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Geniposide promotes beta-cell regeneration and
survival through regulating β-catenin/TCF7L2 pathway

DD Yao1,5, L Yang1,5, Y Wang2,5, C Liu3, YJ Wei1, XB Jia1, W Yin*,4 and L Shu*,1

T-cell factor 7-like 2 (TCF7L2) is an important transcription factor of Wnt/β-catenin signaling, which has critical roles in β-cell survival
and regeneration. In preliminary screening assay, we found geniposide, a naturally occurring compound, was able to increase TCF7L2
mRNA level in Min6 cells. Here we aimed to investigate the role of geniposide in β-cell and underlying mechanism involved. Geniposide
was found to promote β-cell survival by increasing β-cell proliferation and decreasing β-cell apoptosis in cultured mouse islets after
challenge with diabetic stimuli. Geniposide protected β-cell through activating Wnt signaling, enhanced expressions of TCF7L2 and
GLP-1R, activated AKT, inhibited GSK3β activity, and promoted β-catenin nuclear translocation. The protective effect of geniposidewas
remarkably suppressed by siRNAs against β-catenin, or by ICG001 (β-catenin/TCF-mediated transcription inhibitor). Moreover,
geniposide promoted β-cell regeneration in vivo to normalize blood glucose in high-fat diet and db/db mice. Increased β-cell
proliferation was observed in pancreatic sections of geniposide-treated diabetic mice. Most importantly, geniposide triggered small
islet-like cell clusters formation as a result of β-cell neogenesis from ductal epithelium, which was well correlated with the increase in
TCF7L2 expression. In exocrine cells isolated from mouse pancreas, geniposide could induce duct cell differentiation through
upregulating TCF7L2 expression and activating JAK2/STAT3 pathway. Taken together, we identified a novel role of geniposide in
promoting β-cell survival and regeneration by mechanisms involving the activation of β-catenin/TCF7L2 signaling. Our finding
highlights the potential value of geniposide as a possible treatment for type 2 diabetes.
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Diabetes is characterized by β-cell loss and dysfunction.1,2

One therapeutic strategy for diabetes is to prevent β-cell failure
and to promote new β-cell formation. Lineage-tracing experi-
ments have shown that new β-cells can arise from proliferation
of preexisting β-cells.3 An alternative source of β-cells has
been explored that facultative progenitors can be found in
regenerating pancreatic ducts.4 Pancreatic duct cells are
considered a potential source of β-cell regeneration.
In recent years, the role of Wnt/β-catenin pathway in type 2

diabetes mellitus (T2DM) has been increasing appreciated.5,6

Wnt/β-catenin signaling is a key modulator for β-cell insulin
secretion,7 β-cell neonatal growth, and regeneration.8

As a major transcription factor of Wnt signaling, T-cell factor
7-like 2 (TCF7L2) was shown to mediate its effects through
glucagon-like peptide 1 receptor (GLP-1R) signals in our
previous publications. TCF7L2 overexpression could enhance
GLP-1R expression and activate downstream pathway AKT
consequently,9 promote β-cell regeneration in vivo10 by
triggering the conversion from ductal epithelial cell to β-cell,
and protect β-cell from glucose and pro-inflammatory

cytokine-mediated toxicity.11 Reports from other groups also
confirmed that TCF7L2 was able to improve β-cell survival,
function, and regeneration.8,12–14 Also, TCF7L2/β-catenin
itself promotes synthesis of GLP-1 in intestinal L-cells.15

Given the important role of TCF7L2 in β-cell survival, we
conducted a small-scale natural-compound-screening assay
in Min6 cells, with an aim to identify small molecules that can
increase TCF7L2 mRNA level. Geniposide, a natural dietary
pigment isolated from the gardenia fruits, has emerged as
a promising candidate because it significantly increased
TCF7L2 mRNA level in cells treated with high glucose.
Gardenia fruits have been used as a traditional herbal

medicine that possess anti-inflammatory,16 antioxidative,17

and hypoglycemic properties.18 One study showed genipo-
side decreased the expression of glucose-6-phosphatase in
a diabetic mousemodel induced by 3-week high-fat diet (HFD)
feeding combined with streptozotocin injection.19 Of note, it is
not an appropriate animal model for T2DM study. In recent
studies, geniposidewas shown to stimulate insulin secretion in
INS-1 cells in different glucose concentrations by activating

1Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, Nanjing, China; 2Jiangsu Key Laboratory of
Xenotransplantation, Nanjing Medical University, Nanjing, China; 3Department of Endocrinology, Jiangsu Province Hospital on Integration of Chinese and Western
Medicine, Nanjing University of Chinese Medicine, Nanjing, China and 4State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University,
Nanjing, China
*Corresponding author: L Shu, Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Chinese Medicine, 100 Shizi Road,
Nanjing 210028, China. Tel: +86 25 85608672; Fax: +86 25 85637809; E-mail: shuluan2006@hotmail.com
or W Yin, State Key Laboratory Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China. Tel: +86 25 66099006;
Fax: +86 25 89681347; E-mail: wyin2003@163.com
5These authors contributed equally to this work.

