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Abstract: In the past decade, strong coupling between light and matter has transitioned from a
theoretical idea to an experimental reality. This represents a new field of quantum light–matter
interaction, which makes the coupling strength comparable to the transition frequencies in the
system. In addition, the achievement of multimode strong coupling has led to such applications as
quantum information processing, lasers, and quantum sensors. This paper introduces the theoretical
principle of multimode strong coupling based on surface plasmons and reviews the research related
to the multimode interactions between light and matter. Perspectives on the future development of
plasmonic multimode coupling are also discussed.

Keywords: surface plasmon; interaction; multimode strong coupling

1. Introduction

Surface plasmon polaritons [1–3] (SPPs) are localized electromagnetic wave generated
by the collective oscillation of electrons on metal surfaces, that are decayed exponentially
in the direction perpendicular to the interface of both media [4]. It has become a popular
research topic in the field of nanophotonics in recent years. Owing to their distinctive
optical properties [5–9], SPPs can break through the optical diffraction limit and strengthen
the near-field enhancement effect, providing an opportunity to explore the interaction
between light and matter in micro/nano fields.

In the last few decades, owing to the potential applications of SPPs and excitons in sen-
sors, light emitters and nano-optical devices, considerable efforts have been devoted to the
coupling. SPPs represent a basic and interesting multimode coupling system. It is greatly
affected by the structural parameters and can be adjusted independently. Strong coupling
between SPPs and organic molecules have always been the subject of intense investiga-
tion [10] Essentially, SPPs can be considered as resonant–element–excited states [11–13],
which are formed by the coherent coupling of quasi-free electron gas and the collective
oscillation along the metal surface after the interaction between light and matter. Particu-
larly, a new resonance, surface plasmon resonance (SPR), may be generated, whereas the
resonance frequency in the metal SPPs is equal to the incident light [14–16]. It is worth
noting that the frequency is affected by the size and morphology of the metal nanoparticles
(NPs). On this basis, a variety of new composite structures can be produced by combining
the metal structure with the material molecules. The study of the interaction between SPPs
and molecules is of great significance not only in basic physics, but also in the research and
development of various new nano-optoelectronic devices, as well as the development of
quantum communication [17].
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Two different regimes are divided which are according to the coupling of photon and
exciton states, namely weak coupling (WC) and strong coupling (SC). In WC [18–21], there is no
disturbance between the wave functions, and the energy exchange rate between the photon
and exciton changes, and the interaction strength is less than the damping [22], whereas
the energy levels of the SPPs and exciton modes are constant, and the spatial and spectral
distributions are altered while the exciton dynamics are changed only mildly [23]. The main
function of plasmons is to induce the molecules to enhance the absorption fluorescence.
However, in SC [24], mixed states may lead to strongly modified excitonic dynamics. It
produces the formation of half-light/half-matter quasiparticles termed polaritons. The
terms of enhancing the Raman scattering process [24–26] are investigated in the polariton
states formed by the coupling between excitons and the cavity. When the Raman excitation
energy becomes resonant with polariton states, the maximum intensity can be observed.
An abundance of results related to Raman scattering have been achieved by Professor
Mlayah’s team [27–30] from research conducted at the Centre d’Elaboration des Matériaux
et d’Etudes Structurales (CEMES) facility located in Toulouse, France. In addition, SC
is manifested as the anticrossing of the coupling modes and as the resonance of two
equal-intensity transitions, which are separated as vacuum Rabi splitting [31–34], while
the corresponding frequency of the molecular energy level resonates with the starting
frequency of the SP exciton. A mixture of cavity photon modes and optical transitions is
considered as a new cavity polaronic mode, in which the cavity photon lifetime will affect
the radiative lifetime. When the interaction is strong enough, the energy levels change due
to perturbations between the wave functions [35–39].

Recently, multimode coupling, in which the excitonic modes are coupled to multi-
ple photonic modes, has attracted increasing attention. A common method to achieve
multimode coupling is to introduce coupled cavities [40,41], or a planar cavity containing
multiple cavity modes [42] with an extended optical path length. Another method is
to construct nanostructures which can support varied plasmonic modes or sustain both
plasmonic and cavity modes [43]. Compared with the classic single-mode strong cou-
pling system [44–47], the multimode strong coupling system represents a more meaningful
direction in the field of plasmon–molecule interactions. Compared with single coupling
systems [48,49], multimode strong coupling systems have more energy dissipation channels
and larger modulation. This hybrid system possesses a mixed plexciton state with diverse
excitons, which supplies an underlying technical approach to actively control the strong
exciton–plasmon–exciton coupling through modulating distinct excitons. The development
of multimode strong coupling systems has led to an efficient super-fast energy transfer
pathway between both exciton states. Therefore, the study of multimode strong coupling
will open a host of possibilities for the development and improvement of strongly coupling
plasmon nanostructures. The occurrence of multimode Rabi splitting in such systems is
of significance and relevance in both basic and applied sciences, providing a promising
opportunity for multimode hybridization and energy transfer. In addition, multimode
strong couplings also possess unlimited prospects in the field of multiple entanglement and
the realization of quantum computing devices using multiple quasiparticle boson systems.
Furthermore, the nanomanipulations of plasmonizing nanoobjects will open avenues for
the design of structures allowing or prohibiting plasmon/exciton couplings [50–52].

This study opens new possibilities for exploring and utilizing the unique properties of
hybrid states based on SPPs technology. Starting from the basic principles, we focus on the
recent developments in multimode coupling technology. Moreover, the future trends of
multimode strong coupling between light and matter are discussed.

2. Basic Principle of Multimode Strong Coupling
2.1. Vacuum Rabi Splitting

The Hamiltonian was proposed by Dicke [53], giving a model that is essential and
crucial in quantum optics, which describes systems relating to the interaction of light
and materials, and it represents the simplest model. In addition, the Dicke Hamiltonian
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model [54–56] involves the collection interaction of N two-level atoms with energy separa-
tion equal to }ω̃A with a one-mode radiation field of frequency ω̃F. It derived the following
assumptions from the quantization of electromagnetic fields: (i) The dipole approximation,
or the long wavelength limit, i.e., the electric field is calculated at the center of mass of the
atoms and is independent of position. (ii) Only two atomic energy levels will interact with
electromagnetic fields. The lowest energy state is at least metastable, and the decay to other
energy levels is negligible. The Dicke Hamiltonian model for N identical two-level atoms
immersed in a one-mode electromagnetic field is as follows [57]:

Ĥ = â† â + ω̃A Ĵz +
g√
N
(â† + â)( Ĵ+ + Ĵ−) (1)

where ωA = ω̃A/ω̃F ≥ 0 is given in units of the frequency of the field, and g = g̃/ω̃F is the
(adimensional) coupling parameter. In addition, the operators â and â† are the one-mode
annihilation and creation photon operators, respectively, Ĵz, Ĵ± are the atomic relative
population operator and atomic transition operators. Furthermore, the Dicke Hamiltonian
model shows wide applications in many fields [58–62].

