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Abstract

With improved survivorship in medulloblastoma, there has been an increasing incidence of late complications. To
date, no studies have specifically addressed the risk of radiation-associated diffuse intrinsic pontine glioma (DIPG) in
medulloblastoma survivors. Query of the International DIPG Registry identified six cases of DIPG with a history
of medulloblastoma treated with radiotherapy. All patients underwent central radiologic review that confirmed
a diagnosis of DIPG. Six additional cases were identified in reports from recent cooperative group medulloblastoma
trials (total n = 12; ages 7 to 21 years). From these cases, molecular subgrouping of primary medulloblastomas with
available tissue (n = 5) revealed only non-WNT, non-SHH subgroups (group 3 or 4). The estimated cumulative incidence
of DIPG after post-treatment medulloblastoma ranged from 0.3–3.9%. Posterior fossa radiation exposure (including
brainstem) was greater than 53.0 Gy in all cases with available details. Tumor/germline exome sequencing of three
radiation-associated DIPGs revealed an H3 wild-type status and mutational signature distinct from primary DIPG with
evidence of radiation-induced DNA damage. Mutations identified in the radiation-associated DIPGs had significant
molecular overlap with recurrent drivers of adult glioblastoma (e.g. NRAS, EGFR, and PTEN), as opposed to epigenetic
dysregulation in H3-driven primary DIPGs. Patients with radiation-associated DIPG had a significantly worse median
overall survival (median 8 months; range 4–17 months) compared to patients with primary DIPG. Here, it is
demonstrated that DIPG occurs as a not infrequent complication of radiation therapy in survivors of pediatric
medulloblastoma and that radiation-associated DIPGs may present as a poorly-prognostic distinct molecular
subgroup of H3 wild-type DIPG. Given the abysmal survival of these cases, these findings provide a compelling argument
for efforts to reduce exposure of the brainstem in the treatment of medulloblastoma. Additionally, patients with radiation-
associated DIPG may benefit from future therapies targeted to the molecular features of adult glioblastoma rather than
primary DIPG.
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Introduction
Medulloblastoma is the most common malignant pediatric
brain tumor, and standard treatment includes surgical re-
section followed by adjuvant external beam radiation ther-
apy (EBRT) and systemic chemotherapy [14]. As the
prognosis of medulloblastoma has improved, late complica-
tions such as secondary malignant neoplasms (SMNs) have
increased in frequency [15, 39]. While 10-year survival rates
of medulloblastoma are now near 80%, the 20-year cumula-
tive incidence of SMNs is reported to be as high as 20%,
comprising 11.8% of late mortality [15, 29, 31, 39].
The elevated risk of SMNs in medulloblastoma survi-

vors may be due to high doses of EBRT. The risks of gli-
oma, the most common SMN reported after primary
medulloblastoma, increase linearly with radiation dose
[9, 19, 31, 42]. Radiation dosing for medulloblastoma
varies based on clinical and molecular risk stratification,
and standard treatment involves craniospinal irradiation
(CSI) with a posterior fossa boost. No previous studies have
assessed the risk of the development of radiation-associated
DIPG in medulloblastoma survivors, which could impact
the future dose and modality of radiation therapy in future
clinical trials.
Diffuse intrinsic pontine glioma (DIPG) is a rare infiltrative

brainstem tumor, and patients rarely survive longer than
2 years after diagnosis. DIPG is diagnosed primarily by radio-
graphic features showing an intrinsic lesion that encom-
passes at least 50% of the pons. When available, histology
frequently shows features consistent with an infiltrating
high-grade glioma (HGG). Approximately 80% of these tu-
mors harbor a point mutation in the histone H3 (H3.3 and
H3.1), which now defines the new histomolecular entity Dif-
fuse Midline Glioma, H3K27M-mutant, and is associated
with epigenetic dysregulation of neuro-developmental path-
ways and a worse prognosis than H3 wild-type DIPG [8]. Re-
cent studies suggest that H3 mutants are distinct biological
entities, and that H3.3 mutants alone may display a worse
prognosis relative to H3 wild-type [10, 20].
There is a paucity of data specifically addressing the

