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ABSTRACT

Background and objective Biomarkers for subtyping
triple negative breast cancer (TNBC) are needed given
the absence of responsive therapy and relatively poor
prediction of survival. Morphology of cancer tissues is
widely used in clinical practice for stratifying cancer
patients, while genomic data are highly effective to
classify cancer patients into subgroups. Thus integration
of both morphological and genomic data is a promising
approach in discovering new biomarkers for cancer
outcome prediction. Here we propose a workflow for
analyzing histopathological images and integrate them
with genomic data for discovering biomarkers for TNBC.
Materials and methods We developed an image
analysis workflow for extracting a large collection of
morphological features and deployed the same on
histological images from The Cancer Genome Atlas
(TCGA) TNBC samples during the discovery phase
(n=44). Strong correlations between salient
morphological features and gene expression profiles from
the same patients were identified. We then evaluated
the same morphological features in predicting survival
using a local TNBC cohort (n=143). We further tested
the predictive power on patient prognosis of correlated
gene clusters using two other public gene expression
datasets.

Results and conclusion Using TCGA data, we
identified 48 pairs of significantly correlated
morphological features and gene clusters; four
morphological features were able to separate the local
cohort with significantly different survival outcomes.
Gene clusters correlated with these four morphological
features further proved to be effective in predicting
patient survival using multiple public gene expression
datasets. These results suggest the efficacy of our
workflow and demonstrate that integrative analysis holds
promise for discovering biomarkers of complex diseases.

INTRODUCTION

Breast cancer is a highly heterogeneous disease.
During the past half century, several different sub-
types of breast cancers have been discovered based
on histological features, specific protein markers,
and gene signatures obtained from high throughput
and high-content experiments. These subtypes
present diverse clinical outcomes including varying
prognosis and response to treatment.

Histological images of tumor tissues play import-
ant roles in breast cancer diagnosis, staging, and
prognosis.® * Typically, pathologists visually review
stained slides of breast cancer biopsy samples and
assign scores to the detected and prevailing tumors.

12

During this inspection, cellular composition is often
assessed semi-quantitatively. This process is costly in
both time and labor and the results may differ across
pathologists. Recently, computer-assisted quantita-
tive analysis of stained histology images has received
wide attention in the biomedical and bioimage
informatics fields.’™ For instance, automated quan-
tification of the levels of salient proteins has led to
the discovery of new markers of malignant cells in
cancers.'? In the study by Beck et al,’ stromal mor-
phological features were found to be strongly asso-
ciated with survival time of breast cancer patients
than the morphological features obtained from epi-
thelial compartments.

Besides the clinical use of histological images, sub-
typing and stratification of breast cancer patients has
been widely studied using high throughput gene
expression data.'! For instance, van Veer et al identi-
fied a 70-gene signature for predicting prognosis of
breast cancer patients,'® while Perou et al'® identi-
fied basal-like and non-basal-like subtypes of breast
cancers. In addition, in a recent study using The
Cancer Genome Atlas (TCGA) breast cancer
(BRCA) data, investigators led by Perou identified
four major subtypes of breast cancers by combining
five different genomic data including gene expres-
sion, exome-sequencing, copy number variance,
DNA methylation, and microRNA expression. '

While both morphological features and genomic
data are widely used for breast cancer subtyping and
staging, the causal and inferential relationship
between genomic data such as gene expression pro-
files and morphology in histological images from
breast cancer patients is still not clear. In a recent
study,’ the heterogeneity of the estrogen receptor
(ER) negative breast cancer cells was explained using
complementary DNA copy number variance infor-
mation and consequently an improved prognostic
biomarker was suggested. This study suggests that
the prognostic power of these two types of features
(histological and genomic) should be combined and
is likely to lead to better biomarkers for classifica-
tion of the breast cancer and other types of cancer
as well.’> 1® However, there is neither a study which
associates salient gene expression biomarkers with
pertinent morphology of the tissue, nor a morph-
ology driven result whose scope is also extended to
include datasets where gene expression profiles are
solely available. In essence, there is a paucity of
work that incorporates multiple measurements of
disease from disparate sources to create biomarkers.