The famous Jaynes–Cummings (JC) model [63–65] is the simplest but nontrivial model
for depicting the interaction of a two-level atom with an electromagnetic field at resonance,
describing the radiation field and rotating wave approximation, additionally, it can be
usually described as the most common soluble quantum-mechanical model of a single
atom in an electromagnetic field, it represents the single-excitation sub-space of the full
Jaynes–Cummings model:

∧
H = }ωpl â† â + }ωemσ̂†σ̂ + }g(â†σ̂ + σ̂† â) (2)

where â and â† are also operators, which are the same as Equation (1), and ωpl represents
the plasmon resonance frequency, while ωem is the emitter transition frequency, in addition,
σ̂ is the Pauli matrices for the two-level system. The decoherence and damping of the
emitter and plasmon are neglected in this condition.

The coupling strength between plasmon and emitter, g is as follows:

g =
2
→
µ em·

→
ε 0

h
(3)

where the transition dipole matrix element of emitter is
→
µ em and the local electric field

generated by the plasmon at the position of the emitter is
→
ε 0. For the electromagnetic fields

which were confined into a cavity of mode volume V, the maximum g (for the emitter is
at the maximum value of the field, whose dipole moment corresponds to the polarized
direction of the field) is:

g =
µem

h

√
hωpl

2V
(4)

Diagonalization of the Hamiltonian in Equation (2), the classical coupled harmonic
oscillator model is often used to predict the upper polariton branches (UPB) and lower
polariton branches (LPB) [66–68], it provides the mode frequencies of the polaritons:

ω± =
1
2
(ωpl + ωem)±ΩR (5)

where the vacuum Rabi frequency ΩR is

ΩR =
√

g2 + 1/4(ωpl −ωem)
2 (6)

ΩR represents the frequency at which the energy oscillates between the plasmon and
the emitter.
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Compared with the intrinsic linewidths of optical modes and excitons, Rabi split-
ting [69–71] is larger and more capable of maintaining a strong coupling state, which may
lead to two independent modes: UPB and LPB, as shown in Figure 1a. While the two
independent states are degenerated and owed equal lifetimes and effective masses, the
strong coupling, which demonstrated anti-crossing and the appearance of two transitions
of equal strength separated by Rabi splitting, the two new modes produced in the strong
coupling state can be explained through mode hybridization, analogous to the molecular
orbital theory [72,73]. In addition, the strong coupling regime illustrated by two coupled
oscillators can be seen in Figure 1b [74], this system composed exciton A and plasmon. An
important consequence of strong coupling is that the exciton should possess the plasmonic
properties due to the coherent interactions, such as polarization and emission direction [75–77],
and the exciton–plasmon coupling, including enhanced cooperative emission and enhanced
exciton transport, in the excited state molecules and molecular assemblies interacting with
optical modes localized in cavities and other nanostructures. A significant limitation of
the single molecules strong-coupling is that the operation may be required under cryo-
genic temperature [78], and that the presence of nonlocality imposes, will limit strictly the
practical applications [79].
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Figure 1. (a) Schematic of the energy states of the double coupling of the plasmon mode with the
exciton. (b) Strong coupling regime illustrated by two coupled oscillators. Adapted with permission
from ref. [74]. Copyright 2010 AIP Publishing.

Furthermore, damping might be taken into consideration through the Heisenberg–Langevin
method, in which both the plasmon and emitter are coupled to a library of harmonic-
oscillator modes [80]. The Green’s function approach [81] can be used to calculate the
absorption spectra, while the Liouville approach [82] can be used to depict the system
dynamics. Either the Liouville equations or the Heisenberg–Langevin [83,84] may both
calculate the absorption and scattering cross-sections, through introducing the external
electric field, ε, that acts on the plasmon:

Ĥd = −εµ̂pl (7)

where µ̂pl = dpl(â + â†) is the plasmon dipole operator and dpl is the plasmon dipole
moment. Owing to the interaction between the emitter and light being much weaker than
that of the plasmonic nanostructure, the direct driving of the emitter by the external field
can be ignored. Then, the optical response can be reached by solving the equations of
motion in frequency or time domains, respectively.

Several assumptions are involved in this method of analysis. By regarding the emitter
as a two-level system, the complex energy level structure that exists in any quantum emitter
is ignored. By regarding the plasmon field as a population of a single (quasi-) normal
modes, additional modes that may overlap in frequency and any frequency dependence
of the plasmon damping rate are ignored. Finally, it regards the emitter as a point dipole,
not taking into account any effects due to magnetic field gradients in the spatial range
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of the emitter. Although the model is simplified, it can still process the experimental
data quantitatively.

The solution of the quantum model requires large computational resources for ac-
counting for all the potentially occupied plasmon substates. If the plasmon field can be
approximated as the classical one, that is, significant acceleration can be obtained while
the effect of quantum fluctuations in the field can be ignored, then in this condition, the
Heisenberg–Langevin or Liouville equations may be reduced as the Maxwell–Bloch [85–87],
which is semiclassical. Matthew’s team [78] have verified that the predictions of the quan-
tum model and the semiclassical model are almost identical in the case of parameters
related to plasmon coupling, the Maxwell Bloch equation is as follows [88]:

..
µpl + γpl

.
µpl + ω2

plµpl = F0 + g(ωpldpl/dem)µem (8)
.
ρ

em
1 = ωemρem

2 − γ2ρem
1

.
ρ

em
2 = −ωemρem

1 − (g/dpl)µplρ
em
3 − γ2ρem

2
.
ρ

em
3 = (g/dpl)µplρ

em
2 − γ1(ρ

em
3 + 1)

(9)

where dem represents the emitter’s transition dipole moment, γpl is the plasmon decay rate,
γ1 is the emitter’s energy decay rate, γ2 is the emitter’s dephasing rate, ρem

1 = 2<[ρ01],
ρem

2 = −2=[ρ01], ρem
3 = ρ11 − ρ00, and F0 = 4ωpld2

plε. The pure dephasing of the plas-
mon can be ignored for the slowing energy damping. Differentiation of the first of
Equation (9) with respect to time and substitution of the second equation into the first
obtains

..
ρ

em
1 = ωem[−ωemρem

1 − (g/dpl)µplρ
em
3 − γ2ρem

2 ]− γ2
.
ρ

em
1 . In the case of the linear re-

sponse (scattering or absorption) of the coupled system, further approximations regarding
the coherence between the emitter ground state and the excited state can also be ignored,
and the emitter’s population almost remains in the ground state; For example, ρem

3 ≈ −1
and ρem

2 � 1. Using µem = demρem
1 , we obtain:

..
µem + γem

.
µem + ω2

emµem = g(ωemdem/dpl)µpl (10)

Assuming the case where the dephasing of the emitter is much faster than energy decay,
the total emitter decay rate is γem ≈ γ2. This assumption is suitable for all experiments
at or near room temperature. Equations (8) and (10) describe a pair of coupled classical
harmonic oscillators. The displacement of each harmonic oscillator corresponds to the
dipole moments of the plasmon and exciton, respectively. Generally, the electromagnetic
near field couples via two oscillators. The plasmon oscillator is driven only by an external
field. An intuitive and simple picture of this coupling exciton–emitter system is provided
by the coupled oscillator model, and the oscillation of two coupled pendulums is easily
solved, which can be found in reference [74,89].