risk and molecular characteristics of radiation-associated
DIPG among medulloblastoma survivors. A recent re-
port performed genomic analysis of recurrent tumors of
seventeen pediatric medulloblastoma patients [33]. The
report revealed some of the tumors as secondary glio-
blastomas with known driver mutations and identified
PDGFRA as a potential molecular target for therapy. Al-
though this work addressed radiation-associated cancers
following treatment for pediatric medulloblastoma, there
were no pontine tumors and there remains no published
incidence data for radiation-associated DIPG. Here, this
report describes a poorly-prognostic molecular subgroup
of H3 wild-type DIPG that occurs as a not infrequent
complication of radiation therapy in survivors of
pediatric medulloblastoma.

Materials and methods
Case acquisition
The International DIPG Registry (IDIPGR) was queried
for cases of DIPG diagnosed after radiation treatment
for primary medulloblastoma. Details of the registry’s
structure and recruitment are described elsewhere [12].
Diagnosis of DIPG was confirmed by central radiology
review by two primary neuroradiologists (BJ, JL). A
Medline/PubMed and Google Scholar search was per-
formed to identify any additional published cases. Vari-
ous combinations of keywords were used including:
medulloblastoma, diffuse intrinsic pontine glioma, brain-
stem glioma, pontine glioma, secondary malignant neo-
plasm. Articles dated from 1999 to 2017 were obtained
and demographic, treatment, and survival data extracted
as available. All patients diagnosed with primary medul-
loblastoma from age 0–21 years who were subsequently
diagnosed with brainstem glioma were included. While
it was not possible to review imaging for all cases ob-
tained from primary literature, care was taken to exclude
patients with focal (non-diffuse) brainstem tumors.

Methylation analyses of primary medulloblastoma
The medulloblastoma methylation-derived subgrouping
was performed using the Infinium Assay with the Illumina
MethylationEPIC BeadChip platform. DNA was extracted
and isolated according to standard protocols, and bisulfite
conversion was performed using the Zymo EZ DNA
methylation kit. A support vector machine was trained on
a cohort of medulloblastoma samples to develop a
methylation-derived sub-classification prediction algo-
rithm. The MethylationEPIC BeadChip 46 CpG dinucleo-
tide signature algorithm and R statistical program (version
3.0.0) were used to classify the medulloblastoma tumor
into one of four subgroups: Sonic hedgehog pathway acti-
vated (SHH), Wnt-pathway activated (WNT), Group 3, or
Group 4. Quality control parameters were assessed using
Illumina Genome Studio V2011.1 (Methylation Module,
version 1.9.1000).

Karyotyping and immunohistochemistry of DIPG
Fresh tumor was disaggregated mechanically and enzy-
matically using collagenase V (Sigma-Aldrich, St. Louis,
MO). The suspension cultures were incubated overnight
or 24 h before harvest, and in-situ cultures were har-
vested after 3–12 days in culture. Karyotype was inter-
preted according to the International System for Human
Cytogenetic Nomenclature (ISCN 2013). Immunohisto-
chemical studies were performed as previously published
using the Discovery XT processor (Ventana Medical Sys-
tems) [40, 41]. In brief, immunostaining was performed
using the rabbit polyclonal anti-H3K27me3 (07–449,
Millipore, Billercia, MA; 1 μg/mL) or rabbit polyclonal
anti-H3.3 K27 M (ABE419, Millipore, Billercia, MA; 0.5
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μg/mL) antibodies. Streptavidin- HRP and DAB detec-
tion kit (Ventana Medical Systems) were used according
to the manufacturer instructions.

