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Abstract: Since they can provide a natural and flexible description of nonlinear dynamic behavior
of complex system, Agent-based models (ABM) have been commonly used for immune system
simulation. However, it is crucial for ABM to obtain an appropriate estimation for the key parameters
of the model by incorporating experimental data. In this paper, a systematic procedure for immune
system simulation by integrating the ABM and regression method under the framework of history
matching is developed. A novel parameter estimation method by incorporating the experiment data
for the simulator ABM during the procedure is proposed. First, we employ ABM as simulator to
simulate the immune system. Then, the dimension-reduced type generalized additive model (GAM)
is employed to train a statistical regression model by using the input and output data of ABM and
play a role as an emulator during history matching. Next, we reduce the input space of parameters by
introducing an implausible measure to discard the implausible input values. At last, the estimation
of model parameters is obtained using the particle swarm optimization algorithm (PSO) by fitting
the experiment data among the non-implausible input values. The real Influeza A Virus (IAV) data
set is employed to demonstrate the performance of our proposed method, and the results show that
the proposed method not only has good fitting and predicting accuracy, but it also owns favorable
computational efficiency.

Keywords: agent-based models; generalized additive model; history matching; particle swarm
optimization algorithm

1. Introduction

Because of the complexity and nonlinearity, precise computational modelling of natural immune
systems is virtually impossible. Removing all of the possible details and retaining only the essential
interactions provides a possibility to solve this problem. Differential equation (DE) and agent-based
modeling (ABM) are two commonly used simulation techniques for immune systems. DE provides
mathematical models to describe the dynamic interactions among the components in the immune
system, and the immune response can be easily quantified after estimating the control parameters
by fitting the experimental data [1–7]. But, when faced with the simulation of complex phenomena,
DE may fall short in constructing a sufficient biological model. When compared to DE, ABM has its
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benefit from its great flexibility in tuning the complexity of the agents and can be employed to reflect
the real sophisticated system [8–19]. However, because ABM describes the system at the level of its
constituent units, but not at the top level, it is difficult for ABM to estimate the key parameters by
incorporating the experimental data.

In view of this, Tong et al. [20] developed an innovative approach, IABMR, by integrating the
advantages of both DE and ABM. Firstly, they denoted each cell as an agent with three phenotypes
(i.e., quiescence, proliferation, and apoptosis) and employed ABM to describe the dynamic interactions
among the components (i.e., epithelial cells, infected epithelial cells, and virus) and simulate the
immune system. Then, they employed local regression (LOESS) to build a regression model that is
based on the input and output of ABM. Lastly, the model’s key parameters were optimized using the
particle swarm optimization algorithm (PSO) [21–26] by fitting the experimental data. IABMR can not
only has the potential to simulate the immune system, but it can also infer the model parameters, like
DE. The case study of influenza A virus (IAV) infection [1,2] demonstrated its reliability and efficiency.

However, when the dimension of the input becomes large, the LOESS may severely suffer
from “curse of dimensionality” [27]. The model estimation would incur great variabilities.
The dimension-reduced type model, generalized additive model (GAM) [28–30], is usually a popular
alternative. GAM is a nonparametric regression modelling technique that is not restricted by linear
relationships, and it is flexible regarding the statistical distribution of the data. On the other hand,
although the PSO algorithm is very efficient and convenient when solving the optimization problem,
it could be hard to discover the acceptable region of the input space because the acceptable values may
hide in a tiny proportion of the initially specified input space. In addition, it will take much time to
find the optimal solution if the input region of each parameter is wide.

In this work, a systematic procedure for immune system simulation by integrating the advantages
of ABM and GAM under the framework of history matching [31] is developed to address all of the
issues mentioned above. A novel parameter estimation method by incorporating the experimental
data for the simulator ABM during the procedure is proposed. IAV infection data [2,20] is employed to
evaluate the efficiency and accuracy of the proposed method. First, we employed ABM as simulator [31]
to simulate the data. Then, GAM is employed as the emulator [31] to train a statistical regression model
of the simulator using the input and output data of ABM. Next, input space is reduced by discarding
the implausible input values using an implausibility measure. At last, the model’s key parameters are
optimized using PSO by fitting the experimental data among the retained non-implausible input values.

The results demonstrate that our proposed method not only has good fitting accuracy and
prediction precision, and thus possesses good potential in both simulating the immune system and
fitting the real experimental data, like IABMR, but also needs less computing cost and owns more
computational efficiency than IABMR.