Received 29.8.14; revised 17.3.15; accepted 18.3.15; Edited by E Baehrecke

Abbreviations: GLP-1R, glucagon-like peptide 1 receptor; GSIS, glucose-stimulated insulin secretion; Glut2, glucose transporter 2; HFD, high-fat diet; ICCs, small islet-
like cell clusters; IPGTT, intraperitoneal glucose tolerance test; MafA, musculoaponeurotic fibrosarcoma oncogene family A; ND, normal diet; Ngn3, neurogenin 3; PDX-1,
pancreatic and duodenal homeobox 1; TCF7L2, T-cell factor 7-like 2; T2DM, type 2 diabetes; WT, wild type

Citation: Cell Death and Disease (2015) 6, e1746; doi:10.1038/cddis.2015.107
& 2015 Macmillan Publishers Limited All rights reserved 2041-4889/15

www.nature.com/cddis

http://dx.doi.org/10.1038/cddis.2015.107
mailto:shuluan2006@hotmail.com
mailto:wyin2003@163.com
http://dx.doi.org/10.1038/cddis.2015.107
http://www.nature.com/cddis


GLP-1R.20 In addition, geniposide could counteract
lipotoxicity-induced INS-1 cell apoptosis, through GLP-1R
signaling.21 However, whether geniposide can modulate β-cell
regeneration and whether the possible effect of geniposide is
mediated by TCF7L2/β-catenin signaling remain largely
unknown. To answer these questions, we initiated this study.
In the present study, we evaluated the effects of geniposide

on β-cell survival and regeneration and investigated the
underlying mechanisms as well. Isolated mouse islets and
Min6 cells were used to explore effects of geniposide on β-cell
survival in vitro. HFD-induced diabetic mice and db/db mice
were used to investigate β-cell regeneration in vivo.

Results

Geniposide protected islet β-cells against glucose and
pro-inflammatory cytokine-mediated toxicity by upregu-
lating TCF7L2 expression. In the present study, Ki67
immunostaining was used to examine cell proliferation, and
TUNEL staining was used to assess apoptosis. The results,
shown in Figures 1a and b, demonstrated that treatment with
high-concentration glucose (33.3 mM) or a mixture of
cytokines (IL-1β plus IFN-γ (ILIF)) reduced β-cell proliferation
and induced β-cell apoptosis compared with the levels
observed in 11.1 mM glucose-treated cells. Notably, islets
treated with geniposide were protected against these
deleterious effects. In islets treated with 33.3 mM glucose,
geniposide increased β-cell proliferation (2.8-fold) and
decreased apoptosis (1.84-fold) compared with that observed
in DMSO-treated cells. Similarly, in ILIF-treated islets,
geniposide increased β-cell proliferation 3.4-fold and
decreased apoptosis up to 1.88-fold compared with that
observed in DMSO-treated cells (Figure 1b). Meanwhile, the
effect of geniposide on islet β-cell function was evaluated
by GSIS (glucose-stimulated insulin secretion) assay
(Supplementary Figure S3). The insulin secretion of islets
was not significantly impacted by geniposide.
To confirm the preliminary result that geniposide can

upregulate TCF7L2 mRNA levels in Min6 cells, cultured
mouse islets were exposed to 33.3 mM glucose as a diabetic
stimulus. As shown in Figure 1c, the mRNA levels of TCF7L2,
pancreatic and duodenal homeobox 1 (PDX-1), and insulin
were remarkably reduced in islets exposed to 33.3 mM
glucose compared with that in 11.1 mM glucose-treated cells.
In the adult pancreas, PDX-1 is a transcription factor that
regulates the expression of β-cell-specific genes including
insulin and Glut2, also multiple aspects of β-cell function and
survival. Here we observed that the mRNA levels of PDX-1
and insulin were increased by geniposide 4.2-fold and 1.95-
fold, respectively, compared with their levels in DMSO-treated
islets. Meanwhile, TCF7L2 mRNA levels in islets were
increased 4.1-fold by geniposide treatment. Cyclin D1,
a target gene of the β-catenin/TCF transcription complex,
was also increased 3.7-fold by geniposide treatment than the
levels in control islets.
IL-1β is a pro-inflammatory cytokine known to cause β-cell

failure and destruction.22 A previous study showed that in
human islets, glucose-induced β-cell apoptosis and dysfunc-
tion are partly accounted for by the IL-1β secreted from the