Exome and transcriptome profiling of DIPG
For cases 1 and 3, frozen DIPG tumor and normal brain
tissue from autopsy were submitted for whole exome
(paired tumor and germline DNA) and transcriptome
(tumor RNA) sequencing. Clinically-integrated sequencing
was performed according to previously published method-
ology [26]. Nucleic acid preparation, high-throughput se-
quencing, and computational analysis were performed by
the Michigan Center for Translational Pathology sequen-
cing laboratory using standard protocols in adherence to
the Clinical Laboratory Improvement Amendments.
For case 6, only frozen DIPG tissue (no germline DNA

sample) was submitted for whole exome sequencing
(WES). This sample was processed through the GATK 3.6
variant analysis pipeline as a germline sample. After vari-
ants were called, variant annotation using SnpEff was
completed to assign mutation information. This annotated
VCF file was filtered using bcftools on a known set of spe-
cific genes/histones of interest to examine the mutational
landscape. These gene specific variants then were exam-
ined further based on mutation effect (high, moderate) as
to elucidate the presence of any non-synonymous variants,
processed to remove common variants with ≥5% allele fre-
quencies in 1000 Genomes Project (2015) [18], NHLBI
Exome Sequencing Project 6500 (ESP6500) [16], Exome
Aggregation Consortium dataset (http://exac.broadinstitu
te.org), and Genome Aggregation Database (http://gno
mad.broadinstitute.org), and removed of non-recurrent
somatic variants using annotations in the COSMIC v70
database (http://cancer.sanger.ac.uk/cosmic).

Mutational signature
The somatic mutations in each of the DIPG samples from
cases 1 and 3 processed through MiOncoseq sequencing
platform [26] were categorized into one of the 96 possible
categories: 6 classes of base substitution (C > A, C > G,
C > T, T > A, T > C and T >G) × 16 combinations of bases
immediately 5′ and 3′ to each mutation base (context in-
formation), and the frequency of each mutation category
per sample was computed [2, 3]. The previously defined
30 mutational signatures were downloaded from COSMIC
(http://cancer.sanger.ac.uk/cosmic/signatures). Assuming
the mutational distribution of a single sample is a linear
combination of the known 30 signatures, an iterative
method was used that was implemented in a R package
deconstructSigs [35] to decompose the mutational signa-
tures (a 96 × 30 matrix) for the observed mutational distri-
bution of each DIPG sample (a 96 × 1 vector). The
contributions of each known mutational signature in cases
1 and 3, the radiation-associated DIPG samples, were

compared to all other primary cases, which were taken
from both diagnosis and autopsy (n = 9).

Statistical analysis
To estimate cumulative incidence of DIPG in survivors
of pediatric medulloblastoma, the number of observed
cases of DIPG during each observation period was di-
vided by the total number of patients who underwent
treatment of medulloblastoma [37]. For estimates of cu-
mulative incidence from single institutions, data was ob-
tained for the time period of January 2000 to December
2015. Survival data were extracted from the IDIPGR.
Survival functions were estimated using Kaplan-Meier
methods (GraphPad Prism version 7.00). For survival by
histone status in primary DIPGs, analysis was limited to
the subset of tumors for which the OS and sequencing
information were available. Cox proportional hazards re-
gression model was used to investigate the association
between radiation exposure or histone status and sur-
vival after controlling for potential prognostic factors in-
cluding age and sex (PROC PHREG in SAS 9.4). Mann
Whitney test was performed using GraphPad Prism (ver-
sion 7.00) to compare mutation and fusion frequency in
DIPG in radiated and non-radiated setting.

Results
Twelve patients who developed DIPG after radiation
treatment for primary pediatric medulloblastoma were
identified. Six of these cases were acquired from the
IDIPGR, and six were extracted from literature review,
reported primarily in results from medulloblastoma
cooperative group trials: COG A9961 (n = 2), HIT’91
(n = 1), HIT-SIOP-PNET4 (n = 1), and CCG 9892 (n = 1)
[12, 30, 31, 36, 42, 46]. Within the limits of incomplete
follow-up timing and records, the estimated cumulative in-
cidence of DIPG after medulloblastoma ranged from 0.3–
3.9% among the involved institutions and reported studies
(Table 1). The cumulative incidence of radiation-associated
DIPG survivors of the reported trials ranged from 0.3–1.5%
with median follow-up of 4.7–10 years, while the estimated
cumulative incidences at single institutions ranged from
0.7–3.9%.