2. Results and Discussion

Figure 1 shows the procedure route of this research under the framework of history matching.
The first step is to simulate the human immune system by using a stochastic ABM model as the
simulator. Once obtaining the training data from the input and the output data of the simulator
ABM, the next step is to convert the simulator into a statistical GAM model with a higher efficiency,
known as emulator. Then, an implausibility measure is introduced. The parameter space is reduced by
discarding the implausible input values. At last, the model’s key parameters were optimized using
PSO in the non-implausible domain by fitting the real experiment data. In this paper, the real Influeza
A Virus (IAV) data set [2,20] is employed to demonstrate the performance of our proposed procedure
(Figure 1) and the statements of the detailed method are deferred in Section 3.
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Figure 1. Procedure route.

2.1. Observation Data of Influenza A Virus (IAV)

Table 1 lists the real experimental data [2,20] from infection of mice with the H3N2 influenza virus
A/X31 strain from 0 to 5 days which is used to fit the model. In this study, we use the sample mean at
each point as our observations zj in the process of history matching.

Table 1. Real experimental data from 0 to 5 days.

Time Points (Day−1)

Samples 0 0.125 0.25 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1 4.25 2.5 3.5 4.25 5.5 6.5 6.33 6.75 6.5 6.5 6.5 7 6.33
2 3.75 2.5 4.75 3.25 6.75 6.75 7.5 3.5 7.33 7.25 6.25 6.5 5.5
3 4.25 3.5 4.75 5.25 6.5 7.75 7.75 7.5 7.33 7.25 6.5 6.25 5.75
4 3.75 3.5 4.13 5.75 7.25 NA 7.25 6.5 6.25 5.5 NA NA NA
5 4.55 2.75 2.5 5.75 NA NA NA 7.5 6.75 6.5 NA NA NA
6 4.25 NA 4.75 5.5 NA NA NA NA 7.25 5.75 NA NA NA

2.2. Sampling Data

As stated in Section 3.4, the maximin Latin Hypercube design method [32] is employed to
generate sampling data. To make the range of sampled data adapt to our input space (0, 2θ0), we use
Equation (6) to map the original sampled data. Hereinafter, we use bold symbols to denote vectors
distinguished from variables. A set of 40 sampling points is listed in Table 2, which is used as inputs
xi, i = 1, 2, . . . , 40 into the simulator ABM described in Section 3.1 to generate the training data for the
emulator GAM in Section 3.2. As discussed in Section 3.4, in our case of IAV infection study, the inputs
x for the simulator ABM is denoted by a four-dimensional vector θ whose components θk, k = 1, 2, 3, 4
represent proliferation rate, infection rate and death rate per hour for epithelial cells, infected epithelial
cells and virus separately. In order to accommodate the randomness of the simulator ABM, we execute
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K = 30 times for each point to make the estimation of ĝj(xi) with sufficient accuracy, where ĝj(xi)

represents the sample mean of K = 30 simulated samples for the jth output at input points xi. In our
study, 10 outputs are selected from the outputs of the simulator ABM corresponding to the first 10 time
points of the real data listed in Table 1.

Table 2. Sampling data set as inputs into the simulator ABM, where θk, k = 1, 2, 3, 4 represent
proliferation rate, infection rate and death rate per hour for epithelial cells, infected epithelial cells, and
virus, separately.

