a ‘new’ one in turn. So in this group of case studies,
DRMDA must find out potential miRNAs related to this ‘new’ disease.
The scores of all miRNA–disease samples containing this disease
were calculated and ranked. Within the third group, another set of
data including disease semantic similarity, miRNA functional similar-
ity and known miRNA–disease similarity based on an old edition of
HDMM database was used. But other steps in group three were the
same as group one.

Colon neoplasms, also known as bowel cancer, are cancers
developed from colon or the boundary of rectum [40]. Effective
ways to check it out in early stages are sigmoidoscopy or colono-
scopy which is seldom done by patients and therefore hard to
discover [41]. Colon cancer is now the third most common can-
cer on Earth which accounts for 10% of the cases and one-third
of the people with this disease in the developed world died from
it [42]. So it is necessary to predict miRNAs associated with
colon neoplasms. With the improvement of medical technology,
more and more miRNAs related to colon neoplasms like hsa-mir-
145 which targeted the insulin receptor substrate-1 and repressed
the growth of colon cancer cells were found. In our prediction for
colon neoplasms, nine of top 10 miRNA predictions and 44 of top
50 miRNA predictions were verified by dbDEMC and miR2Disease
database (see Table 2).

Fig. 3 Performance comparison between DRMDA and five previous computational models (HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA) in

terms of ROC curve and AUC based on global and local LOOCV based on known miRNA–disease associations in the HMDD database. DRMDA’s per-

formance is significantly better than all the previous models to some extent and achieved AUC of 0.9177 in global LOOCV and 0.8339 in local

LOOCV. Therefore, DRMDA proves to be efficient in predicting the potential miRNA–disease associations.
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A group of blood cell tumours originated from lymphocytes is
called lymphoma. It consists of two main types: Hodgkin’s lym-
phomas (HL) and the non-Hodgkin lymphomas (NHL) [43]. Recently,
many miRNAs related to lymphoma have been found. For example,
MiR-200, which targeted cyclin E2, was commonly repressed in con-
junctival MALT lymphoma [44]. For the prediction for lymphoma, nine
of top 10 miRNA predictions and 45 of top 50 miRNA predictions
were verified by databases (see Table 3).

Prostate neoplasms, also known as carcinoma of the prostate, are
cancers developed from the prostate. Prostate cancer is the second
most common diagnosed cancer in men, but current diagnosis has
low specificity [45]. This indicates the importance of finding prostate
neoplasm-related miRNAs like miR-145, whose target is proto-onco-
gene ERG in prostate cancer. In the case study for prostate neoplasms,
nine of top 10 miRNA predictions and 43 of top 50 miRNA predictions
were verified by experimental evidence (see Table 4).

Table 2 Prediction of the top 50 potential miRNAs associated with colon neoplasms based on known miRNA–disease associations in HMDD