Primary Medulloblastoma
Patient characteristics and treatments are described in
Table 2. Of patients with known sex and age information
(n = 7), six were male, and ages at diagnosis of primary
medulloblastoma ranged from 2 to 9 years. For risk strati-
fication of medulloblastoma based on clinical criteria,
seven cases were average-risk, three were high-risk, and
two were unreported. All cases with known histology (n =
6) showed classic histology (cases 1–6) with subgroup
classification into either Group 3 (cases 3 and 4) or Group
4 (cases 1, 5, and 6). Cytogenetics was not performed on
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case 2, which was classified as Group 3/4 by immunohis-
tochemistry (IHC).
Treatment details are described in Additional file 1:

Table S1. All cases underwent surgical resection. Seven
cases achieved gross total resection and three cases had
partial resections; surgical details were not reported for
two cases. All patients received CSI (dose range 18.0–
36.0 Gy) with a posterior fossa boost (dose range 19.8–
36.0 Gy) for total posterior fossa exposure 53.4–60.0 Gy.
Ten cases received chemotherapy, which included a var-
iety of established regimens including cytotoxic and/or
targeted therapies, one case declined chemotherapy, and
one case lacked chemotherapy details.

Radiation-associated DIPG
Diagnostic and outcome information on DIPG for all
cases are described in Table 2. Median time to diagnosis
of DIPG after completion of primary medulloblastoma
therapy was 7 years (range 2–11 years). DIPG histologic
diagnoses were reported for 7 patients and included
HGG (n = 3), glioma, grade-unspecified (n = 1), anaplas-
tic astrocytoma (n = 2), and pilocytic astrocytoma (n = 1;
case was not reviewed centrally by trial). For cases with
tissue (cases 1, 3 and 6), IHC revealed the tumors to be
negative for H3K27 M staining and GFAP positive
(Fig. 1a, positive and negative control tumor staining in
Additional file 1: Figure S1). Additional staining in case
3 revealed retention of H3K27me3 (Fig. 1a), consistent
with previous analyses of H3 wild-type DIPG, as tri-methyl
is lost in H3K27M-mutant glioma [6]. Treatment for DIPG

varied widely. Three patients received focal EBRT, two of
whom received oral treatment with histone deacetylase in-
hibitors (panobinostat, vorinostat) and one of whom re-
ceived everolimus. Three additional patients received
chemotherapeutic agents, with temozolomide being the
most common choice. One patient declined treatment,
and treatment details were not available for five patients.
For cases with complete outcome data (n = 8),

seven patients died at a median of 8 months after
DIPG diagnosis (range 4–17 months), and one patient
remains living 5 months after DIPG diagnosis. OS
was shorter for radiation-associated DIPG as compared to
radiographically-confirmed primary DIPG cases from
IDIPGR (n = 428, p = 0.046; Fig. 1b). On multivariate ana-
lysis, radiation exposure (hazard ratio 2.87; p = 0.014) and
age (hazard ratio 1.00; p = 0.019) were associated signifi-
cantly with overall survival (Additional file 1: Table S2).
Further, the radiation-associated DIPG cohort showed the
shortest OS compared to two subgroups of primary DIPG
with sequencing information (n = 38), separated by H3
status (vs. H3.3 K27 M mutant, p = 0.038; vs. H3.1 K27 M
mutant, p = 0.024; Fig. 1c). On multivariate analysis, radi-
ation exposure (hazard ratio 4.51; p = 0.005) and sex (haz-
ard ratio 2.51; p = 0.016) were associated significantly with
overall survival (Additional file 1: Table S2).
For illustration, case 1 presented with standard-risk

medulloblastoma at age 8 (Fig. 2a), and underwent gross
total resection (Fig. 3a), followed by 23.4 Gy CSI with a
32.4 Gy boost to primary tumor site (Fig. 2b) with con-
current vincristine. At 21 years of age (12 years after

