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HUMAN–ROBOT INTERACTION: A TECHNICAL AND
MANAGERIAL MATTER

The fourth industrial revolution comprehends smart manufacturing, where sensors, computing
platform, and data modeling are employed (Kusiak, 2018). Di Nardo et al. (2020), in the frame of
Industry 4.0, developed a model where the role of management is key in this new highly networked
environment. It is suggested that cyber-physical systems, along with massive data acquisition and
mining, might support the decision making and planning execution phases.

In this framework, technological advancements are a necessary, but not sufficient
condition. In fact, a functional and targeted human–machine interaction, defined as a
communication/interaction between the human user and machines via different interface in a
dynamic context, is also essential.

Management has to oversee the rising demand for tech-innovation, which is essential because of
the renewed complexity, the stricter time-to-market process, and a higher competition generated
by globalization (De Carolis et al., 2016), and to ensure that innovation fits well within the work
environment. In this sense, the automation of part of the process adds value only if substantial
changes are implemented among all the organization, which happens when the efficiency of the
machine is strengthened by human cognitive skills and adequate flexibility. Under this light,
neuromanagement, a new branch of management, was recently developed, where decision-making
processes (Balconi and Fronda, 2019, 2020a) and social behavior and interaction (Balconi and
Vanutelli, 2017; Venturella et al., 2017; Balconi and Fronda, 2020b) are studied in real-world
situations by using a neuroscientific approach.

The conjunction and the outcome of this multidisciplinary approach might boost smart
manufacturing, in particular for co-bot technology, where operational fluency between agents has
a significant weight for safety and productivity reasons. In this work, with the term “co-bot,” we
intend to underline its collaborative dimension, being it the main feature that differentiates from
other technological systems (Ajoudani et al., 2018).

CO-BOTS FOR THE INDUSTRY: ROLE AND APPLICATIONS

Co-bots can be defined as novel technological manufacturing systems, which are able to work with a
certain degree of dexterity and in conjunction with humans in the same physical workspace (Bauer
et al., 2016), with no barriers, mainly aiming at improving efficiency, flexibility, and quality in the
overall industrial process. Other possible appreciable dimensions are related to ergonomics and
safety (Kildal et al., 2018), being the co-bot mostly responsible and employable for monotonous

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2021.659319
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.659319&domain=pdf&date_stamp=2021-05-04
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:federico.cassioli@unicatt.it
https://doi.org/10.3389/frobt.2021.659319
https://www.frontiersin.org/articles/10.3389/frobt.2021.659319/full


Cassioli et al. Human–Co-Bot Interaction and Neuroergonomics

and unergonomic tasks. Regarding the safety, it must be pointed
out that Industry 4.0 brings also emerging risks and challenges,
which are related to the human performance (Brocal et al., 2019).

More generally, according to the International Federation of
Robotics (IFR), co-bot technology might help in two different
contexts. In the small- to medium-sized companies, it could
be introduced to automate some parts of the production
line, without altering the rest and offering higher productivity
and quality improvements. Second, in companies with already
automated process (e.g., automotive sector), it could support
workers in completing assemblage tasks, often causing physical
injuries. Regarding the market data, in 2019, the professional
service robots sector grew by 32% (from US $8.5 billion to
$11.2 billion) (Executive Summary World Robotics, 2020), and
the sales volume for collaborative robots grew more compared
to the traditional ones (IFR Press Conference, 2020). Also,
the pandemic seems to have boosted the market for robotic
components in warehouses, factories, and home delivery and also
because the technology supports social distancing.

However, some important differences should be considered
and elucidated when comparing “robotic” and “co-botic”
systems, focusing on the level of interaction with the workers,
higher for the co-botic compared to the robotic one, which is
physically separated and has a fixated position.

The recent developments in sensors and data processing led
to systems that better assist and interact with humans (e.g.,
Fryman andMatthias, 2012). Although, fully collaborative co-bot
applications are not completely developed and used yet, and there
is a significantly high variance in the technical applications of
co-bot. In fact, depicting a hypothetical continuum for human–
robot collaboration, from no direct human–robot contact to a
real-time system that adjusts in response to the human behavior,
it is most common to have just shared workspace and/or
sequential collaboration conditions.