database

miRNA Evidence miRNA Evidence

hsa-mir-1 dbDEMC; miR2Disease hsa-mir-206 dbDEMC

hsa-mir-21 dbDEMC; miR2Disease hsa-mir-142 Unconfirmed

hsa-mir-133a dbDEMC; miR2Disease hsa-mir-203 dbDEMC; miR2Disease

hsa-mir-221 dbDEMC; miR2Disease hsa-let-7a dbDEMC; miR2Disease

hsa-mir-15a dbDEMC hsa-let-7i dbDEMC

hsa-mir-146a dbDEMC hsa-mir-210 dbDEMC

hsa-mir-143 dbDEMC; miR2Disease hsa-mir-19b dbDEMC; miR2Disease

hsa-mir-222 dbDEMC hsa-mir-223 dbDEMC; miR2Disease

hsa-mir-16 dbDEMC hsa-mir-29a dbDEMC; miR2Disease

hsa-mir-122 Unconfirmed hsa-mir-27b dbDEMC; miR2Disease

hsa-mir-15b miR2Disease hsa-mir-196a dbDEMC; miR2Disease

hsa-mir-29c dbDEMC hsa-let-7b dbDEMC; miR2Disease

hsa-mir-92a Unconfirmed hsa-mir-124 dbDEMC

hsa-mir-133b dbDEMC; miR2Disease hsa-mir-30a miR2Disease

hsa-mir-155 dbDEMC; miR2Disease hsa-mir-29b dbDEMC; miR2Disease

hsa-mir-182 dbDEMC; miR2Disease hsa-let-7g dbDEMC; miR2Disease

hsa-mir-183 dbDEMC; miR2Disease hsa-let-7e dbDEMC

hsa-mir-150 Unconfirmed hsa-let-7f dbDEMC; miR2Disease

hsa-mir-181a dbDEMC; miR2Disease hsa-mir-199a Unconfirmed

hsa-mir-18a dbDEMC; miR2Disease hsa-let-7c dbDEMC

hsa-mir-20a dbDEMC; miR2Disease hsa-let-7d dbDEMC

hsa-mir-125b dbDEMC hsa-mir-195 dbDEMC; miR2Disease

hsa-mir-19a dbDEMC; miR2Disease hsa-mir-181b dbDEMC; miR2Disease

hsa-mir-146b Unconfirmed hsa-mir-34a dbDEMC; miR2Disease

hsa-mir-31 dbDEMC; miR2Disease hsa-mir-214 dbDEMC

Top 1–25 potential miRNAs are listed in the first column while top 26–50 potential miRNAs are listed in the second column.
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The case studies above belong to the first group. Meanwhile,
miRNA related to other diseases had been also predicted and ranked
by score (see Table S1). The chart ranked all miRNA–disease samples
by score, but the rank of miRNAs for a certain disease is more mean-
ingful because the average scores are not the same for different dis-
eases.

The second group was designed to validate the prediction
accuracy of DRMDA, when dealing with new diseases without
associated miRNAs. So all miRNA–disease associations of a cer-
tain disease were removed from miRNA–disease association
matrix and the rest of associations were used for prediction. Here
we used lung neoplasms as example, 48 of top 50 predicted miR-
NAs can be verified by at least one database among dbDEMC,
HDMM and miR2Diseaes and all the top 10 predicted miRNAs can
be verified (see Table 5). For instance, the miRNA having the big-
gest potential to be associated with lung neoplasms was hsa-mir-
21. Experiments indicated that this miRNA repressed tumour sup-
pressor PTEN and promoted growth and invasion in non-small-cell
lung cancer [46].

To make sure DRMDA was effective when using other databases,
an old edition of HDMM database was used in the third group. We
altered the number of neurons in each layer to adapt the old database
and predicted top 50 potential miRNAs for breast neoplasms. Nine of
top 10 miRNA predictions and 42 of top 50 miRNA predictions were
verified by at least one database among dbDEMC, HDMM and miR2-
Diseaes (see Table 6).

Discussion

Potential associations between miRNAs and diseases are being identi-
fied by researchers from the fields of bioinformatics or medical
science. Compared with traditional methods, building a computational
model dealing with heterogeneous biological big data is less expen-
sive and more powerful. To fulfil the requirement of predicting poten-
tial miRNA–disease associations, we proposed a computational
model called DRMDA. This algorithm calculated the score of each
miRNA–disease sample by analysing known miRNA–disease interac-
tions, disease semantic similarity and miRNA functional similarity.
Then, potential associations were selected according to the score.
Within the test of global LOOCV, local LOOCV and fivefold cross-vali-
dation, DRMDA got pretty high score when compared to previous
methods. Furthermore, when examined by experimental literatures in
miR2Diseaes and dbDEMC databases, the verification rate of the top
50 miRNA predictions for colon neoplasms, lymphoma and prostate
neoplasms in the first group of case studies reached 88%, 90% and
86%, respectively. And in the second group of case studies, 96% of
the top 50 miRNA predictions for lung neoplasms were verified by
experimental evidence in databases. Meanwhile, 84% of the top 50
miRNA predictions for breast neoplasms were verified in the third
group of case studies. Both cross-validation and case studies had
proved the effectiveness of DRMDA in predicting potential miRNA–
disease interactions.

The success of DRMDA can be concluded as follows. First of
all, DRMDA is the first algorithm that uses a deep representation
stacked auto-encoder core to predict miRNA–disease associations.
Lots of noise within disease semantic similarity matrix and miRNA
functional similarity matrix are filtered by sparse auto-encoder.
High-dimension vectors with much noise can be transformed by
DRMDA into low-dimension vectors which are easier for SVM to
classify. Secondly, HMDD database provides plenty of known