In this work, we present a novel workflow for
integrating histopathological images analysis with
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gene expression analysis for Triple Negative Breast Cancers
(TNBC). Specifically, we develop a workflow for identifying the
morphological features that correlate well with survival outcome
of patients. Signature morphological features with strong asso-
ciations to survival were then analyzed by correlating with spe-
cific gene expression profiles using another large publicly
available dataset and subsequently cross-validated with multiple
datasets. Our pipeline provides a novel platform of translating
the morphological features to any gene expression data without
histopathological images. Our results clearly demonstrate that
specific morphological features are correlated with specific
genetic features (post-transcription) with enriched biological
functions pertaining to cancer development and/or tumor
microenvironment structure. These results suggest that new inte-
grative biomarkers can be developed via such integrative
approach. An additional aspect of our work is that we are able
to work across datasets that were either collected in the public
realm or acquired in specific laboratories.

MATERIALS AND METHODS

TCGA breast cancer dataset

The TCGA project!” collects high-quality breast tumor samples
and makes available the clinical information, molecular/genomic
profiling data, and histopathology slide images on its data
portal. Fifty-one triple negative breast tumor samples were avail-
able by selecting from subjects with reported ER (negative), pro-
gesterone receptor (PR) (negative), and Her2/neu (0 and 1+)
status (using data available up to August 25, 2012). Forty-four
of these 51 TNBC subjects have accompanying histopathology
images of adequate quality. No other stratification of these
TNBC cases was available. Owing to the short median overall
follow-up (<2 years) and scarcity of survival events (6 of 51 cur-
rently marked as deceased), survival analyses for TCGA breast
cancers will not be effective in the next few years.

From the TCGA portal, we downloaded x40 magnification
whole slide images in the SVS file (single-file pyramidal tiled
TIFF) format. Tissue slides are available as thin slice of snap-
frozen optimal cutting temperature embedded block of tissue
for imaging. We used tissue slide images from frozen tissue sec-
tions instead of diagnostic slides, since their adjacent tissue
samples were used to provide DNA and RNA material for gen-
erating genomic data. Typical size of these images is about
100 000x300 000 pixels. It is thus very difficult to process the
entire image due to the large size and high computing cost. In
addition, whole slide images contain redundant information and
encompass artifacts such as folding and missing and broken
tissue. Thus, four representative image patches for each whole
TNBC slide image were curated by manually selecting heteroge-
neous and informative regions containing both tumor and
stroma tissues. All patches varied between 3000 and 5000 pixels
in width and height. This process eliminated artifacts and low-
quality regions from consideration.

The Ohio State University TNBC tissue microarray

The Ohio State University (OSU) Pathology Core Facility col-
lects breast cancer biopsy specimens which are stored in the
OSU Tissue Archive Service. The necessary clinical information
is available from the Information Warehouse at the OSU
Medical Center (OSUMC). A total of 365 TNBC patients were
identified between the years 1995 and 2005. After pathology
review of tumors with sufficient sample for study, 175 paraffin
blocks for TNBCs were selected to generate tissue microarrays
(TMAs) used in this study. The TMAs were stained using H&E
and digitized by an Aperio ScanScope under X20 magnification.

Table 1 Demographics summary of the Ohio State University
triple negative breast cancer cohort

Demographic characteristic Complete set, 365 Pruned set, 175

Median age (range) 51 (20-84) 51 (20-84)
Race (%; White:African American) 91:8 91:9

Stage (%; I:I) 35:54 31:54
Grade 3 (%) 84 89

Basal cancers (%) 47 45
Adjuvant chemotherapy (%) 73 84

Median follow-up (months) 74 (4-272) 75 (4-272)

After filtering using measures of satisfactory image quality, TMA
images for 143 patients were finally selected. The overall demo-
graphic profiles of the cohort were not altered significantly after
filtering (shown in table 1).

Public breast cancer expression datasets

There are several large public breast cancer gene expression
datasets with adequate information on survival outcomes and
subtyping. Identified biomarkers can be cross-validated using
these datasets, of which the Perou'® (NCBI GSE2741) and
NKI' collections are among the most frequently used. To
evaluate our discovered metagenes on the ER-negative samples,
we tested them on these two breast cancer datasets to see if any
of the gene signatures can predict ER-negative patient survival.

Integrated breast cancer biomarker identification workflow
In this study, we focus on the discovery of TNBC biomarkers
by translating gene-morphology relationships across multiple
datasets. Figure 1 shows our overall workflow. Algorithmic
details of each are described in subsequent sections.