β-cells themselves.23 Here we showed that exposure to
33.3 mM glucose increased IL-1β mRNA levels in cultured
islets, and this increase was significantly suppressed by
geniposide treatment (Figure 1c).
Simultaneously, TCF7L2 expression in treated islets was

measured by western blotting (Figure 1d). We previously
showed that exposure to high glucose or a cytokine mixture
decreased TCF7L2 expression in islets.11 Here we showed
that geniposide treatment significantly restored the impaired
TCF7L2 expression in high glucose- or cytokine mixture-
treated islets. Moreover, the decrease in AKT phosphorylation
and the increase in caspase-3 cleavage induced by high
glucose or the cytokine mixture were also largely reversed by
geniposide treatment. In 11.1 mM glucose-cultured islets,
TCF7L2 expression and p-AKT levels also appeared to be
enhanced by geniposide treatment; however, the caspase-3
cleavage was not significantly affected.

Geniposide activated β-catenin/TCF7L2 signaling to
prevent glucose and pro-inflammatory cytokine-
mediated toxicity. In general, TCF7L2 exerts its biological
activity through β-catenin/TCF7L2-mediated transcription. In
this study, the effect of geniposide on β-catenin translocation
was first examined in Min6 cells. Consistent with the results
from islets, in Min6 cells, the diabetic stimuli decreased
p-AKT and p-GSK3β levels. However, geniposide treatment
increased the p-AKTand p-GSK3β levels, which can promote
β-catenin stabilization and translocation (Figure 2a). The
western blot analysis revealed that in Min6 cells under
diabetic stimuli, β-catenin predominantly accumulated in the
cytoplasmic fraction (Figure 2b). However, after geniposide
treatment, β-catenin translocated into the nucleus, and the
nuclear/cytosolic ratio of β-catenin was significantly elevated
than that observed in DMSO-treated cells.
To further investigate the role of β-catenin/TCF7L2 and

GLP-1R in geniposide’s effect, isletswere treated with exendin
(9–39), an antagonist of GLP-1R, and ICG001, a transcrip-
tional inhibitor of β-catenin/TCF. In 33.3 mM glucose-exposed
cells, the regulatory effects of geniposide on p-AKT, p-GSK3β,
and caspase-3 cleavage were significantly suppressed by
ICG001, but not significantly prevented by exendin (9–39)
(Figure 2c). The classical GLP-1R signaling in pancreatic
β-cells mediates PI3K/AKT activation and PKA activation by
increasing cAMP levels.24 In this study, expression of the PKA
catalytic subunit PKA C-α was examined. Again, geniposide
restored the decreased PKA C-α expression induced by
33.3 mM glucose exposure, meanwhile, this effect was
strongly suppressed by ICG001, but was not affected by
exendin (9–39). Downregulation of GLP-1 and GIP receptor
expression in hyperglycemia have been reported in our
previous studies9 as well as other publications.25,26 Interest-
ingly, here we observed that geniposide can upregulate
GLP-1R expression, which may explain the different effects
of ICG001 and exendin (9–39) on the effect of geniposide.