A successful industrial adoption of co-bots is derived
from proper training programs and an open communication
that address the company objectives. In the literature, three
categories of factors are highlighted: internal (management
support, company structure, research, physical conditions,
and receptiveness), external (regulatory environment, business
partner), and technological (technology context, degree of
innovation, and workspace) (Correia Simões et al., 2020). Besides
the delicate coexistence of operational efficiency and safety
requirements, another possible issue, as suggested by Bauer et al.
(2016), because of the novelty of co-bot technology, is that
old models assessing efficiency and profitability fail to give a
proper cost–benefit analysis, and these are not usually carried
out by companies. Furthermore, some dimensions, such as
ergonomics, stress, flexibility, and relationship data, are difficult
to be measured and quantified.

DISCUSSION: NEUROERGONOMICS IN
THE ORGANIZATION

The new paradigm advocates for an optimized human–robot
interaction (HRI), where robots carry out a fully collaborative

behavior, and both the strengths of the involved agents are
maximized. As already mentioned, previous approaches to HRI
showed difficulties in the measurement and quantification of
some dimensions such as ergonomics and interaction. Other
previous theoretical frameworks were proposed (e.g., Goodrich
and Schultz, 2007). In particular, a more novel approach (Gervasi
et al., 2020) postulates that collaborative systems can be evaluated
by combining both technical aspects with human social factors
and highlights eight latent dimensions, such as information
exchange, autonomy, adaptivity and training, human factors,
ethics, team organization, task, and cyber-security. In light of
these contributions, we believe that, with such set goal, the
adoption of neuroergonomics, for its study of neural networks
involving cognitive, perceptual, and emotional processing and, in
general, applied neuroscience, is mandatory to be considered.

As a result of the increased and renewed portability of brain–
computer interface (BCI), at reasonable cost, neurophysiological
and behavioral sensors can be useful for the development of
fully collaborative co-bots into the industrial context. In fact,
some of the weighting factors that should be considered in
the developed of co-bots are human fatigue, as a function
of time and workload, and executive functions (in particular
working memory, inhibition, and cognitive flexibility), which
are responsible for dynamic attentional coordination and are
impaired by stress (e.g., Shields et al., 2016), selective attention,
and cognitive states.

Indeed, each of these factors may better explain the usefulness,
applicability, and quantitative impact of co-botic systems in
real workplaces. Specifically, regarding fatigue, the optimization
process and the management of adjusting robots’ trajectories
could facilitate the human operator’s work. In this regard,
to reduce worker’s fatigue, elements such as the condition
of stability, the possible constraints of the activities, and the
presence of shared workspaces should be considered (Kim et al.,
2018; Hashemi-Petroodi et al., 2020). The presence of co-bots
in the industrial context could also be effective in terms of
performance, allowing better use of resource skills and executive
functions (Tsarouchi et al., 2016). Indeed, the advantages
introduced by the inclusion of robots with characteristics such
as strength, speed, precision, tirelessness, and repeatability
will allow reduced cognitive load and effort for the workers
performing their duties and allowing better use of intelligence,
creativity, and learning (Hashemi-Petroodi et al., 2020).

To assess mentioned dimensions in the co-bot, we highlighted
and propose some of the neurometrics that respond to
the purpose. A major distinction that should be taken into
consideration is the parameter domain, meaning if it refers
to the central electroencephalography (EEG) and event-related
potentials (ERPs), peripheral [electrodermal activity (EDA),
electrocardiogram data, respiratory system], or behavioral
(mostly derived from visual eye and gaze tracking systems)
system. The consideration of these parameters, consisting in the
detection and processing of sensory data, could allow co-bots to
more easily understand the objectives and intentions of human
partners and assist them in carrying out specific tasks.