Using the TCGA dataset, in which both histopathological
images and gene expression profiles are available, we computed
correlations between morphological features and expression
profiles of gene clusters (figure 1A). Then, we selected the mor-
phological features which can classify patients into higher and
lower risk groups using the OSU TNBC cohort (figure 1B).
Assuming that the selected morphological features glean similar
relationships of survival in other datasets, gene clusters with
strong correlations to these morphological features can poten-
tially serve as biomarkers for survival. We test them using public
breast cancer gene expression datasets without available hist-
ology images (figure 1C).

TCGA and OSU histopathology slide image preprocessing

and segmentation

During preprocessing we ensured that both tumor epithelial and
stromal compartments existed on chosen slides. Magnification
for digitization was enforced to be consistent so that all images
within each cohort are of the same resolution. Color images
were filtered to remove extreme values in the RED channel,
which was used to delineate blood cells and spills. A mask was
generated to separate the superpixels in each slide.

Characterizing cellular morphological features

of TNBC samples

Each tissue sample is heterogeneous with existence of multiple
tissues (eg, tumor and stroma) and cells (eg, tumor epithelial
cells, fibroblasts, endothelial cells, macrophages). We first adopt
an entropy-based image segmentation algorithm similar to that
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The workflow of cross-datasets feature discovery and validation. (A) Steps for discovering correlations between morphological features

and expression profiles of gene clusters using The Cancer Genome Atlas (TCGA) data. (B) Survival-related morphological features are discovered
using the Ohio State University (OSU) triple negative breast cancer (TNBC) cohort. (C) Gene clusters strongly correlating with the survival-related
morphological features are tested for survival using public breast cancer datasets. TMA, tissue microarray.

in Beck et al’ to divide the images into small regions with
relatively homogeneous cellular components and morphology
called ‘superpixels’.

This procedure removes artifacts in slide preparation. It not
only retains the homogeneity of each region of interest (ROI),
but also better captures the local morphological structure of the
tissue and the relationship between neighboring tissues. The
workflow is shown in figure 2. Usually in TMA image analysis, a
preprocessing step of color normalization is often employed to
mitigate bias; however, this step will also introduce artifacts in
the final assessment of the morphological features. Additionally,
the subsequent pixel segmentation step replies on the true
texture of the images. Finally, since the selected OSU TMA
images do not contain large color intensity variations, we did not
include the color normalization step in our current pipeline.

Morphometric analysis for cell nuclei

For breast cancer tissue, the abundance of tumor cells is crucial
to the diagnosis and prognosis of the patients. Typically, the size
of the tumor is a key factor to consider, when the tumor grade
is given. Additionally, it is well known that tumor with higher
grades often leads to shorter survival, early recurrence, and
metastasis.”’ 2? The density of tumor cells along with other
types of cells, for example lymphocytes and stromal cells, are
essential to the quantitative analysis of the histopathological fea-
tures of the cancer.?’ To evaluate these cellular characteristics,
we first identify cell nuclei within each selected patch of the
tissue slide images. The pipeline of cell nuclei quantification is
illustrated in figure 3. After removing the background, artifacts,
and white space regions, a threshold-based segmentation step

using the Otsu algorithm?®* is applied to a superpixel to obtain a
coarse segmentation of the cell nuclei (figure 3A-C). In histo-
pathological images, nuclei often overlap with each other
and form clumps of cells during fixation and staining. The
clumps are separated with an edge-cut set selection algorithm
(figure 3D).%° Objects without enough intrinsic nucleus area are
considered artifacts and not counted for the analysis.

Morphological feature extraction of tumor and its
microenvironment
Besides tumor density being an important characteristic of
cancer tissue, morphology of tumor tissue is heavily influenced
by stromal and immune cells as well as extracellular matrix
(ECM). Here, we measured three classes of morphological fea-
tures describing the distribution and spatial information of the
tumor and its microenvironment. Figure 3 illustrates the extrac-
tion of nucleus from other molecular compartments. After we
obtained the segmentation of the nuclei, three categories of
morphological features are measured on the nuclei: signal inten-
sity, texture, and shape. Shape features include the area of the
cell nuclei and eccentricity. These features are tested to be dis-
criminatory and representative for survival of the generic breast
cancer population.” Examples of morphological features are
described in table 2. A full list and summarized descriptions of
image features are shown in online supplementary table S1.
After features for each individual superpixel in a slide are
extracted, the mean estimate of these features is obtained to rep-
resent the feature vector for this whole slide.