Geniposide protected β-cell survival from glucose-
mediated toxicity in a β-catenin/TCF7L2 signaling-
dependent manner. Effects of exendin (9–39) and ICG001
on β-cell turnover were examined in 33.3 mM glucose-treated
mouse islets by Ki67 and TUNEL staining assays (Figures 3a
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Figure 1 Geniposide protected islet β-cells by upregulating TCF7L2 expression. (a) Isolated mouse islets were exposed to diabetic stimuli (33.3 mM glucose or the mixture of
2 ng/ml IL-1β plus 1000 U/ml IFN-γ (ILIF)) with geniposide (20 μM) or DMSO as control for 3 days. Proliferation was measured by the Ki67 staining (in red, indicated by white
arrows), and apoptosis by the TUNEL assay stained in black (indicated by black arrows). Islets were triple-stained for insulin in green and counterstained for DAPI in blue. Scale
bars, 20 μm. (b) Results are expressed as means± S.E. of the percentage of Ki67-positive or TUNEL-positive β-cells. *Po0.05, geniposide to DMSO (Ki67 staining); #Po0.05,
geniposide to DMSO (TUNEL assay). (c) RT-PCR analysis of mRNA isolated from the islets cultured in 11.1 or 33.3 mM glucose with/without geniposide. Results were normalized
to tubulin. Data are shown as mean±S.E. from three independent experiments. (#Po0.05, geniposide to DMSO in 11.1 mM glucose-treated islets; *Po0.01, **Po0.005,
geniposide to DMSO in 33.3 mM glucose-treated islets). (d) Representative western blots for the diabetic stimuli-treated islets. The densitometric analyses of three independent
experiments are shown. (#Po0.05, geniposide to DMSO in 11.1 mM glucose-treated islets; *Po0.05, geniposide to DMSO in 33.3 mM glucose- or ILIF-treated group)
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and b). Consistent with results from western blotting assay,
the protective effect of geniposide on β-cell survival was
suppressed by treatment with ICG001, largely attenuated by
ICG001(Figure 3b, *Po0.05, Ki67 staining in 33.3/gen group
versus 33.3/gen+ICG001 group, #Po0.05, TUNEL staining in
33.3/gen group versus 33.3/gen+ICG001 group), but
remained unaffected in the presence of exendin (9–39)
treatment.
To further confirm the involvement of β-catenin/TCF7L2 in

geniposide’s effect, β-catenin expression in isolated mouse
islets was reduced by siRNA-mediated gene silencing as
described previously.11 As shown in Figure 3c, the β-catenin
siRNA (siβ-cat) decreased β-catenin expression by 65.6%

compared with the levels in the scramble siRNA (siScr)-
transfected islets. We transfected 100 nM siβ-cat to deplete
β-catenin, and then measured the effect of geniposide on
β-cell survival by immunostaining (Figures 3d and e). In the
siScr group, β-cell proliferation in geniposide-treated islets
was higher (1.58-fold) than in the DMSO-treated islets. Similar
to the results of siTCF7L2 in our previous study, exposure of
islets to siβ-cat decreased β-cell proliferation (1.75-fold) and
increased β-cell apoptosis (3.1-fold; Figure 3e), and these
deleterious effects induced by siβ-cat could not be reversed by
geniposide.
These results suggested that the β-catenin/TCF7L2 signals

have a critical role in the geniposide-mediated protective effect
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Figure 2 Geniposide activated β-catenin/TCF7L2 signaling in β-cell. (a) Representative western blots from the diabetic stimuli-treated Min6 cells. (b) Western blot analysis of
the β-catenin cellular distribution in Min6 cells after treatment with geniposide. The densitometric analyses of three independent experiments are shown. (#Po0.05 to 5 mM
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on β-cell survival. Geniposide might counteract the Exen
(9–39) disadvantage through upregulating TCF7L2 and
GLP-1R expressions, which lead to activation of GLP-1R
downstream pathways.

Geniposide treatment normalized blood glucose levels in
db/db and HFD mice accompanied by increased β-cell
mass. The majority of type 2 diabetes rodent animal models
are obese, by either genetic or dietary means. Here we used
both HFD mice and db/db mice to evaluate the antidiabetic
effect of geniposide. In our preliminary experiment, we tried
three different doses ranging from 100 to 300mg/kg. All three
doses showed significant glucose-lowering effects compared
with saline vehicle-treated animals (data not shown); there-
fore, the dose of 100mg/kg was chosen for subsequent
experiments.
To assess the ability of geniposide to prevent progression of

diabetes, we initially examined its effect in 4-week prediabetic
db/db mice by oral gavage at a dosage of 100mg/kg daily for
56days. Thevehicledb/dbgroupdevelopeddiabetes at 6weeks
of age, and fasting blood glucose levels continued to increase
over time. However, prediabetic db/db mice treated with
geniposide maintained normal glucose levels until 8 weeks of
age and maintained lower glucose levels on subsequent days
compared with vehicle-treated db/db mice (Figure 4a).
To further confirm the in vivo effect of geniposide, another

widely used obese T2DM mouse model, 12-week HFD-
induced diabetic mice was administered geniposide for
35 days. The 12-week HFD mice showed a marked increase
in fasting blood glucose levels compared with the levels in
normal-diet (ND) mice (Figure 4b). Geniposide exhibited
a hypoglycemic effect on HFD mice after 15 days of treatment
compared with vehicle-treated HFD mice, and this effect
continued until the end of the experiment.
In parallel, the response to intraperitoneal glucose challenge