Table 1 Observed cumulative incidence of radiation-associated malignancies in survivors of pediatric medulloblastoma

Source Population Size of
cohort

Number of secondary
malignant neoplasms

Number of
gliomas

Number of DIPG
(cumulative
incidence %)

Median follow-
up (years)

COG A9961 (Packer et al. 2013)
[31]

December 1996–2000, age 3–21
years, average-risk only

397 15 7 2 (0.5) 9.7

HIT’91 (Von Hoff et al. 2009) [42] August 1991–December 1997,
age 3–18 years

280 12 4 1 (0.4) 10

HIT-SIOP-PNET4 (Sabel et al. 2016)
[36]

2001–2006, age 4–21 years,
average risk only

338 3 2 1 (0.3) 7.8

CCG 9892 (Packer et al. 1999) [30] January 1990–December 1994,
age 3–10 years, average risk only

65 1 1 1 (1.5) 4.7

Single institution (Michigan
Medicine)

Pediatric patients diagnosed with
medulloblastoma and treated
between 2000 and 2015

77 Not reported Not
reported

3 (3.9) Not reported

Single institution (Seattle Children’s
Hospital)

Pediatric patients diagnosed with
medulloblastoma and treated
between 2000 and 2015

91 Not reported Not
reported

1 (1.0) Not reported

Single institution (Hospital for
Sick Children)

Pediatric patients diagnosed with
medulloblastoma and treated
between 2000 and 2015

140 Not reported Not
reported

1 (0.7) Not reported

Single institution (Princess
Margaret Hospital for Children)

Pediatric patients diagnosed with
medulloblastoma and treated
between 2000 and 2015

41 Not reported Not
reported

1 (2.4) Not reported
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completion of therapy), she presented to her primary
care physician with a one-month history of difficulty
swallowing and clumsiness of her right hand. MRI brain
revealed a new infiltrative mass with diffuse pontine T2
hyperintensity, consistent radiographically with a DIPG
(Fig. 2c). MR spectroscopy revealed markedly elevated
choline to creatinine peak with depressed NAA peak,
consistent with malignancy (Fig. 2d). She underwent
re-irradiation and ultimately died of disease 17 months
after diagnosis. Histopathology at autopsy revealed a
diffusively infiltrating glioma (Fig. 3b). Karyotyping of
her initial medulloblastoma previously had revealed iso-
chromosome for the long arm of chromosome 17, a hall-
mark feature of Group 4 medulloblastoma (Fig. 3c). In
contrast, copy number analysis of her DIPG revealed
copy number changes frequently seen in gliomas includ-
ing homozygous loss of RB1, SETDB2, CDKN2A and
CDKN2B with no abnormalities in chromosome 17,
distinguishing it from the primary medulloblastoma
(Fig. 3d-e). Similar imaging findings, radiation fields
and MR spectroscopy images were obtained in cases
2 and 3 (Additional file 1: Figures S2 and S3).

DIPG sequencing
For cases 1, 3, and 6, DIPG frozen tissue from autopsy
(cases 1 and 6) and diagnosis (case 3) were sequenced and
mutations were analyzed (Additional file 1: Table S3). All
three tumors were wild-type for H3F3A and HIST1H3B.
Mutational signature analysis of DIPGs showed mutations
consistent with radiation-induced DNA damage (e.g., in-
sertional event in TP53), as well as mutations in other
oncogenic drivers (e.g., PTEN, EGFR, and NRAS), suggest-
ive of a distinct mutational process as compared with pri-
mary DIPGs. Mutations identified in radiation-associated
DIPGs had molecular overlap with recurrent drivers of
adult GBM, using previously published datasets of adult
GBM and primary DIPG (Fig. 4a) [7, 44]. Within a cohort
sequenced using the same sequencing methodology (UM
MI-ONCOSEQ) (n = 11), COSMIC mutational signature
analysis demonstrated that radiation-associated DIPGs
had the highest predicted somatic mutation counts and
were more likely to harbor Signature 24 than primary
DIPGs, which has not previously been connected to previ-
ous malignancy or radiation exposure (Fig. 4b) [3]. Cases
with previous radiation in the MI-ONCOSEQ cohort