In addition to the distribution and morphology of the nuclei,
stromal components such as fibroblasts, ECM, cellular
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Figure 2 The workflow of the histopathological image analysis. First, after the removal of background and noise, each tissue slide (or tissue
microarray, TMA) image was segmented into ‘superpixels’ delineating the tumor and the stromal compartments of the tissue (green lines mark the
boundary of the superpixels in the slide). Then, each superpixel is represented by a series of quantitative morphological features. OSU, Ohio State
University; TCGA, The Cancer Genome Atlas; TNBC, triple negative breast cancer.

constituents of the vasculature, inflammatory/immune cells, and
adipose tissue arrangement and interaction with the cancer cells
are also essential to the tumor development and growth.
Especially at the site of the primary tumor in the breast, the
interaction between tumor cells and their surrounding milieu is
reciprocal; tumor cells influence the stroma and vice versa,
ultimately fueling tumor progression.?! In our study, we also
measure the structure of the stromal compartment of the micro-
environment in a systematic way. Within each homogeneous
region (figure 1), we measured the spatial features, texture,
intensity, and morphology of the tissue and build the descriptive
features of each of these patches, so that other components in
the tissue were measured by these features. The complete list of
features is given in online supplementary table S1.

Correlations between gene expression and tissue

morphology using TCGA data

mRNA expression profiles for the 41 selected TNBC tumors in
TCGA were transformed from RPKM (reads per kilobase per
million) normalized Illumina HiSeq 2000 RNA-seq readcounts.
The mRNA data were preprocessed as follows: first, we selected

genes with top 75% variance. Next, we clustered the mRNA
expressions into K gene clusters (metagenes) using an iterative
K-means clustering algorithm after 100 iterations. After examin-
ing the cluster homogeneity of these metagenes, we determined
50 (K=50) clusters that represented the measured gene expres-
sions the best. Finally, each cluster was represented by its eigen-
gene, which was defined as the first principal component from
principal component analysis on the expression profiles of genes
in this cluster.?

Pearson correlation coefficients (PCCs) between metagene
expression and morphological features were calculated as
PCC(f;, m;) = cov(f;, m;)/og0m;, where f; is a feature vector for
all samples and m; is the eigengene expression of metagene j
for the same samples. All pairs of correlations between features
and eigengenes were obtained and the correlation matrix was
then formed. Enrichment analysis on the selected metagenes
was carried out using TOPPGene (http:/toppgene.cchmc.org/).

Survival analysis of OSU and public datasets
Survival analysis was performed with OSU TNBC datasets, with
median survival time of 75 months. Survival was calculated
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Figure 3 Nuclei segmentation within each region of interest. (A) An example of the original superpixel. (B) The result after Ostu cellular
segmentation. Some of the nuclei overlap and form large clumps. (C) Boundary of the cell nuclei. (D) Final segmentation of the cell nuclei after

using edge cut (example indicated by red arrow).
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Table 2 Examples of morphological features of cancer tissue
images.

Feature name Description

GLCM_Ang_2nd_Moment Haralick Texture. GLCM angular second moment

(akin to variance)

Rel. Border To determines the relative border
length an object shares with the image border

The value for entropy is high, if elements of
GLCM are distributed equally

Mean value of areas within cell nuclei
SD of the densities of cell nuclei

Rel_Border_To_Image_Border
GLCM_Entropy

Rel_Area_Cell_Nuclei
Density_Cell_Nuclei_Stddev

GLCM, gray-level co-occurrence matrix.

from the time of initial diagnosis of breast cancer to the time of
death. Patients were divided into two groups as determined by
feature values being greater or lower than the median value.
Univariate Cox proportional hazards regression models were
fitted to estimate the hazards of death among patients using
each morphological feature. p Values were calculated based on
univariate regression models to determine the significance of
each covariate of interest, where p<0.05 was considered signifi-
cant. Kaplan—-Meier estimators were computed to plot the sur-
vival curves for covariates which were deemed to be significant.
For survival analysis of metagenes on public datasets, a prognos-
tic index of each patient was calculated by the sum of gene
expression weighted by the hazard coefficients that were esti-
mated by Cox proportional hazards model. After 10 times of
10-fold cross-validation, the patients were divided by the 50
percentile of the tested prognostic index with statistical signifi-
cance evaluated by log-rank test.

RESULTS AND DISCUSSION

Translational discovery of survival-related morphological
features by cancer-related genes

In this study, we applied our proposed image analysis workflow
on the more than 400 slide H&E images and extracted 37
previously-tested morphological features. We investigated the
correlations between these features and the transcriptional
expression profiles and found 23 significant positive statistically
associations and 25 negative ones. Analysis on the 143
OSU TNBC TMA images as the validation set unveils four
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morphological features that have strong correlations with sur-
vival. The corresponding gene clusters of these features were
validated using two other independent datasets.