Regarding the mental load, many studies used slow-wave
and fast-wave increases/decreases and (α/θ)/β or (α/θ)/(α + β)
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FIGURE 1 | A hypothetical model applied to HRI for the industrial adoption of co-bots, based on the Deming cycle.

ratios in the frontal and central brain areas (e.g., Wang et al.,
2020) to explore the brain networks contribution in cognitive
and emotional planning. In parallel, information about emotion
recognition has been collected via frontal asymmetry (Balconi
and Mazza, 2010; Balconi et al., 2014), normalized frontal
asymmetry (Balconi et al., 2009, 2015), theta-beta ratio (Angelidis
et al., 2018), and Hjorth parameters for affective state estimation
(e.g., Rakibul Mowla et al., 2020).

Regarding selective attention, instead, ERP approach can
be widely used to study the degree of attention, employing
P1 and N1 and later components such as P300, reflecting,
among the others, the identification of a target. In addition to
cerebral outputs, also behavioral measures can be collected, as the
identification of stimulus-driven saccades, time-to-first fixations,
and pupil dimension, which might be very informative about
visual attentional behavior and the overall representation of the
workers of their body position, movement, and acceleration in
the workplace.

On the other side, always more novel and varied techniques
are applied to biosignal and behavioral research (Cassioli and
Balconi, 2020), aiming at classifying, reducing the dimensionality
(Zhang et al., 2019), and predicting workers’ behavior. The
most notable is that the recent application of machine learning
to neurophysiological signal seems encouraging. Some of the
methods are artificial neural networks (Baldwin and Penaranda,
2012), k-nearest neighbors, support vector machine (Son et al.,
2013), and decision trees techniques (Solovey et al., 2014; Wang
et al., 2020), via deep learning brain decoding techniques,
showing that EEG signal might be used not only to obtain data
but also as a support in the designing process through the use
of brain activities, although it is important to note that actual
data and models refer to limited dataset and set of categories.
Also, intergroup differences might heavily limit the applications
of these approaches.

We then propose a quality cycle, structurally based, for the
most part, on Deming cycle (Deming, 1986) and in line with the
concept of neuroindustrial engineering coined byMa et al. (2012)
adjusted to the conjectured context for the development of an
optimal HRI drawn in this work (Figure 1).

In the first phase (planning), a screening and a
compartmentalization of the required processes are carried
out. In this phase, it is important to establish objectives and the
consequent BCI specifics (methods, chosen metrics) based on
the procedural flow and set goals. In the second phase (doing),
selected virtual and real scenarios are executed while data
are collected. As in co-bot systems the fluidity of interaction
and safety are primary requirements, we advocate for the
application of a holistic approach and the joint consideration
of central, peripheral, and behavioral parameters for the HRI
evaluation. The following dimensions, among others, should
be considered: the worker emotional discomfort, the executive
functions (with a focus on irrelevant stimuli inhibition), the
fatigue, and cognitive and emotional states in order to assist
in decision-making processes. Also, an easy-to-use interface
on which a feedback system is inserted should be provided in
order to make the workers aware of their performance and
status. Collected data is then (modeling/learning) used to
create bottom-up models, which will be tested again in the next
quality cycle. Finally, in the fourth phase, adjustments (change)
are implemented in the workspace for both workers and the
co-bots systems.

Furthermore, hyperscanning paradigms are now
able to obtain data on actions and social adaptation
during human-to-human interaction (Balconi et al.,
2019a,b; Balconi and Fronda, 2020b). If portability will be
increased, co-bots could receive precious information about
multiple and complex work–environment settings with
multiple agents.

Collaborative technology is still in its embryonic stage.
We expect that further technological, neuroscientific,
and behavioral developments will enrich and make
this technology more intuitive, intelligent, and suitable
for the human, leading to an optimized and safe
human–co-robot interaction.

Because of the augmented portability of sensors and
neuropshysiological systems, we believe that in the future smart
manufacturing could adopt neuroscientific protocols to support
workers on the field, aiming at increasing efficiency, ergonomics,
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and safety. In this work, we proposed a neuroindustrial quality
process for the development of an optimized HRI for co-
bot technology, based on the Deming cycle. We expect that
further technological and neuroscientific developments will
enrich and make co-bots more intuitive and suitable for
the human.
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