cb

a

Fig. 1 Radiation-associated DIPGs define a distinct molecular subtype with poor prognosis. a Immunohistochemistry performed for case 3
showed wild-type status for histone H3 (H3K27M) with retention of H3K27me3, as well as diffuse GFAP expression, which was negative in primary
medulloblastoma (not shown). Positive and negative controls are shown in Additional file 1: Figure S1. Insufficient tissue was available for such
analysis in cases 1 and 6; however, H3 wild-type status was demonstrated by tumor sequencing in these cases. All scale bars are 50 μm. b OS
data for primary DIPG in the IDIPGR (n = 428) was compared via Kaplan-Meier analysis to OS of radiation-associated DIPG cohort (n = 8). OS was
significantly less for the radiation-associated DIPG group (p = 0.046). c OS data for primary DIPG patients with both genomic and OS information
available (n = 38), as categorized by histone mutational status and compared via Kaplan-Meier analysis to OS of radiation-associated DIPG cohort
(n = 8). The radiation-associated DIPG cohort showed the shortest OS in comparison to the two subgroups of primary DIPG with significantly
shorter survival compared to H3.3 K27 M mutant (p = 0.038) and H3.1 K27 M mutant (p = 0.024) primary DIPGs
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(including cases 1 and 3 form this series as well as primary
DIPG cases at autopsy) harbored higher mutations (Fig.
4c; p = 0.0043) and fusions per exome (Fig. 4d; p =
0.0135), although overall mutational burden remained
lower than what might be clinically significant in compari-
son to cancers with known mismatch repair deficiency
[22]. Cases 1 and 3 underwent germline sequencing as
well, which revealed no evidence of cancer predisposition
syndromes.

Discussion
With cumulative incidences ranging from 4.2–12%,
long-term survivors of medulloblastoma show an in-
creased risk of central nervous system SMNs, particularly
gliomas [15, 19, 29, 31, 39, 42]. The risk of glioma has
been shown to increase linearly with radiation dose, with
reported excess relative risk of 0.079–0.33 per Gy [4, 38].
Prior studies have commented on radiation-associated
DIPG following individual cases of pediatric central ner-
vous system cancers [1, 8, 9, 17], although no studies have
commented specifically on the incidence or molecular
characteristics of radiation-associated DIPGs following
treatment for pediatric medulloblastoma. In standard me-
dulloblastoma therapy, the brainstem receives high doses
of EBRT due to its anatomic proximity to the posterior
fossa boost. In this study, the estimated cumulative

incidence of DIPG in children diagnosed with medullo-
blastoma and treated with EBRT ranged from 0.3–3.9%.
The cumulative incidence reported in this study may have
been impacted by incomplete or brief follow-up and may
be underestimated as the cohort continues to age. While
DIPG was diagnosed at a median of 7 years after comple-
tion of treatment for medulloblastoma, median follow-up
was only 10 years or less for the cited studies. In large
studies of pediatric survivors, median time to diagnosis of
radiation-associated gliomas ranged from 6.6–17.4 years
[9, 15, 28, 32, 38, 39]. Furthermore, in patients with
treated primary medulloblastoma, posterior fossa tumors
often are labeled as recurrent medulloblastomas based
solely on radiographic evidence. It may be that some tu-
mors that are not biopsied and assumed to be recurrent
medulloblastomas may in fact be DIPGs.
Increasing attention has been given to the impact of radi-

ation field and modality on efficacy and risk of SMNs. For
medulloblastoma treatment, many centers now are shifting
away from a posterior fossa boost and toward a primary site
boost only [24, 43]. Preliminary results from a recently
closed phase III COG trial (ACNS0331) of involved field
radiotherapy with chemotherapy in average-risk medullo-
blastoma found no difference in 5-year event free survival or
OS when boost volume was limited to the primary site vs.
entire posterior fossa [25]. In patients treated with primary