(IPGTT) was impaired both in db/db mice and HFD mice, which
resulted in significant increases of glucose levels after glucose
injection (Figures 4c and d). Geniposide administration pro-
tected the diabeticmice from such increases, and lowered blood
glucose levels at all time points during the IPGTT.
Various reagents that increase plasma insulin levels and

exert hypoglycemic effects in db/db mice have been
reported.27–29 Here we noticed that geniposide significantly
elevated insulin levels in diabetic mice compared with the
levels in vehicle-treated diabetic mice (2.2-fold and 1.6-fold
higher than corresponding vehicle-treated controls in HFDand
db/db mice, respectively; Figure 4e). Immunostaining for
β-cells showed reduced β-cell mass (Figure 4f) and deterio-
rated islet morphology (Figure 5a) in the vehicle-treated HFD
and db/db mice. In contrast, the geniposide-treated group
exhibited normal islet morphology (Figure 5a) and increased
β-cell mass (a 1.4-fold increase in HFD mice and a 1.8-fold
increase in db/db mice compared to the β-cell mass in

corresponding vehicle-treated mice; Figure 4f), which can
partially account for the increased insulin levels.
In addition, the body weight gain of geniposide-treated db/

db and HFD mice was lower than that of the corresponding
vehicle-treated control mice (Figures 4a and b). However, food
intake was not significantly impacted by geniposide treatment
(Supplementary Figure S1). Both HFD and db/db mice are
obese diabetic animal models; therefore, we measured serum
total cholesterol and triglyceride content (Supplementary
Figure S2). Geniposide treatment significantly decreased total
cholesterol levels, but had no remarkable effect on triglyceride
levels. The levels of important adipokines, including adipo-
nectin and leptin, were also measured (Supplementary Figure
S2). Geniposide treatment reversed the reduction in serum
adiponectin levels observed in HFD and db/db mice and
suppressed the increased leptin levels observed in HFDmice.
These data demonstrate the beneficial metabolic effects of
geniposide in HFD and db/db mice.

Geniposide promoted β-cell regeneration in vivo. The
increase in β-cell mass induced by geniposide raised the
possibility that this compound may stimulate new β-cell
formation. Theoretically, new β-cells can arise either from
differentiation of endocrine progenitor cells or by replication of
existing β-cells.4,30 In this study, we first detected β-cell
proliferation by Ki67/insulin immunostaining in pancreatic
sections from HFD and db/db mice (Figure 5a). Positive
Ki67 staining of β-cells was observed in pancreatic sections
of ND and wild-type (WT) mice, but was rarely detected in
HFD and db/db mice. In contrast, positive Ki67 staining was
observed in HFD and db/db mice treated with geniposide
(3.8-fold and 5.7-fold higher in HFD and db/db mice,
respectively), which was consistent with results obtained
from cultured islets.
Expression of the transcription factor PDX-1 in the

pancreatic ductal epithelium, a marker for new β-cell forma-
tion, has been demonstrated in rodent models following partial
pancreatectomy,31 which was observed in our previous study
as well.10 Here we observed PDX-1/CK19 double-positive
ductal cells in geniposide-treated mice. In contrast, ductal
PDX-1 expression was almost undetectable in vehicle-treated
mice (4.6-fold and 4.7-fold higher in HFD and db/db mice than
in vehicle-treated controls, respectively; Figure 5b). During
β-cell regeneration, neurogenin 3 (Ngn3) is considered an
important marker of the endocrine progenitors that contribute
to β-cell neogenesis.32 The effect of geniposide on Ngn3
expression in ductal cells was measured (Figure 5b). Ngn3 is
transiently expressed during endocrine differentiation. Here
only 0.95 and 0.82% of ductal cells were Ngn3+ in geniposide-
treated HFD and db/db mice, respectively. However, Ngn3
expression was 10-fold higher in geniposide-treatedmice than
in vehicle-treated mice. Small islet-like cell clusters (ICCs)
have been reported to originate as a result of the ductal