Metagenes with strong correlations to morphological

features

PCCs between expression of the 50 metagenes and morphological
features were calculated and are shown in figure 4A. Forty-eight
strong correlations (| PCC|>0.5) are highlighted in figure 4B, of
which 23 are positive correlations and 25 are negative (see online
supplementary table S3). Examples of morphology-correlated
metagenes are listed in table 3, along with their major molecular
functions and regulated human phenotypes obtained from
enrichment analysis. Some of the metagenes strongly correlate
with multiple morphological features. For instance, MetaGene_2
includes genes (eg, MYOT, ACTA1) regulating molecular struc-
tural constituent of muscle motor activity and it controls the
abnormality of protein fibers, which is the major component of
the tumor microenvironment and is associated with fibroblast
cells. It is noteworthy that MetaGene 2 negatively correlates
with most morphological features.

Survival of TNBC based on morphological biomarkers

We conducted univariate survival analysis of the morphological
features measuring variability of the TNBC tissue slides. Cox
proportional hazard models were fitted based on patient’s sur-
vival time and morphological features. Survival tests of the top
four predictive image features are shown in figure 5. Feature
‘Area_Cell Nuclei_stddev’ measures the SD of the size of the
nuclei. Higher values of this feature imply larger variations in
nuclei sizes in the poorer prognosis group. This statistic was
obtained by analyzing more than 30 000 cell nuclei of TNBCs in
the validation cohort. Another marked characteristic of the poor
survival group is the pixel density gradient among neighborhood
of pixels. A high value indicates more dramatic deviations from
the normal uniformly distributed tissue texture. The larger dis-
continuity, as noted in the survival curves among patients with
poor prognosis, may result from a larger proportion of tumor
cells. Since we kept the tumor size bias as small as possible when
the ROIs were selected and size measurements were normalized
by the size of the ROIs, the measurement bias is minimized.
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Figure 4 Pairwise correlation heat map between metagene expression and morphology of tissue in The Cancer Genome Atlas discover set.
(A) Continuous correlation without threshold. The blue color demonstrates negative correlation; the red color demonstrates the positive correlation.

(B) Thresholded correlation (|PCC|>0.5).
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Table 3 Examples of enriched gene ontology and human
phenotype terms of the metagenes strongly associated with
morphology in figure 4

MetaGenes_ID  Top molecular functions Top human phenotype

MetaGene_2 Structural constituent of muscle ~ Myopathy
Motor activity Abnormality of muscle
Cytoskeletal protein binding fibers

Muscle fiber cytoplasmic
inclusion bodies

MetaGene_ 13 Structural molecule activity Abnormal epidermal layer

Structural constituent of morphology
cytoskeleton
MetaGene_37 3',5'-Cyclic-AMP Smooth muscle contraction

phosphodiesterase activity Regulation of smooth

muscle contraction

MetaGene_40 Zinc-finger transcription factor

Survival analysis of the identified biomarkers on multiple
public datasets

Most of the public breast cancer gene expression datasets do
not possess histological images. In order to test the above mor-
phological markers, we tested on these datasets using metagenes
which are highly correlated with the above four predictive
morphological features. In the TCGA data, three features
(Area_Cell Nuclei_stddev’, ‘StdDev_to_Neighbor pixels, and
‘GLCM_Correlation’) out of the above four features have top

Research and applications

correlations with one metagene (listed in online supplementary
table S4). In the Perou and NKI datasets, this metagene can sep-
arate the ER-negative patients into two cohorts with different
outcomes. The Kaplan—-Meier curves for this metagene are
shown in figure 6.

An interesting finding on these two validation datasets is that
for the high risk cohort in the Perou dataset, the survival drops
dramatically after about 2 years (figure 6B). These gene biomar-
kers are prognostic in both studies, with p values 0.027 and
0.008, respectively.