In the absence of the external driving field, the coupled oscillator equation can be
solved easily in the frequency domain to obtain the normal modal frequency of the system.
If assuming the coupling strength, damping rate and detuning are smaller than resonance
frequency (g, γem, γpl ,

∣∣∣ωem −ωpl

∣∣∣� ωpl), and the normal-mode frequencies are:

ω± =
1
2
(ωpl + ωem)−

1
4

i(γpl + γem)±ΩR (11)

where now
ΩR =

√
g2 + 1/4(ωpl −ωem)

2 − 1/16(γpl − γem)
2 (12)

γpl and γem are the uncoupled SPPs and exciton decay rates, respectively. Comparison
with Equations (5) and (6), shows that the results of the coupled-oscillator model are
the same as the Jaynes–Cummings Hamiltonian under the constraints of zero damping
and dephasing, if ΩR is real while the normal modes are non-degenerate. In the cases of
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∣∣∣ωem −ωpl

∣∣∣ � ωpl , and γem < γpl (in all experiments that have been shown, both were
fulfilled), this case reduces to

g >
1
4
(γpl − γem) (13)

Between over-damped and the under-damped cases, the transition can be expressed
as a boundary between weak and strong coupling. However, strong coupling is considered
to occur only when at least one complete Rabi oscillation occurs [90], when:

g >
1
4
(γpl + γem) (14)

Generally, many researchers use Equation (11) to judge whether the system is in the
strong-coupling state or not. However, it is significant to realize that it does not represent
a sharp threshold, when coupling plasmon-emitter systems cross this boundary, their
behavior does not change qualitatively.

Moreover, the coupled oscillator equation can be easily generalized to N emitters
independently coupled to a single plasmon mode, each with a different coupling constant
gi. In the condition, the strong-coupling leads to

√
Ngrms >

1
4
(γpl + γem) (15)

where grms = (1/N)∑N

i=1
gi and where assuming the same linewidth, γem, for all emitters.

Up until now, the JC model proposed by Tavis and Cummings and its extension,
the Tavis–Cummings (TC) model, are still the basis of studying the basic properties of
quantum electrodynamics (QED) and understanding the existence of Rabi oscillations. To
our knowledge, the SPPs–exciton strong coupling system is related to harmonic oscillators,
and thus the definition of strong coupling is dependent on, among other things, the
conventions of the particular field of physic involved; the system is in the strong coupling
regime whenever the vacuum Rabi splitting (often called Rabi splitting) is experimentally
observable [91].

2.2. Multiple Harmonic Oscillators

Furthermore, the multimode system is similar with multiple harmonic oscillators, con-
sidering the coupled three-harmonic-oscillator system as an example, as shown in Figure 2a.
When coupling occurs, the frequencies of the oscillators will change, which is related to the
coupling strength. Similarly, as shown in Figure 2b, when SPPs–double exciton coupling
occurs, the plasmon energy level Upl , exciton A energy level Uea, and exciton B energy level
Ueb will change, and hybridization will occur, producing three hybridized plexciton states
and double Rabi splitting. After the coupling, there are three unique solutions for U (UH ,
UM, and UL), and thus the polariton energy dispersion comprises three energy branches.
These are the aforementioned UPB and LPB, along with middle polariton branches (MPB).
This change is evident in the scattering, absorption, and extinction spectra of the coupled
system, with three peaks and two dips. When the plasmon resonance energy is coupled
from low to high with excitons of constant energy, a double anticrossing image occurs,
which is a typical characteristic of the multimode strong coupling between two excitons
(excitons A and exciton B) and a plasmon, as illustrated in Figure 2c.
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Figure 2. (a) Schematic diagram of the three-coupled oscillator model. (b) Schematic diagram of
plasmon and exciton multimode coupling energy level splitting. Adapted with permission from
ref. [92]. Copyright 2019 American Chemical Society. (c) Double anticrossing dispersion curves of
plasmon–exciton multimode coupling.

To provide physical insights into plasmon–exciton multimode coupling, we further
focus on the linear analysis of the scattering spectra, using the coupled oscillator model to
fit the calculation results [93,94]. In the hybrid system, the coupling oscillators represent
the plasmon, exciton A, and exciton B. The motion equations for the three oscillators are as
follows [95,96]:

··
xpl(t) + γpl

·
xpl(t) + ω2

pl xpl(t) + ga
·

xa(t) + gb
·

xb(t) = Fpl(t) (16)

··
xa(t) + γa

·
xa(t) + ω2

a xa(t)− ga
·

xpl(t) = Fa(t) (17)

··
xb(t) + γb

·
xb(t) + ω2

b xb(t)− gb
·

xpl(t) = Fb(t) (18)

where, xpl , xa and xb represent plasmon, exciton A oscillator, and exciton B oscillator,
respectively. γpl , γa and γb are the damping rate of plasmon, exciton A and exciton B,
respectively, ωpl , ωa and ωb are the resonance frequencies of plasmon, exciton A and
exciton B, respectively, ga is the coupling rate between the plasmon and exciton A, while gb
is the coupling rate between the plasmon and exciton B, Fpl , Fa and Fb represent the driving
forces due to the external source. We assumed that both excitons A and B were both entirely
driven by the plasmon oscillator; hence, we set Fpl(t) = Fple−iωt, where ω is the frequency
of the electric field, Fa(t) = 0, Fb(t) = 0. Finally, xpl(t), xa(t) and xb(t) can be derived
from Equations (16)–(18). In some specific hybrid nanostructures, the dimensions of the
structures are small compared to the optical wavelength; thus, the scattering cross-section
can be calculated in the quasi-limit [97]. In this limitation, the scattering cross-section is

(8π/3) · k4
∣∣∣Fpl xpl

∣∣∣2, where k = ωn/c is the wave vector of light. By substituting xpl(t) into

(8π/3) · k4
∣∣∣Fpl xpl

∣∣∣2 and the use of the incident light energy E replaces the incident light
frequency ω, the scattering cross-section can be obtained as follows:

σscat(E) = (8π/3) · k4
∣∣∣Fpl xpl

∣∣∣2∞E4

∣∣∣∣∣ ab
ab(E2 − E2

pl + iEγpl)− E2g2
ab− E2g2

ba

∣∣∣∣∣
2

(19)
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where a = E2 − E2
a + iEγaa, and b = E2 − E2

b + iEγbb.
The multimode coupling system can be explored by description of a three-coupled

oscillator model composed of the optical modes [98,99], and the interaction Hamiltonian
for the system can be expressed as [100]:

Upl − i
γpl
2 gb ga

gb Ub − i γb
2 0

ga 0 Ua − i γa
2




αpl

αb

αa

 = U


αpl

αb

αa

 (20)

where Upl − i
γpl
2 and Ub − i γb

2 are the undisturbed energies of the optical modes in excitons
A and B, respectively, Ua − i γa

2 is the exciton energy, gb is the coupling constant between
optical modes, and ga is the exciton–photon coupling potential. αpl , αb, and αa are the

eigenvector components (Hopfield coefficients), the corresponding
∣∣∣αpl

∣∣∣2,|ab|2, and |αa|2

represent the weighting efficiencies and satisfy
∣∣∣αpl

∣∣∣2 + |αb|2 + |αa|2 = 1. Solution of the

long-term determinant of resonance where Upl − i
γpl
2 = Ub − i γb

2 = Ua − i γa
2 (all of them

are zero) leads to the eigenvalues U = 0,±
√
(g2

a + g2
b). Thus, it is expected that there might

exist three modes, namely the central mode under the unperturbed energy and the external

two modes shifted by ±
√
(g2

a + g2
b) to a higher and lower energy. The eigenvectors Ψ of

the UPB, MPB and LPB modes are [100–102]:

ΨUPB =
1√
2

φpl +
∆

√
2(Ω2 + ∆2)

1/2 φb +
∆

√
2(Ω2 + ∆2)

1/2 φa (21)

ΨMPB =
∆

√
2(Ω2 + ∆2)

1/2 φb −
∆

√
2(Ω2 + ∆2)

1/2 φa (22)

ΨLPB =
1√
2

φpl −
∆

√
2(Ω2 + ∆2)

1/2 φb −
Ω

√
2(Ω2 + ∆2)

1/2 φa (23)

where φpl , φb, and φa are the unperturbed basis functions. With Equation (22), no compo-
nent from the basis function φpl is contained by the eigenvector of the central mode, of
exciton A; for the central mode, the amplitude of the light field in the cavity containing
this condition is zero. All weights of φpl reside equally in the two external components. In
comparison, if light is entering into the empty cavity, then the central mode will be bright
(for the nonzero φd component in Equation (22)).

Surprisingly, the nature of the (3 × 3) matrix Hamiltonian of Equation (20) is shown,
which has one basis function (φpl) that is coupled to the other two basic functions (φb, φa).
φb and φa by contrast are not coupled directly. The eigenvector ΨMPB is the central mode.
At the same time, these two external modes contain components from both φpl and φb, with
thus observation in both directions.

This situation for the coupled two-cavity one-exciton case is similar to that found for
the normal modes of three masses connected linearly by springs [103] or of linear triatomic
molecules [104]. For which cases, there is one mode corresponding to the zero displacement
of the central mass, and the two outer masses undergo tensile mode vibrations. This is
consistent with Equation (22) where in the central mode the weight of the oscillator (φpl)
connected with the other two is zero.

2.3. Scattering Spectra

For analyzing the coupling strength in the plasmonic system, which cannot be obtained
directly from Fano’s original spectrum, the coupled harmonic oscillator model served as a
simulation of the scattering spectrum for describing the real physical situation, phenomeno-
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logically [95]. Thus, fitting of the calculated spectra into the coupled-oscillator model,
which makes it possible to determine whether the system is in a strong-coupling regime or
not, was performed for determining which phenomenon (hybridization or interference) is
responsible for the spectra.

The coupled-oscillator equations can also be solved with a driving force to obtain the
absorption and scattering cross sections. When the frequency of driving force is ω under
the steady state, the solution is:

µpl =
F0(ω

2
em −ω2 − iωγem)

(ω2
em −ω2 − iωγem)(ω2

pl −ω2 − iωγpl)−ωemωpl g2
(24)

The scattering cross-section is given by [95]:

σscat(ω)∞ω4
∣∣∣µpl

∣∣∣2 (25)

Similar conclusions can be obtained for absorption and extinction cross-sections [95].
From Equations (24) and (25), the calculated spectra indicate unique plasmon and exciton
parameters and different coupling strengths.

In the previous literature [95,105], the following represent various coupled-oscillator
equations with different coupling terms:{ ..

µpl + γpl
.
µpl + ω2

plµpl = F0 − g
.
µem

..
µem + γem

.
µem + ω2

emµem = g
.
µpl

(26)

Generally, the coupling terms used in Equations (8) and (10) are preferred, since the
equation for the leading choice of the coupling term is derived from a quantum mechanical
model in the linear and classical limitations. However, if the coupling term in Equation (26)
is used, the steady-state solution is different only in the last term of the denominator:

µpl =
F0(ω

2
em −ω2 − iωγem)

(ω2
em −ω2 − iωγem)(ω2

em −ω2 − iωγem)−ω2g2 (27)

This will give almost the same results as Equation (24), while g, γem, γpl � ω; this has
been the case for all reported experimental results [95,106,107].

Furthermore, a coupled harmonic oscillator model elucidates the nature of the interac-
tion and reveals the coherent quantum superposition of the excitons, which are mediated by
the plasmonic interaction. In addition, each component of the coupled system is described
as a harmonic oscillator with its own resonance damping and frequency.

The theory discussed here is based on the characteristics of SPPs when coupled with
excitons, which are confined to the metal surface at the nanometer scale, thus greatly
compressing the spatial distribution of the electromagnetic field [108,109]. Furthermore,
this spatial variation will introduce substantial theoretical complexities in the coupled
oscillator models [77]. This forms a theoretical basis for exploring the coupling effect,
clearly, the coupling and hybridization phenomena open an avenue for the enhancement of
plasmonic resonances in nanostructures, which deserves further study.

3. Recent Progress in Multimode Strong Coupling
3.1. Multimode Coupling Related to Microcavity Nanostructure
3.1.1. Coupling Related to TMDs Microcavity Nanostructure

Two-dimensional transition metal dichalcogenides (TMDs) have recently attracted
widespread attention owing to their unique electrical and optical properties. The TMDs
display a strong enhancement of the Coulomb interaction [110]. The resulting bound
electron-hole pairs, govern the electrical charge and optical transport properties, then affect
the Coulomb interaction between the oscillator strength and exciton binding energy [111].
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The exciton absorption of TMDs is located within the visible light band, showing broader
application prospects and attracting the interest of researchers. TMDs have opened a
new research challenge for strong coupling. Menon M. et al. [112] demonstrated the
strong coupling between two-dimensional excitons and cavity photons in a monolayer
MoS2-based microcavity with a Rabi splitting of 46 ± 3 meV for the first time. The same
team [113] presented an approach for dynamically regulating the interaction between
excitons in monolayer WS2 and microcavity photons at room temperature, and observed a
Rabi splitting of 60 meV.