Medulloblastoma (age 8) Radiation field (age 8)

DIPG (age 21)

DIPG MR spectroscopy (age 21)

a b

c

d

Fig. 2 Diagnosis and treatment with standard therapy of case 1, which included significant radiation to brainstem. a MR axial T2 FLAIR image of
primary medulloblastoma diagnosed at age 8. b Radiation dose distribution showing craniospinal irradiation prescribed to 23.4 Gy and posterior
fossa boost prescribed to 32.4 Gy. The brainstem is contoured in purple and received a mean dose of 50.1 Gy. c MR axial T2 FLAIR image of DIPG
diagnosed at age 21, 13 years after treatment for primary medulloblastoma and in the area of the previously irradiated field. d MR spectroscopy
with an elevated Chol/Cr ratio (1.66) that is consistent with malignancy (DIPG)
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site boost only, proton radiotherapy may decrease brainstem
radiation exposure even further relative to photon therapy
[11, 34]. In a multi-institutional cohort study and phase II
single center trial, there were no significant differences in
recurrence-free survival or OS between patients treated with
photon vs. proton radiotherapy, and in the phase II trial, no
radiation-associated malignancies were reported within a
median follow-up time of 7 years [45]. While longer
follow-up is required to evaluate definitively its impact,
smaller boost fields and proton radiotherapy show promise
for reducing the risk of SMNs without sacrificing efficacy of
treatment.
Radiation-associated gliomas are molecularly distinct

from their primary counterparts. A previous report of
non-brainstem radiation-associated pediatric GBM showed
overexpression of a number of genes involved in tumori-
genesis as compared to primary pediatric GBM [13]. Add-
itionally, prior studies suggest that tumors can be
differentiated based on these molecular signatures and that
radiation-associated tumors may exhibit distinct patterns

[3, 5]. It has been observed that radiation-associated tumors
exhibit a significantly higher total number of mutations, as
well as balanced inversions, with both small deletions and
inversions generating driver mutations [5].
In this study, tumor exome sequencing of three

radiation-associated DIPGs demonstrated tumors to be
H3-wildtype. This finding is significant in the context of
a recent large cohort of sequenced primary DIPGs, in
which only 16.8% were found to be H3-wildtype [23].
Notably, sequencing confirmed that the tumors were in-
deed distinct from their primary malignancies and not
local recurrences. Moreover, patients did not harbor
germline mutations in known cancer predisposition
genes. Although alterations in two of the most fre-
quently mutated genes in primary DIPG (H3F3A and
ACVR1) were not detected, the tumor mutations in the
sequenced cases are established tumor drivers in adult
GBM (e.g. PTEN, NRAS, and EGFR). Interestingly, case
3 was found to have an EZH2 mutation in the
radiation-associated DIPG, which has not been identified

d

e

c

Medulloblastoma (age 8) DIPG (age 21)

Copy Number Profile (DIPG)

Loss of Heterozygosity Plot (DIPG)