Samples θ1 θ2 θ3 θ4

1 3.466758× 10−9 2.288938× 10−7 2.460326× 10−2 8.616152× 10−2

2 8.001264× 10−9 4.300130× 10−7 8.741329× 10−2 3.955367× 10−1

3 1.081166× 10−8 1.932323× 10−7 1.004010× 10−1 3.100995× 10−1

4 1.090549× 10−8 2.812863× 10−7 8.654013× 10−2 3.202220× 10−1

5 9.102252× 10−9 4.513295× 10−7 4.608862× 10−2 1.196989× 10−1

6 3.405003× 10−9 3.370440× 10−8 1.130993× 10−1 6.104288× 10−1

7 8.092254× 10−9 4.017315× 10−8 2.174145× 10−2 2.430601× 10−1

8 2.010234× 10−9 1.745676× 10−8 6.418247× 10−2 1.722317× 10−1

9 1.691198× 10−9 3.527068× 10−7 1.158533× 10−1 1.302177× 10−2

10 2.912003× 10−9 2.957414× 10−7 2.715800× 10−2 2.602361× 10−1

11 2.554265× 10−9 9.798854× 10−8 1.866300× 10−2 5.577698× 10−1

12 6.864842× 10−9 4.184238× 10−7 1.079778× 10−1 7.730243× 10−1

13 1.121311× 10−9 3.102666× 10−7 2.784293× 10−3 5.343298× 10−2

14 9.583759× 10−9 6.668325× 10−8 3.832125× 10−2 7.836137× 10−1

15 8.762499× 10−9 5.740286× 10−8 6.656615× 10−2 1.462840× 10−1

16 1.167708× 10−8 1.339571× 10−7 1.286682× 10−2 7.554816× 10−1

17 5.319678× 10−9 4.057522× 10−7 7.242679× 10−2 6.884958× 10−1

18 7.634766× 10−9 8.162650× 10−8 9.417931× 10−2 8.124229× 10−1

19 9.973253× 10−9 1.641823× 10−7 5.553776× 10−2 1.506380× 10−1

20 6.455279× 10−9 1.729994× 10−7 7.591240× 10−2 4.765285× 10−1

21 3.989849× 10−9 9.193181× 10−8 9.013124× 10−2 4.137486× 10−1

22 1.212724× 10−8 4.454997× 10−7 1.593432× 10−2 1.957182× 10−1

23 9.163350× 10−10 3.647394× 10−7 7.019446× 10−2 5.823037× 10−1

24 4.437117× 10−9 3.801312× 10−7 8.076542× 10−3 6.162935× 10−1

25 1.186253× 10−8 3.221797× 10−7 6.068513× 10−2 2.227833× 10−1

26 5.134477× 10−9 2.635175× 10−7 9.752898× 10−2 5.182151× 10−1

27 4.222250× 10−9 2.151502× 10−7 1.059426× 10−1 8.356908× 10−1

28 1.246306× 10−9 3.445810× 10−7 5.116530× 10−2 4.604467× 10−1

29 1.134631× 10−8 1.157556× 10−7 3.036958× 10−2 6.538406× 10−1

30 2.343542× 10−9 1.483302× 10−7 7.804259× 10−2 4.427248× 10−1

31 4.911390× 10−9 1.124756× 10−8 1.018424× 10−1 2.351053× 10−2

32 1.043893× 10−8 4.616473× 10−7 5.736185× 10−2 2.911685× 10−1

33 5.792641× 10−9 4.757734× 10−7 1.195959× 10−1 7.008772× 10−1

34 7.162705× 10−9 1.314465× 10−7 1.195076× 10−2 3.444968× 10−1

35 6.743423× 10−9 2.437133× 10−7 5.718468× 10−3 6.614001× 10−2

36 8.583690× 10−9 3.363820× 10−7 3.510043× 10−2 4.877613× 10−1

37 1.832510× 10−10 1.983512× 10−7 4.478183× 10−2 3.777456× 10−1

38 5.980517× 10−9 3.927292× 10−7 4.956199× 10−2 6.684690× 10−1

39 5.754720× 10−10 2.763359× 10−7 4.084022× 10−2 5.291611× 10−1

40 9.649890× 10−9 2.419316× 10−7 8.210135× 10−2 7.266126× 10−1

2.3. Non-Implausible Space

As discussed in Section 2.2, we can get the dataset
(
xi, ĝj(xi)

)
, i = 1, 2, . . . , 40, j = 1, 2, . . . , 10

from the simulator ABM. Then, the emulator GAM model M0 for each output is built based on these
simulated data. After that, another set of 105 points, namely H1, are drawn from a four-dimensional
uniform distribution within the region (0, 2θ0), and the implausibility measure is evaluated for



Int. J. Mol. Sci. 2017, 18, 2592 5 of 12

each point of H1. Since we have 10 outputs in our study, for simplicity, we use the following
implausibility measure

I(x) = max
j=1,2,...,10

Ij(x) (1)

where Ij(x) is defined by Equation (5) in Section 3.3. According to Pukelsheim’s 3σ rule [33], all
x ∈ H1 with I(x) > 3 will be deemed implausible. Those non-implausible points that passed
the implausibility test will be remained. Comparisons between the initial 105 sampling points and
non-implausible sampling points for each parameter are shown in Figure 2.

Figure 2. Initial sampling points and non-implausible sampling points.