Furthermore, TMDs monolayers provide the opportunity to study multimode strong
coupling with larger Rabi splitting, and temperature might be a key factor affecting the
multiple coupling. Cuadra J. et al. [114] reported the strong interaction between local-
ized surface plasmon resonance (LSPR) in silver nanoprisms and excitons and trions in
monolayer tungsten disulfide (WS2). The high density of the photonic states is shown in
Figure 3a at the corners of the nanoprism, which overlaps with the WS2 monolayer for
efficient plasmon−exciton interaction, and the inset shows the SEM image of such a particle
and a magnified view of a corresponding dark-field image. In addition, for T = 300 K, the
Rabi splitting was 120 meV, whereas in a low temperature case, T = 6 K (Figure 3b, red,
green, and blue solid lines represent the eigen energies extracted from the Hamiltonian anal-
ysis. Black solid lines indicate exciton, trion and plasmon resonances), three anticrossing
bands, corresponding to UPB, MPB and LPB, respectively, with minimal splitting measured
approximately 150 meV. The 30 meV increase can be explained by the detuned exciton and
trion. Both plasmon and exciton resonances are narrowed upon cooling, and exciton line
narrowing at low temperatures is consistent with previous results [115]. Figure 3c shows
the Hopfield coefficients for the plasmon, exciton, and trion contributions to the UPB, MPB,
and LPB states as a function of the plasmon resonance. Double Rabi splitting was observed
in the dark-field scattering spectra using a plasmonic nanostructure interacting with two
types of excitons (charged and neutral) in WS2 with decreasing temperature. The degree of
plasmon–exciton–trion coupling might be tailored by varying the temperature.

Moreover, similar exploration was conducted by other groups, and the size of the
nanosystem was also related to the strength of the multimode coupling. Li B. et al. [116]
demonstrated a large 300 meV Rabi splitting that was achieved under ambient conditions in
a strong coupling regime by Ag–WS2 heterostructure embedding. The system consisted of
a 100 nm Ag mirror and a 30 nm MgF2 spacer with the Ag nanodisks fabricated by e-beam
lithography (EBL), as shown in Figure 4a. In the plasmon–exciton-cavity, the 99 nm Ag
nanodisk was the best structure for the strongest interaction, with a 300 meV Rabi splitting
among the three oscillators, which can be seen in Figure 4b. Red dots with error bars show
energies obtained from the reflection spectrum. The horizontal black dashed lines represent
the A-exciton and the microcavity resonant energy, respectively. The black slanted short-
dashed line represents plasmon resonance mode. It depicts resulting dispersion curves of
the Ag–WS2 heterostructure that was embedded in the optical microcavity. They proposed
the criteria of the strong coupling for the three oscillators, and the Hopfield coefficients
of the three branches were calculated as shown in Figure 4c. Each branch consisted of
part-plasmon, part-exciton, and part-cavity modes, demonstrating that the hybrid state
was successfully generated by combining the Ag–WS2 heterostructure with the optical
microcavity. At a nanodisk diameter of 99 nm, the strongest interaction of 300 meV Rabi
splitting was obtained. Thus, it is clearly evident that the size of the Ag nanodisk affects
the strong coupling.
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Figure 4. (a) Schematic of the Ag–WS2 heterostructure, where Ag nanodisks were fabricated on WS2

monolayers by EBL. (b) Energies of reflectivity dips as a function of the nanodisk diameter extracted
from the reflectivity spectrum. (c) Hopfield coefficients for plasmon, exciton, and microcavity
contributions to upper, middle, and lower hybrid states as a function of diameter, calculated using the
three-coupled oscillator model. Adapted with permission from ref. [116]. Copyright 2019 Institute of
Optics and Electronics, Chinese Academy of Sciences.

Jiang P. et al. [117] proposed a strong exciton–plasmon–exciton coupling system that
consisted of a silver nanoprism separated from a monolayer WS2 by J-aggregates, as
depicted in Figure 5a, which was performed by finite-difference time-domain (FDTD)
simulations to obtain the optical response. Figure 5b depicts the scattering cross-section
spectra of the hybrid nanostructure. The solid white lines indicate the three anticrossing
bands corresponding to the UPB, MPB and LPB, and the solid white lines match well
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with the numerical simulation results; the splitting extracted between the UPB and MPB
is 130 meV at the zero detuning while the splitting between the MPB and LPB is 170 meV.
Since the damping losses were not considered, the calculated Rabi splittings are larger than
the actual results slightly. Furthermore, Figure 5c shows the weighting efficiencies for the
LSPR mode, exciton A of WS2, and J-aggregates exciton contributions to three polariton
branches as a function of the plasmon resonance.
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Figure 5. (a) Schematic of the Ag–J-aggregates–WS2 nanostructure. The inset shows the cross
section of the hybrid nanostructure with a Ag nanoprism thickness of 10 nm. (b) Scattering cross
sections spectra of J-aggregates and WS2 coupled with Ag nanoprisms. The black scattered-diamonds,
scattered-circles and scattered-triangles represent simulated UPB, MPB and LPB as a function of
plasmon resonance position. (c) Weighting efficiencies for LSPR mode, the exciton of WS2 and
J-aggregates exciton contributions to UPB, MPB and LPB states as a function of plasmon resonance.
Adapted from ref. [117].

Overall, the research interest in TMDs mainly focuses on their distinctive optical
properties: strong nonlinear optics response, effective valley-spin coupling, strong ex-
citon binding energy, large spin–orbit interaction, and transition dipole momentum of
the material. These properties of multimode strong coupling systems based on TMDs
and their related characteristics are now sought after by researchers. Such a system has
potential applications in optical modulators at the nanoscale and polaritonic devices based
on ultrathin materials.

3.1.2. Coupling Related to Single-Dye Microcavity Nanostructure

Although most studies about strong coupling have been explored interactions between
a single excitonic mode and a single photonic mode, some teams have focused on multi-
mode mixed coupling, in which the excitonic mode is coupled to more than one photonic
mode; however, these systems are complicated, and the quality of excitons are more or
less affected.