DISCUSSION

In this work, we present a workflow for correlating histological
imaging features with gene expression profiles. Since TNBC is a
subtype of breast cancer with poor prognosis and without clear
predictive biomarkers, this study is part of our larger effort
trying to establish more effective prognostics and predictive bio-
markers for subtyping TNBC by integrating morphological fea-
tures with molecular/genomic profiles. By establishing the
relationship between morphological features in histological
images with gene expression profiles, not only can we derive
novel insights on the molecular basis for different cell and tissue
morphologies, but we also practically suggest that specific sur-
vival related molecular signatures can be manifest as morpho-
logical artifacts and features and thus avoid the cumbersome
process of collecting gene expression profiles from patients.
Moreover, among all the 37 previously-tested morphological
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Figure 5 Kaplan-Meier survival curves of prognostic model in Ohio State University triple negative breast cancer tissue microarray. Higher values
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(A) Survival on the NKI ER-negative patient subset. A higher risk group was revealed by this metagene. (B) Survival on the Perou dataset,
ER-negative patient subset. This list of genes can separate the patients into groups with very significantly different outcomes.

features, the top prognostic ones are related to cell nuclei.
Therefore, our study validated in a novel manner that nuclear
features, which have been used in tumor grading in clinical prac-
tice, are prognostic in TNBC.

To achieve this goal, we took further advantage of TCGA
data, which proved to be an invaluable resource for such inte-
grative genomic research. Even though the TCGA breast cancer
data is relatively new and the follow-up time for patients is not
long enough for effective survival analysis on TNBC patients,
the matched histological images with gene expression profiles
nevertheless provides the bridge for these two data modalities
allowing us to also use multiple modalities of data from differ-
ent sources (eg, OSU cohort as well as NCBI GEO).

Specifically in this study we identified metagenes that are
highly correlated with the four morphological features that can
predict TNBC patient survival using the OSU cohort. We
further determined that the features that best separated the
better and worse survival groups were the cellularity of epithe-
lial cells and the shape of the cancer cells. Essentially, the area
of cancer cell nuclei and the diversity of the area of nuclei show
great prognostic power for survival. To demonstrate a distinc-
tion between low-value features and high-value features, the box
plot of the area-based features and the patches with extreme
values are shown in online supplementary figure S1.

While we currently do not have another independent dataset
to validate these morphological features, we were able to test if
the expression profiles of the associated metagenes have similar
predictive power for multiple large datasets. We found that two
of five gene clusters show predictive power in at least one of the
test data. In particular, MetaGene_2 has strong predictive power
in both public datasets. This metagene is enriched with cytoskel-
eton and fiber genes, which is not only consistent with its asso-
ciation with cell morphology, but also implies its potential roles
in the development of tumor microenvironment including the
stroma. The other metagene (MetaGene 13) is enriched with
epidermal layer development indicating its association with
tumor epithelial cells, which may explain its role in cancer
development and relationship with tumor cell morphology.
These observations strongly suggest that our approach effectively
identified gene clusters that can partially explain the morpho-
logical characteristics and can be used as predictive markers.
Additionally, our methods to process whole tissue slides improve
the current state-of-the-art pathological TMA image processing.

This study has several limitations: first, we only utilized the
tissue slide images of TCGA to measure the patients” phenotypes.
The tissue slides were adjacent to tissues from which genomic
data were derived. Thus, correlations between the morphology
of these areas and genomic data are better reflected. However,
these slide images are obtained from frozen sections and may
possess larger artifacts than the diagnostic images. Another limi-
tation of this study is that we did not differentiate tumor epithe-
lial, adipose, and stromal tissue in our measurement of the
morphology. Classification of these cell types is an ongoing study
and will appear in a future publication. Recently Yuan et a/®
showed that immune cells can be used as an effective biomarker
for prognosis, suggesting tissue specific morphological features
should be explored. We plan to carry out a systematic analysis on
different compartments of the tumor region.

CONCLUSION

We present a novel workflow for discovering the associations
between histological features with gene expression profiles. Our
analysis reveals 48 pairs of strongly correlated morphological
features and gene clusters. Four of the morphological features
were identified as potential biomarkers separating TNBC
patients into groups with different survival in a large validation
cohort. Gene ontology analysis suggests that the high correla-
tions are consistent with development and tumor related
functions. Additionally, these morphological features on the
tumor tissues can be extended as prognostic biomarkers for
ER-negative breast cancers as the top gene cluster correlated
with these morphological features was shown to be effective for
predicting patient survival for ER-negative breast cancers in two
independent public datasets.

Correction notice This paper has been corrected since it was published Online First.
In table 1, the number for ‘Race” and 'Pruned set’ has been changed from 81:9 to 91:9.
On page 5, two sentences have been added to the end of the first paragraph.
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