As shown in Figure 2, when compared to the initial 105 sampling points, the non-implausible
sampling points shrunk by approximately 34.05%, which is retained to form the non-implausible
interval for each parameter. Comparisons between the initial interval and non-implausible interval for
each parameter are given in Table 3. It is observed that non-implausible intervals for four parameters
have been narrowed.

Table 3. Initial interval and non-implausible interval for each parameter.

Parameters Initial Interval Non-Implausible Interval

θ1 [0, 1.240000× 10−8] [3.8139× 10−14, 1.2400× 10−8]
θ2 [0, 4.840000× 10−7] [2.5844× 10−14, 4.8400× 10−7]
θ3 [0, 1.196000× 10−1] [8.7906× 10−7, 1.1960× 10−1]
θ4 [0, 8.460000× 10−1] [6.1473× 10−6, 8.4600× 10−1]

2.4. Fitting Experimental Data

As stated in Section 3.4, once we obtain the reduced non-implausible region for the parameters,
the optimization method PSO is employed within the non-implausible region to find the estimated
parameters by fitting the experimental data Table 1. Considering that PSO is a stochastic optimization
technique, we run the PSO algorithm 50 times and 50 parameter estimates are obtained. The initial
parameters and the mean with standard error of the 50 parameter estimates are listed in Table 4.
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Table 4. Initial parameters and the means with standard errors in brackets of the 50 parameter estimates.

Parameters

Model θ1 θ2 θ3 θ4

Initial Parameters 6.2000× 10−9 2.4200× 10−7 5.9800× 10−2 4.2300× 10−1

Our Estimates
6.5656× 10−9 7.2467× 10−9 2.7739× 10−2 1.2595× 10−1

(4.2290× 10−9) (6.4759× 10−11) (2.8178× 10−7) (3.1538× 10−6)

In order to evaluate the fitting efficiency of the proposed model, we draw the fitting at the first
10 timepoints, with the real experimental data in Table 1. The well-developed ordinary differential
equation method (ODE) [2] is also employed for comparison. The results are illustrated in Figure 3.
It is shown that the two methods have comparable fitting accuracy.

Figure 3. Fitting accuracy of the proposed method and ordinary differential equation (ODE) method [2].

2.5. Average Relative Error

In order to evaluate the prediction accuracy of the whole procedure, we compute the average
relative error (ARE) for each parameter θk, k = 1, 2, 3, 4, as defined by Equation (8) in Section 3.4, with
three different level of random noises 0.04, 0.05, and 0.06. The ARE of the IABMR method [20] is also
computed for comparison. The results for each parameter are shown in Figure 4. It is observed that
our method have relatively smaller AREs than IABMR, which suggests that our proposed method
have favorable prediction precision.
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Figure 4. Average relative error (ARE) of IABMR [20] and our proposed method for each parameter
with three different level of random noises.

3. Methods

3.1. Simulator: Using ABM (Agent-based Model) to Simulate the Immune System

A simulator is a computer model to describe the physical process. The simulator output is
composed of a vector of r quantities, which is denoted with the vector f(x) = [ f1(x), . . . , fr(x)] ∈ Rr .
To accommodate the randomness, we run the simulator K times at each fixed input vector x and the
observed values would satisfy.

fjk(x) = gj(x) + εjk, j = 1, 2, . . . , r, k = 1, 2, . . . , K (2)

where gj(x) is the mean value of the jth output at input value x and εjk is a random variable with
expectation 0. The training data point for input x is then

(
x, ĝj(x)

)
, where ĝj(x) is the sample mean of

K simulated outputs fjk(x) as an estimator of the true mean value gj(x).
For the case of IAV infection study, Tong et al. [20] developed an ABM to describe the dynamic

interactions among the components (i.e., epithelial cells, infected epithelial cells, and virus) by denoting
each cell as an agent with three phenotypes (i.e., quiescence, proliferation, and apoptosis). Then, the
real experiment data from infection of mice with the H3N2 influenza virus A/X31 strain from 0 to 5
days [2,20] listed in Table 1 is used to evaluate the fitting accuracy. In this work, we simulate the
immune system by using the ABM described by [20] as our simulator to obtain the training data for
the following emulator.