Zhang K. et al. [118] presented a hybrid strong coupling between multiple photonic
modes and excitons in an organic-dye-attached photonic quasicrystal. The electron beam
evaporation method was used to deposit the dielectric multilayers, and TDBC dye was
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selected for the J-aggregates, acting as an organic semiconductor. Following the simulation
parameters, SiO2/Ta2O5 multilayers were deposited onto K9 glass substrate, and then the
J-aggregates were directly spun onto the top surface, as schematically described in Figure 6a.
The value of the coupling energy, namely the coupling energy between the photonic mode
and the excitons, was found to be hΩH = 67 meV, hΩC = 93 meV and hΩL = 85 meV.
The six polariton bands of the calculated eigen energies in this system are described by the
dashed lines in Figure 6b, and all these results fit well with the experimental data.
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Balasubrahmaniyam M. et al. [119] investigated and experimentally implemented
the photonic analog of localization induced by ultra-strong interactions in a coupled
three-mode system. Furthermore, they demonstrated the ultra-strong coupling between
a highly dispersive cavity plasmon mode and dimer excitons of J-aggregates Rhodamine
B (RhB). A prism arrangement in a photon tunneling configuration was used for probing
the dispersion, and two prisms (SF11, refractive index ~1.78) with 40 nm thick Ag films
coated over their hypotenuse faces were brought close to each other to form the cavity,
as illustrated in Figure 7a. Moreover, the position of the RhB in the cavity results in the
formation of three antisymmetric plasmon (ASP) mode–exciton hybrid modes and splits
the measured ASP transmission peak into three. Figure 7b shows the position of these
peaks, where a permanent broad gap of 420 meV coupling is obtained, confirming the
ultra-strong coupling between the exciton levels and the ASP mode.
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Hakala T. et al. [120] demonstrated the emission of three energy branches in the strong
coupling between the surface plasmon polaritons and J-aggregates Rhodamine 6G (R6G)
sandwich structure, with a glass substrate, a 45 nm silver film in the middle, and a resist
layer on top, with double vacuum Rabi splitting energies up to 230 and 110 meV for the
200 mM sample R6G concentrations. It is the first time that in the strongly coupled SPP-
molecule system, each of the three energy branches can be converted into photons, and the
finding shows great foreground in the field of multimode energy transfer and hybridization.

In all, the one-dye microcavity nanostructure system can be used to provide multimode
hybrid interactions, which may inspire related exploring on multimode light–matter interactions
and achieving some potential applications, such as multimode sensors and spectroscopy.

3.1.3. Coupling Related to Two-Dye Microcavity Nanostructure

It is worth noting that current research leans towards more than two types of light
components to form hybrid polaritons, one with strong dispersion and the other one
nearly nondispersive, which can inspire related studies on hybrid light–matter interactions.
To date, interactions between electronic states in organic states and plasmons have been
undertaken intensively. In particular, when the emitter which is near the metal surface
with the plasmon resonance, the spontaneous emission rate is modulated and the rate of
energy transfer is changed [121,122]. However, most studies are conducted under the weak
coupling region. On the other hand, pioneering studies have demonstrated that organic
dye molecules with high oscillator strength form strong coupling region under plasmon
excitation [123,124]. The coupling strength can be controlled through the plasmon energy
and its line width, suggesting usability of a wide variety of organic molecules for achieving
strong coupling.

Lidzey D. et al. [125] presented microcavities that can occur between the two cyanine
dyes, with simultaneous strong coupling of the excitations of the individual dyes to a single
cavity mode. The cyanine dye layers were spatially separated by a 100 nm-thick barrier
layer of polystyrene to give an exciton separation of 140 nm. The cavity contained a dye
concentration of approximately 2.3 × 1020 cm−3, where the 37 meV and 58 meV splitting
branches were observed, whereas with a lower dye concentration of 1.2 × 1020 cm−3, the
splitting branches were 18 meV and 44 meV. The exciton scattering rates were expected to
be significantly enhanced because Frenkel excitons have large interaction cross-sections
with molecular vibrations.

Melnikau D. et al. [126] introduced hybrid structures consisting of Au nanostars and J-
aggregates of cyanine dyes, and Rabi splitting with an energy of up to 260 meV. In addition,
the absorption spectrum of the complex hybrid system showed two pronounced dips at
590 and 642 nm (red curve), which corresponded to the maximum absorption wavelengths
of the two different dyes (JC1 and S2165), and double Rabi splitting with the energies of 187
and 119 meV, as shown in Figure 8a. In addition, Figure 8b is the results from the model
simulations [127] corroborated the experimental findings, when the position of the exciton
resonance shifts to red or blue, which is relative to the maximum absorption of the nanostar,
a unique asymmetric profile can be seen in the spectrum of the hybrid system.

Coles D. et al. [128] used strong coupling in an optical microcavity to mix the electronic
transitions of two J-aggregated molecular dyes (TDBC and NK-2707) with a 200-nm-thick
silver mirror, and used both non-resonant photoluminescence emission and photolumines-
cence excitation spectroscopy to show that hybrid polariton states act as an efficient and
ultrafast energy-transfer pathway between the two exciton states. At normal incidence,
the photon energy was 101 meV below the NK-2707 exciton (hereafter referred to ex1 for
simplicity) and 250 meV below the TDBC exciton (hereafter ex2). A Rabi splitting energy
of hΩ1 = 73 meV was determined between the LPB and MPB, whereas there was a larger
splitting of hΩ2 = 155 meV between the MPB and UPB, consistent with the higher oscillator
strength contributed from the TDBC J-aggregates.



Nanomaterials 2022, 12, 1242 15 of 25Nanomaterials 2022, 12, x FOR PEER REVIEW 16 of 27 
 

 

 
Figure 8. (a) Absorption spectra of gold nanostars (balck curve), pristine J-aggregates of JC1 
(magenta curve) and S2165 (blue curve), and the hybrid structure (red curve). (b) Theoretical 
extinction spectra of gold nanostars (black curve) and their hybrid structure with J-aggregates (red 
curve). Adapted with permission from Ref. [126]. Copyright 2013 IEEE. 

Coles D. et al. [128] used strong coupling in an optical microcavity to mix the elec-
tronic transitions of two J-aggregated molecular dyes (TDBC and NK-2707) with a 200-
nm-thick silver mirror, and used both non-resonant photoluminescence emission and 
photoluminescence excitation spectroscopy to show that hybrid polariton states act as an 
efficient and ultrafast energy-transfer pathway between the two exciton states. At normal 
incidence, the photon energy was 101 meV below the NK-2707 exciton (hereafter referred 
to ex1 for simplicity) and 250 meV below the TDBC exciton (hereafter ex2). A Rabi split-
ting energy of ℎΩ = 73 meV was determined between the LPB and MPB, whereas there 
was a larger splitting of ℎΩ = 155 meV between the MPB and UPB, consistent with the 
higher oscillator strength contributed from the TDBC J-aggregates. 

It is worth noting that, apart from the interaction area length, the two-dyes microcav-
ity nanostructure can increase the SPP-material interaction by creating a layer at the top 
of the interacting area, thereby decreasing the mode volume and preventing decay into 
the radiative mode, in which the upper exciton reservoir alone could be excited. This 
shows potential applications in integrated microcavity sensors and optical devices. 

3.2. Multimode Coupling Related to Periodic Noble Metallic NPs- J-Aggregates Nanostructure 
Organic semiconductor materials, such as J-aggregate [129–131] dyes, offer great po-

tential because of their advantages in low-cost manufacturing and optical properties. J-
aggregates support exciton states, which are electrically neutral electron/hole pairs gener-
ated by the absorption of photons. Excitonic states also exhibit strong nonlinear optical 
behavior that can be used to generate excitation sources for photon and transistor effects. 