Table 3 Prediction of the top 50 potential miRNAs associated with

lymphoma based on known miRNA–disease associations in HMDD

database

miRNA Evidence miRNA Evidence

hsa-mir-1 dbDEMC hsa-mir-181b dbDEMC

hsa-mir-221 dbDEMC hsa-let-7i dbDEMC

hsa-mir-133a dbDEMC hsa-mir-183 dbDEMC

hsa-mir-145 dbDEMC hsa-let-7d dbDEMC

hsa-mir-222 dbDEMC hsa-let-7e dbDEMC

hsa-mir-125b Unconfirmed hsa-mir-9 dbDEMC

hsa-mir-143 dbDEMC hsa-mir-106b dbDEMC

hsa-mir-34a dbDEMC hsa-let-7f dbDEMC

hsa-mir-223 dbDEMC hsa-mir-
106a

dbDEMC

hsa-mir-29b dbDEMC hsa-mir-100 dbDEMC

hsa-mir-29a dbDEMC hsa-let-7g dbDEMC

hsa-mir-199a dbDEMC hsa-mir-93 dbDEMC

hsa-let-7a dbDEMC hsa-mir-148a dbDEMC

hsa-mir-146b Unconfirmed hsa-mir-192 dbDEMC

hsa-mir-30a dbDEMC hsa-mir-7 dbDEMC

hsa-mir-31 dbDEMC hsa-mir-34b dbDEMC

hsa-mir-182 dbDEMC hsa-mir-25 dbDEMC

hsa-let-7b dbDEMC hsa-mir-205 dbDEMC

hsa-mir-142 Unconfirmed hsa-mir-30b dbDEMC

hsa-mir-214 dbDEMC hsa-mir-141 dbDEMC

hsa-let-7c dbDEMC hsa-mir-30c dbDEMC

hsa-mir-34c Unconfirmed hsa-mir-10b dbDEMC

hsa-mir-196a dbDEMC hsa-mir-27a dbDEMC

hsa-mir-195 dbDEMC hsa-mir-375 Unconfirmed

hsa-mir-15b dbDEMC hsa-mir-206 dbDEMC

Top 1–25 potential miRNAs are listed in the first column while top 26
–50 potential miRNAs are listed in the second column.
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miRNA–disease associations for DRMDA and guarantees the effec-
tiveness of the model. Finally, DRMDA adopts some good algo-
rithms from previous methods. For example, the disease semantic
similarity matrix in DRMDA is an average result of two kinds of
algorithms. These improvements make DRMDA a better method
than previous ones.

However, DRMDA still has its deficiencies. Firstly, DRMDA
uses SVM after the deep representation step, which means

negative miRNA–disease associations must be used in the model.
Due to the difficulty in obtaining negative associations, this pro-
cedure reduces accuracy. Secondly, it is not easy to optimize the
complex parameters in the DRMDA. Finally, the SVM kernel func-
tion used in this model is a linear one because of computing
power limit. A radial basis function (RBF) kernel SVM classifier
takes more time, but may perform better. Our method aimed to
find out miRNA–disease associations and to predict cancer risk;

Table 4 Prediction of the top 50 potential miRNAs associated with prostate neoplasms based on known miRNA–disease associations in