loss of RB1, SETDB2loss of CDKN2A, CDKN2B

gain of KIT, KDR, PDGFRA

Medulloblastoma

a b

Fig. 3 Histology and molecular results distinguish primary medulloblastoma from radiation-associated DIPG. a Resected medulloblastoma from
case 1 showing characteristic classic-type features including sheets of cells with primitive hyperchromatic nuclei and scant cytoplasm. b DIPG at
autopsy showing an infiltrating glial tumor with small angulated nuclei and abundant amphophilic cytoplasm. c Karyotype analysis of medulloblastoma
shows near-tetraploid clone with arrow indicating i(17q), most consistent with Group 4. d Copy number analysis of DIPG shows focal and structural
changes distinct from primary tumor, including focal homozygous loss of RB1, SETDB2, CDKN2A and CDKN2B, focal 1 copy gain of KIT, KDR and PDGFRA,
and activation mutations in NRAS and TP53. e Loss of heterozygosity plot showing regions on chromosomes 6 and 18 with copy-neutral loss of
heterozygosity events
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as a recurrent driver in DIPG, but has been established as a
potential therapeutic target in pre-clinical DIPG models
[27]. Mutational signature analysis of radiation-associated
DIPGs showed mutations consistent with radiation-induced
DNA damage (e.g., insertional event in TP53), at a
rate similar to cases observed in a recent report of
radiation-associated GBMs, in which two out of five se-
quenced GBMs had mutations in TP53 [33]. Unlike
radiation-associated GBMs, however, PDGFRA played a
smaller role in the cohort of radiation-associated DIPG. The
PDGFRA amplification in case 1 (Fig. 1d) was the isolated
alteration in the three tumors. While non-silent mutations
in PDGFRA were identified in all five radiation-associated
GBMs, none of radiation-associated DIPGs from this study
had mutations in PDGFRA.
Taken together, these results are suggestive of distinct mu-

tational processes compared with primary DIPGs: primary
DIPGs originate within a particular early developmental
timespan that is amenable to transformation with H3F3A
and ACVR1 mutation [23], whereas radiation-associated
DIPGs appear to arise as a result of radiation-induced DNA
damage in established oncogenic drivers of primary adult

GBM. Future sequencing of additional cases may eluci-
date patterns of distinct biology in radiation-associated
DIPG, which may have implications in terms of clinical
management. These data suggest that patients with
radiation-associated DIPG may benefit from future
therapies targeted to the molecular features of adult
GBM rather than primary DIPG.
Significantly, the radiation-associated DIPG cohort

demonstrated a shorter OS relative to patients with pri-
mary DIPG. The three molecularly sequenced cases of
radiation-associated DIPG cohort additionally are distin-
guished as H3 wild-type designation, considered a posi-
tive prognostic variable in primary DIPG relative to
H3.3 mutant DIPG [10, 20]. Prior studies report a simi-
lar decreased survival from radiation-induced HGG as
compared to primary HGG [13, 21]. In conjunction with
the molecular findings, these data suggest that
radiation-associated DIPGs form a distinct molecular
subgroup that has negative implications on survival. The
findings in this work demonstrate the importance of
tumor biopsy or resection at appearance of a second
cancer. Most cases had no or limited histological and

dc

a
b

Fig. 4 Radiation-associated DIPGs are molecularly distinct from primary DIPGs. a Plot of recurrent mutations in previously published datasets
(adult GBM [n = 500] [7]; primary DIPG [n = 55] [44]) demonstrates that the distribution of driving mutations in radiation-associated DIPG is more
similar to recurrent alterations in adult GBM than primary DIPG. b Contributions of established COSMIC mutational signatures were determined
for radiation-associated DIPG samples as compared to all other primary cases sequenced through same sequencing platform (MI-ONCOSEQ). c-d
Cases with previous radiation in this cohort (including case 1 and 3 and primary DIPG at autopsy) show higher mutations and fusions per exome
(p = 0.0043 and p = 0.0135, respectively using Mann Whitney test)
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molecular diagnostic information, which was not clinically
relevant until recently. Now, this information is critical for
prognostic information, current clinical management, and
potential future therapies [33].

Conclusions
In conclusion, patients treated for pediatric medulloblas-
toma are at increased risk for development of
radiation-associated DIPG, which may represent a dis-
tinct molecular subtype with a worse prognosis relative
to other DIPGs. This risk highlights the importance of
radiation volume and modality in the treatment of chil-
dren with medulloblastoma and provides a compelling
argument for efforts to reduce exposure of the brain-
stem. Additionally, the presented molecular data suggest
that patients with radiation-associated DIPG may benefit
from future therapies targeted to the molecular features
of adult GBM rather than primary DIPG.
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