In addition, the periodic noble metallic nanoparticles (NPs) can be adjusted to mod-
ulate the plasmonic response of the nanostructure, therefore, the new periodic NPs mon-
olayer nanostructure becomes a prime candidate for researchers exploring strong cou-
pling phenomena. 

Zhang K. et al. [132] demonstrated a nanostructured cavity with hybrid coupling 
among the molecular excitons, surface plasmon polaritons, and Fabry–Perot mode, where 
a J-aggregate-doped polyvinyl alcohol (PVA) layer was inserted between a silver grating 
and a thick silver film. They designed a nanostructure PVA with a thickness of 170 nm, 
inserted between a silver grating of 300 nm period and a 40 nm slit width, as can be seen 
in Figure 9a, the SPPs energy can be tuned through changing the period of the grating. In 
addition, for introduction of the excitons, the pure PVA was replaced with cyanine dye 
TDBC, as shown in Figure 9b. They observed three dispersive polariton bands with Rabi 
splitting energies of ℎΩ = 110.6 meV and ℎΩ = 122.5 meV, as shown in Figure 9c, indi-
cating the strong coupling between the SPPs mode and the PB1 or PB2 mode (there are 
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with permission from ref. [126]. Copyright 2013 IEEE.

It is worth noting that, apart from the interaction area length, the two-dyes microcavity
nanostructure can increase the SPP-material interaction by creating a layer at the top of
the interacting area, thereby decreasing the mode volume and preventing decay into the
radiative mode, in which the upper exciton reservoir alone could be excited. This shows
potential applications in integrated microcavity sensors and optical devices.

3.2. Multimode Coupling Related to Periodic Noble Metallic NPs- J-Aggregates Nanostructure

Organic semiconductor materials, such as J-aggregate [129–131] dyes, offer great
potential because of their advantages in low-cost manufacturing and optical properties.
J-aggregates support exciton states, which are electrically neutral electron/hole pairs
generated by the absorption of photons. Excitonic states also exhibit strong nonlinear optical
behavior that can be used to generate excitation sources for photon and transistor effects.

In addition, the periodic noble metallic nanoparticles (NPs) can be adjusted to modu-
late the plasmonic response of the nanostructure, therefore, the new periodic NPs mono-
layer nanostructure becomes a prime candidate for researchers exploring strong cou-
pling phenomena.

Zhang K. et al. [132] demonstrated a nanostructured cavity with hybrid coupling
among the molecular excitons, surface plasmon polaritons, and Fabry–Perot mode, where a
J-aggregate-doped polyvinyl alcohol (PVA) layer was inserted between a silver grating and
a thick silver film. They designed a nanostructure PVA with a thickness of 170 nm, inserted
between a silver grating of 300 nm period and a 40 nm slit width, as can be seen in Figure 9a,
the SPPs energy can be tuned through changing the period of the grating. In addition, for
introduction of the excitons, the pure PVA was replaced with cyanine dye TDBC, as shown
in Figure 9b. They observed three dispersive polariton bands with Rabi splitting energies
of hΩ1 = 110.6 meV and hΩ2 = 122.5 meV, as shown in Figure 9c, indicating the strong
coupling between the SPPs mode and the PB1 or PB2 mode (there are two unique solutions,
thus two hybrid modes emerging). Due to the non-dispersion of the Fabry–Perot modes
and the exciton, these mixed modes hardly disperse with the plane wave vector, as shown
in Figure 9c, the two modes PB1 and PB2 were labeled.
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aggregates−Ag (AJA) nanostructures using the finite element method, which can be seen 
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Figure 9. (a) The calculated reflection spectrum of the nanostructure with PVA inserted between a
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Wang H. et al. [133] constructed a hybrid system consisting of a 200 nm thick Au film
patterned with a 2D square lattice gold nanohole array, and three different samples were pre-
pared by spin-coating a uniform layer (300 nm thick) of sulforhodamine 101 (SR101) films
with different concentrations, as can be seen in Figure 10a. Furthermore, by increasing the
SR101 concentration, the Rabi splitting widened. The double Rabi splitting energies were
255 and 188 meV in steady-state transmission measurements, as illustrated in Figure 10b,
and the dispersion was in excellent agreement with the typical signature of strong coupling.
When the gold nanohole period is 380 nm, which matches the absorption of SR101 of the
SPP resonance, the coupling strength maximizes, and when the plasmon mode periodicity
is 350 nm, which matches the shoulder absorption of SR101, the double Rabi splitting is
observable for the two periods.
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Figure 10. (a) Schematic of the hybrid exciton–plasmon system. The red upper part illustrates the
chemical structure of SR 101 dyes, while an SEM image of the Au nanohole array is shown in the
yellow box. (b) The energy dispersion curves, where the three bands were measured by changing the
SR101 concentration. Adapted with permission from ref. [133]. Copyright 2017 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim.

Yang H. et al. [134] investigated plasmon−exciton−plasmon (PEP) couplings in Ag−J-
aggregates−Ag (AJA) nanostructures using the finite element method, which can be seen in
Figure 11a. The grating period is 500 nm, which is not excessively large so as to superpose
the lattice resonance with the LSPR. The three new hybridized plexciton modes were
obtained by adjusting the geometry and the incident angle. As shown in Figure 11b,
the solid lines indicated three plexciton bands EH

PEP, EM
PEP, and EL

PEP obtained based on
Equation (16), where it was clearly observed that the solid lines matched well with the
numerical results. The coupling of the SPP mode with EL

J−LSPR and EH
J−LSPR modes had

splitting energies hΩH = 55.3 meV and hΩL = 52.5 meV, respectively, which are smaller
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than the splitting energy between EL
J−LSPR and EL

J−LSPR (169 meV). They found that the
resulting plexciton states are part-light and part-matter, where the light fraction is the sum
of the SPP and LSPR modes.
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Figure 11. (a) Schematic diagram of the Ag–J-aggregates–Ag nanostructure. (b) Dispersive curves of
three plexcimon modes in the Ag−J-aggregates−Ag nanostructure. Adapted with permission from
ref. [134]. Copyright 2017 American Chemical Society.

Li M. et al. [135] demonstrated a classic oscillator coupled model consisting of a 300 nm
thick SiO2 substrate and a 200 nm thick silver film with 100 nm diameter periodic hole
arrays. The molecular layer doped with polyvinyl alcohol (PVA) to enhance the localized
SPP electric field was deposited on the 40 nm thick top layer and in the holes, as illustrated
in Figure 12a. Different periods of theoretical curves are plotted and was in good agreement
with simulated results, which can be seen in Figure 12b. In the lower polaritons band, the
slight inconsistency is due to the dominating SPP modes in the hybrid system. Furthermore,
the detailed formation of a strong coupling was proposed based on three states: First, the
interaction between the SPP (1,0) mode with molecular excitons generates the first Rabi
splitting, and then with the adjustment of the system structure, the interaction between
SPP (1,1) mode and the excitons generates the second anticrossing effect. It is the double
Rabi splitting that draws attention to exploring the enhanced strong coupling effects. A
maximum effective coupling strength of 0.316 and Rabi splitting value of 663 meV.
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Evidently, both the selection of this type of J-aggregated molecular and grating period
were dictated by the need to realize strong coupling, motivated by the exceptionally high
oscillator strength and narrow resonances, even at room temperature. The corresponding
work may inspire related studies on hybrid light–matter interactions and achieve potential
applications in multimode lasers and optical micro-spectroscopy.