3.2. Emulator: GAM Model

Suppose that y is a vector of observed responses and that x1, x2, · · · , xp are p independent
variables. The GAM postulates that the response is additively related to the independent variables via
the equation

h(µ) =
p

∑
k=1

mk(xk) (3)

where µ = E
(
y
∣∣x1, x2, · · · , xp

)
is the expectation of the responses that are conditioned on the

predictors. The function h is some known function, called the link function. Each function
mk, k = 1, 2, . . . , p is assumed to be an unknown nonparametric smooth function, which is needed to
be estimated from the observed data. When compared with the LOESS model, even if the number of
predictors p is large, the inputs in the functions mk in GAM (2) is still of only one dimension. Therefore,
GAM (2) is a dimension-reduced type regression model. Because of the flexibility that is provided by
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allowing mk to be nonparametric functions, as well as the fact that it is easy to fit these models using
standard statistical software, such as S-Plus and R, the GAM has become a powerful analytic tool with
a wide range of applications [34–36].

In this paper, the simulated data
(
x, ĝj(x)

)
obtained in Section 2.2 is applied to train the GAM

emulators for the jth output.

3.3. Reducing the Input Space by Using Implausibility Measure

Traditional optimization method is to initialize the parameters’ range first, and then process the
optimization. However, it would take a long time to finish the task when the model has several key
parameters. Since most of the optimization methods can only find the optima locally, it would probably
not give the desirable result when the search ranges of the input parameters are wide.

History matching [31] is designed to identify the set of inputs that would give rise to acceptable
matches between the model outputs and the observed data. It provides a tractable calculation
involving expectations and variances by excluding implausible parts of the input space that are
unlikely to make a good match with the observed data. History matching has several advantages.
First, the calculations that are involved in history matching are far more efficient and straightforward
to implement. Second, it is possible to exclude implausible space without taking the full sets of inputs
and outputs simultaneously into consideration.

As demonstrated in [31], history matching assumes the existence of a physical process that is
measured through observations z, which is linked to the best simulator input denoted by x∗ via

z = g(x∗) +ϕ+ ε + δ (4)

where ϕ and δ are vectors of errors representing Observation Uncertainty (OU) and Model Discrepancy
(MD), respectively. OU refers to the uncertainty involved in the data from observations and MD
refers to the imperfect representation of reality for simulator [31]. ε is the random error in (1) whose
variability would affect the search of implausible values which is referred to Ensemble Variability (EV).
These errors OU, MD, and EV are considered to affect the search for the non-implausible input spaces.

For the purpose of evaluating whether the simulator’s output at input value x would result in an
acceptable match with the observed data, Andrianakis et al. [31] introduced the implausibility measure
given the current uncertainties as follows:

Ij(x) =

∣∣zj− E∗
[
gj(x)

]∣∣
[V0 + Vc(x) + Vs + Vm]1/2 (5)

Here, zj represents the jth output for the observation data. E∗
[
gj(x)

]
represents the expectation

that is obtained by the emulator—GAM model at input point x for the jth output. V0 represents the
variance that is associated with OU and it equals to the variance of the observation data. Vc(x) denotes
the code uncertainty as quantified by the emulator—GAM model (2). The variabilities incurred by EV
and MD are represented by Vs and Vm, respectively. According to the suggestions provided by [31],
Vs is set equal to the sample variance of K simulated samples for each input. Vm is considered to be
equal to 10% of the variance of the simulator output data at all of the design points for simplicity.

A large value of Ij(x) would indicate that despite the uncertainties that are present in the system,
the prediction about the simulator’s output for x is so far from the observed value zj. In this paper, we
use 3 as a cut off value according to Pukelsheim’s 3σ rule [33], i.e., all x with Ij(x) > 3 will be deemed
implausible. After reducing the implausible points, the input space would be narrowed.

3.4. Parameter Estimation

Once we obtain the non-implausible parameter space, the optimization method PSO is employed
to locate the estimated parameters by fitting the observation data.
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In our case of IAV infection study, the input parameter of ABM is denoted by a four-dimensional
vector θ, whose components θk, k = 1, 2, 3, 4 represent proliferation rate, infection rate, and death rate
per hour for epithelial cells, infected epithelial cells, and virus separately. The definitions are given
in Section 2.2 and Table 1 in [20]. According to [2], θ are estimated as (6.2 × 10−9, 2.47 × 10−7,
5.98 × 10−2, 4.23 × 10−1). We refer to this as initial parameter θ0, and set the input parameter space
of ABM within the region (0, 2θ0). In this research, the inputs from the parameter vector space for
the simulator ABM are obtained by the maximin Latin Hypercube design method [32], which can
generate uniformly distributed points in the input space (0, 1). To adapt to our input space (0, 2θ0),
the sampling inputs that are obtained by the maximin Latin Hypercube design method are mapped to
the region (0, 2θ0) via the mapping function:

H = (b− a)d + a (6)

where d ∈ (0, 1) and a = 0, b = 2θ0.
Once the sampling input points are obtained, the simulator runs at the selected inputs to get the

training dataset for emulator. Then, GAM model M0 is built by using R function gam(). After that, we
regenerate another sampling data set H1 within the region (0, 2θ0) and take H1 as input into M0 to
obtain prediction output data G1. The implausibility measure (4) is employed to evaluate each point
of H1 and those that do not pass the implausibility test are deemed implausible, meaning that the
simulator cannot match the observations given the current error specifications. The initial input space
(0, 2θ0) would be reduced to be a subset of non-implausible space. Next, PSO is employed to locate
the optimal parameter θ∗ within the non-implausible space by fitting the real experimental data, i.e.,
the estimated parameter θ∗ is obtained by minimizing the following objective function

m

∑
j=1

(
zj− ĝj.GAM(x)

)2 (7)

with respect to x where m is the number of outputs and ĝj.GAM(x) is the fitted value from the GAM
model M0 at input x.

In order to evaluate the prediction accuracy of the whole procedure, we repeat the whole
procedure, except for that the normal distributed error is used to add noise for each replicate of
the data set obtained by the simulator ABM with key parameter given by θ∗.

Finally, we compute the average relative error (ARE) [3] of our procedure via

ARE =
M

∑
i=1

|θ∗i − θ∗|
M× |θ∗| × 100% (8)

Here, θ∗i denotes the optimal local parameter of each replicate and M represents the number of total
replicates. ARE is widely used to evaluate the prediction of statistical models. The smaller the ARE
value is, the better the model performs.

4. Conclusions

In this work, we proposed a systematic procedure for immune system simulation by integrating
ABM and GAM under the framework of history matching. Because of its great flexibility, ABM has
been widely used to simulate the biological immune system. However, it is crucial for ABM to obtain
an appropriate key parameter by incorporating the real experimental data. One previous study [20]
proposed an innovative method IABMR by employing the LOESS model and PSO optimization
method. In this research, the dimension-reduced type regression model GAM (2) is employed to avoid
“curse of dimensionality” in LOESS to help increase the precision of the model. Moreover, to further
improve the computation efficiency during the optimization, the search region for the parameters is
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reduced by discarding those inputs that have large implausibility measure and would give rise to
unacceptable matches between the model outputs and the observed data.

In our case of IAV infection data (Table 1), we historically match a four inputs and 10 outputs
simulator by integrating ABM and GAM. By computing the implausibility measure for each point
that was sampled from the initial parameter space, the non-implausible input space shrank by 34.05%
(Figure 2). In our computation, during processing the optimization PSO by fitting the real data,
IABMR [20] needs 3465 runs by sampling 385 inputs and running nine times at each input to make
the PSO converge, but our method just needs 1200 runs, which shows that our method has more
computation efficiency than IABMR when locating key parameters. Meanwhile, with regard to fitting
accuracy, our proposed method is comparable to the previous well-developed ODE model [2] (Figure 3).
The average relative error (ARE) is widely used to evaluate the prediction of statistical models.
The smaller the ARE value is, the better the model performs. When compared with IABMR [20], our
method also shows favorable prediction accuracy (Figure 4).

However, [37] suggested that in the process of history matching during our procedure for immune
system simulation, several computation waves might be needed to further reduce the parameter space
in order to locate more precise parameters during optimization. Nevertheless, the simulator ABM
at each wave during history matching does cost so much computing resource. It may be of use to
bring in parallel computation, such as graphics processing unit technology [18,37,38] to accelerate the
procedure. For example, each input of ABM needs to execute K times at each wave during history
matching. If we could map the whole computing job to several nodes, it would save much time.
The detailed work on how to make the simulator ABM during history matching in our procedure of
immune system simulation run at parallel nodes still needs much to rewrite codes and it is out of the
scope of this research. We leave this as our future work.

In conclusion, in this study a systematic procedure for immune system simulation by integrating
the advantages of ABM, GAM under the framework of history matching is proposed. The estimation
for the key parameters to incorporate the real experiment data for the simulator ABM in the procedure
is developed. The real data analysis demonstrates that our study has good efficiency and accuracy,
and thus could mimic the immune system on multiple levels.
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