HMDD database

miRNA Evidence miRNA Evidence

hsa-mir-1 dbDEMC hsa-mir-19a dbDEMC

hsa-mir-21 dbDEMC; miR2Disease hsa-mir-214 dbDEMC; miR2Disease

hsa-mir-133a dbDEMC hsa-mir-196a dbDEMC

hsa-mir-221 dbDEMC; miR2Disease hsa-mir-29c dbDEMC

hsa-mir-146a miR2Disease hsa-mir-199a dbDEMC; miR2Disease

hsa-mir-15a dbDEMC; miR2Disease hsa-mir-223 dbDEMC; miR2Disease

hsa-mir-222 dbDEMC; miR2Disease hsa-mir-17 miR2Disease

hsa-mir-122 Unconfirmed hsa-let-7b dbDEMC; miR2Disease

hsa-mir-15b dbDEMC hsa-mir-26b dbDEMC; miR2Disease

hsa-mir-143 dbDEMC; miR2Disease hsa-mir-210 miR2Disease

hsa-mir-16 dbDEMC; miR2Disease hsa-let-7g dbDEMC; miR2Disease

hsa-mir-133b dbDEMC hsa-mir-195 dbDEMC; miR2Disease

hsa-mir-150 dbDEMC hsa-mir-206 dbDEMC

hsa-mir-92a Unconfirmed hsa-mir-30a miR2Disease

hsa-let-7a dbDEMC; miR2Disease hsa-mir-203 Unconfirmed

hsa-mir-146b Unconfirmed hsa-let-7c dbDEMC; miR2Disease

hsa-mir-155 dbDEMC hsa-mir-30c dbDEMC; miR2Disease

hsa-mir-182 dbDEMC; miR2Disease hsa-mir-126 dbDEMC; miR2Disease

hsa-let-7e dbDEMC hsa-mir-19b dbDEMC; miR2Disease

hsa-let-7f dbDEMC; miR2Disease hsa-mir-31 dbDEMC; miR2Disease

hsa-let-7i dbDEMC hsa-mir-142 Unconfirmed

hsa-mir-20a miR2Disease hsa-mir-181a dbDEMC; miR2Disease

hsa-mir-18a Unconfirmed hsa-mir-181b dbDEMC; miR2Disease

hsa-let-7d dbDEMC; miR2Disease hsa-mir-200b Unconfirmed

hsa-mir-106a dbDEMC; miR2Disease hsa-mir-29b dbDEMC; miR2Disease

Top 1–25 potential miRNAs are listed in the first column while top 26–50 potential miRNAs are listed in the second column.
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however, as what has been pointed out in the literature [47],
using a single disease-related miRNA to judge cancer risks for
all the persons may have imprecise results. So based on each
person’s miRNA profiles, we planned to construct various cancer
hallmark networks to effectively evaluate cancer risks [47]. In
this way, three important problems in the personalized medicine
could be considered within future studies [47, 48], which are
obtaining the tumour recurrence and metastases probability, pre-
dicting potential consequences after applying a specific drug to
the patients and identifying molecular signatures to evaluate and

predict therapeutic results after cancer treatment in the frame-
work of miRNAs.
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Table S1We implemented DRMDA to calculate the score of all candidate
miRNA–disease pairs when all the known miRNA–disease associations
in HMDD database were regarded as training samples. This prediction
result is published for further experimental validation and research.

Table 6 Prediction of the top 50 potential miRNAs associated with prostate neoplasms based on known miRNA–disease associations in

HMDD database

miRNA Evidence miRNA Evidence

hsa-mir-130b dbDEMC hsa-mir-208b Unconfirmed

hsa-mir-449b Unconfirmed hsa-mir-154 dbDEMC

hsa-mir-382 dbDEMC hsa-mir-561 Unconfirmed

hsa-mir-500 dbDEMC hsa-mir-99b dbDEMC

hsa-mir-532 dbDEMC hsa-mir-208 dbDEMC

hsa-mir-124 dbDEMC; HMDD hsa-mir-92b dbDEMC

hsa-mir-498 dbDEMC hsa-mir-660 dbDEMC

hsa-mir-301a HMDD hsa-mir-501 dbDEMC

hsa-mir-431 dbDEMC hsa-mir-377 dbDEMC

hsa-mir-224 dbDEMC; HMDD hsa-let-7e dbDEMC; HMDD

hsa-mir-363 dbDEMC hsa-mir-494 Unconfirmed

hsa-mir-486 dbDEMC; HMDD hsa-mir-659 dbDEMC

hsa-mir-139 dbDEMC; HMDD hsa-mir-376b dbDEMC

hsa-mir-370 dbDEMC hsa-mir-16 dbDEMC; HMDD

hsa-mir-26b dbDEMC; HMDD hsa-mir-150 dbDEMC

hsa-mir-487b dbDEMC hsa-mir-136 dbDEMC; miR2Disease

hsa-mir-190 dbDEMC hsa-mir-526b dbDEMC

hsa-mir-297 Unconfirmed hsa-mir-100 dbDEMC; HMDD

hsa-mir-22 dbDEMC; HMDD; miR2Disease hsa-mir-512 Unconfirmed

hsa-mir-323 dbDEMC hsa-mir-409 HMDD

hsa-mir-381 dbDEMC hsa-mir-148b dbDEMC; HMDD

hsa-mir-518b Unconfirmed hsa-mir-301b HMDD

hsa-mir-33a Unconfirmed hsa-mir-615 dbDEMC

hsa-let-7c dbDEMC; HMDD hsa-mir-183 dbDEMC; HMDD

hsa-mir-337 dbDEMC hsa-mir-365 dbDEMC; miR2Disease

Top 1–25 potential miRNAs are listed in the first column while top 26–50 potential miRNAs are listed in the second column.
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