3.3. Multimode Coupling Related to Core–Shell Multicomponent Systems

Various interesting phenomena occur if the coupling between the cavity and the
emitter is sufficiently large such that the characteristic interaction time exceeds all other
decay channels. In this strong coupling regime, photon and matter excitations hybridize to
form a new type of quasi particle. These polaritons are revealed by two new energy-shifted
optical resonances. They possess both light- and matter-like properties, which make them
suitable for a wide range of applications. Here, the controlled strong coupling of a single
emitter to a cavity allows quantum-state mapping of a localized emitter qubit to a moving
photon qubit. For this type of application, it is essential to achieve strong coupling of a
single emitter.

Melnikau D. et al. [92] demonstrated a single hybrid structure with multiple spectral
features, which was integrated with three different components, including core–shell
Au@Ag nanorods (NRs), and two different dyes (5,5′,6,6′-tetra-chloro-1,1′,3,3′-tetraethyl-
imidacarbocyanine iodide(TCI) and 2-[3-[1,1-dimethyl-3-(4-sulfobutyl)-1,3-dihydro-benzo[e]-
indol-2-ylidene]-propenyl]-1,1-dimethyl-3-(4-sulfobutyl)-1H-benzo[e]indolium hydroxide,
(DBI)), as shown in Figure 13a, leading to a strong collective exciton-plasmon coupling.
Figure 13b displays the theoretical results (solid lines) for the Au@Ag NRs with the two
dyes fitted to the experimental data obtained for the hybrid plexciton states in the case
of double Rabi splitting, and the estimated Rabi splitting values are 175 and 163 meV. All
three components were involved in the strong interaction, and the total value of 338 meV
reflects the onset of collective extended energy splitting between the states of the lower and
upper plexcitons.
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Figure 13. (a) Schematic diagram of the single hybrid structure, which is integrated by three different
components, such as core–shell Au@Ag nanorods (NRs) and two different dyes. (b) Positions of LRd
(blue squares), MRd (green squares), and URd (red squares) in the experimental extinction spectra of
the hybrid structure of Au@Ag NRs and J-aggregates of TCI and DBI dyes with double Rabi splitting,
as a function of the plasmon peak position in the spectra of bare NRs. Adapted with permission from
ref. [92]. Copyright 2019 American Chemical Society.

Despite the fact that microcavities are considered to be an excellent alternative to
plasmonic nanostructures for achieving strong coupling, the core–shell multicomponent
systems show magneto-optical activity for hybridized plexciton states resulting from
strong exciton–plasmon coupling in nanostructures, in which the plasmonic component
induces magnetic properties in nonmagnetic organic fluorophores. This is significant for the
development of new sensing systems based on magneto-optical activity, while expanding
the portfolio of materials that can be used for optical information storage and processing.
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Different multimode coupling with their applications is shown in Table 1.

Table 1. Different multimode coupling with their applications.

Different Multimode Coupling Applications

Multimode Coupling
related to microcavity

nanostructure

Coupling related to TMDs
microcavity nanostructure

Optical modulators at the
nanoscale and polaritonic devices
based on ultrathin materials, etc.

Coupling related to single-dye
microcavity nanostructure

Multimode sensors and
spectroscopy, etc.

Coupling related to two-dyes
microcavity nanostructure

Integrated microcavity sensors
and optical device, etc.

Coupling related to periodic
noble metallic nanoparticles-
J-aggregates nanostructure

Multimode lasers and optical
micro-spectroscopy, etc.

Multimode coupling related to core–shell multicomponent
systems

Nanoscale optical information
storage and processing, etc.

4. Conclusions and Development Trends

In general, surface plasmons have become a popular topic in the field of photonics
owing to their distinctive optical properties [136,137]. This is particularly evident on the
upper surface in studying the coupling between surface plasmons and excitons. This paper
reviewed the research progress in the field based on multimode coupling related to TMDs
microcavity nanostructure, single-dye microcavity nanostructure, two-dyes microcavity
nanostructure and core–shell multicomponent systems. This paper is introduced from a
theoretical point of view. It has been shown that multimode coupling can not only reduce
the size of quantum devices, but also has preliminarily proven the superiority to regulating
the interaction between light and matter.

However, there remain numerous unknown problems regarding multimode coupling
based on surface plasma nanostructures, which should be explored further in terms of the
following aspects:

(1) Strong coupling (the signature is a single Rabi splitting) can induce photon electric-
ity and photon thermal processes, whereas multimode coupling is more complicated than
general coupling, and may lead to a new series of energy conversion processes, such as
photon–thermal–electricity and photon–electricity–thermal processes induced by surface
plasmons. In addition, it provides a new route for further exploration of the physical mecha-
nism of surface plasmons, which bears potential scientific applications for the development
of new nano-optical devices.

(2) Strong coupling can be demonstrated including ultrafast tuning of strongly coupled
metal–molecular aggregates via femtosecond pumping [138], dynamical modification of
the polariton composition [139] and UV illumination of silver nanoparticle arrays [140].
However, there are few studies in this field of new physics, which concern potential phase
changes, such as structure-induced phase changes and temperature-induced phase changes.
Moreover, it may provide an exciting topic for future research.

(3) With the help of a database, we discovered that reports based on multimode
splitting are limited, and that single Rabi splitting is the mainstream in current research
fields. If the conditions are appropriately changed, future research hotspots would focus
on whether a higher-mode process could occur.

(4) In practical applications, research into quantum information processing, higher-
order processes, and nonlinear optics between surface plasmons and matter, are expected
to be further discussed in terms of the physical essence of interactions.

(5) As an emerging discipline, machine learning applications in plasmonics have
attracted considerable attention [141–143], such as both the forward prediction of far-field
optical properties and the inverse prediction of on-demand dimensional parameters of
nanoparticles [144], and the prediction of color of nano-structured surfaces through either
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the nanoparticle geometric parameters, or laser parameters [145]. However, there are few
examples by using machine learning to study the multimode strong coupling, which may
be one of the future focuses.

The multimode coupling of plasmons and excitons based on metal nanostructures have
greatly promoted the development of strong coupling. In particular, it contains considerable
potential for application in the design and improvement of organic photoelectric devices
such as organic luminescence and organic batteries [146,147]. Therefore, surface plasma
optics, produced by the combination of quantum optics and surface plasmon optics, may
serve as a new development direction. This will not only increase the depth of research
regarding the basic properties of surface plasmon excitons but also provide directions for
solving current problems in quantum optics research.
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