Figure 4 Geniposide normalized blood glucose levels and improved IPGTT in db/db mice and HFD mice. (a, b) Effects of geniposide on the fasting glucose levels and body
weights in db/db mice and HFD mice. (c, d) Results of IPGTTand AUC. After 5- to 8-week geniposide treatment, IPGTTwas performed after 12 h fast with 2 mg/g BW of glucose in
control, geniposide- or vehicle-treated mice. (e) Serum insulin levels of fasting HFD and db/db mice with/without geniposide treatment. (#Po0.05 to WTor ND group; *Po0.05 to
vehicle group). Data are shown as mean±S.E., n= 12. (f) β-cell mass as product of pancreas mass and insulin-positive area divided by section area. Six consecutive sections
from each pancreas (nine mice per group) were used for β-cell mass measurements. (#Po0.05 to WT or ND group; *Po0.05 to vehicle group)
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Figure 5 Geniposide promoted β-cell regeneration in vivo. (a) Proliferation of β-cell was measured in mice pancreatic sections by triple staining for Ki67 in red (indicated by
white arrows), insulin in green, and DAPI in blue. (b) The PDX-1 and Ngn3 expressions in CK19-positive ductal epithelial cells. Representative images of ductal epithelial cells
after triple staining for PDX-1 or Ngn3 in red, CK19 in green, and DAPI in blue were shown. (c) Small ICCs originated in the vicinity of the ducts. Representative pictures of ICCs
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Data are shown as mean±S.E. ( #Po0.01 vehicle to WT or ND group; *Po0.01 geniposide to vehicle group). Scale bars, 20 μm
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epithelium differentiation.33 As presented in Figure 5c, we also
observed ICC structures next to ductal cells in geniposide-
treated HFD and db/db mice. The number of ICCs near the
pancreatic ducts was counted (ND, 8; HFD, 6; HFD/gen, 55;
and WT, 11; db/db, 5; db/db/gen, 39; Figure 5c). These data
indicated that geniposide could promote β-cell regeneration in
diabetic mice.

Geniposide stimulates ductal cell differentiation by
upregulating TCF7L2 expression and activating the
JAK2/STAT3 pathway. Along with the occurrence of Ki67-
positive β-cells and PDX-1, Ngn3-positive ductal epithelial
cells in geniposide-treated diabetic mice, immunostaining
results revealed that TCF7L2 expression (red; Figures 6a
and b) in β-cells and duct cells was significantly upregulated
by geniposide treatment (Figures 6a and b). These observa-
tions implied the importance of increased TCF7L2 expression
in new β-cell formation.
To further confirm the effect of geniposide on ductal cell

differentiation, geniposide-treated exocrine cells were
embedded in paraffin and sections were analyzed by
immunostaining for CK19, insulin, PDX-1, musculoapo-
neurotic fibrosarcoma oncogene family A (MafA), and glucose
transporter 2 (Glut2; Figure 6c). MAF factors are considered to
be essential for endocrine differentiation and MAFA acts as a
transcriptional factor to cooperate synergistically with NEU-
ROD1 and PDX-1. Glut2 is responsible for glucose uptake in
β-cells and partially accounts for the glucose-sensing
mechanism of β-cells. As shown in Figure 6c, the cultured
ductal cells formed islet-like clusters as we observed before.10

Consistent with the animal experiments, geniposide triggered
the differentiation of cultured ductal cells in vitro by inducing
expression of insulin and PDX-1. Similarly, other proteins
expressed in pancreatic progenitors, includingMafA andGlut2
were also detected in geniposide-treated ductal cells. A recent
publication presented that TCF7L2 could positively regulate
expressions of transcription factors like MAFA, PDX-1, and
NKX6.1,34 further supporting the role of TCF7L2 in new β-cell
formation as we observed here.
The signals that mediate ductal epithelial cell differentiation

are largely unknown. The JAK2/STAT3 pathway has been
shown to be involved in β-cell neogenesis from acinar cells.35

We previously demonstrated that TCF7L2 stimulated ductal
cell differentiation through the JAK2/STAT3 pathway.10 In this
study, mouse exocrine cells were exposed to AG490,
a specific JAK2 inhibitor, or ICG001 to clarify whether
geniposide-induced ductal epithelial cell differentiation is
β-catenin/TCF7L2 or JAK2/STAT3 dependent. The western
blotting results presented in Figure 6d showed that geniposide
treatment markedly stimulated TCF7L2 expression and JAK2/
STAT3 activation in exocrine cells, which was strongly
inhibited by ICG001. Geniposide treatment induced insulin
production within the ductal epithelial cell cluster, which was
suppressed by ICG001 and AG490 (Figure 6e). The real-time
(RT)-PCR results showed the geniposide treatment increased
PDX-1 and insulinmRNA expression in cultured exocrine cells
compared with their expression in DMSO-treated cells
(Figure 6f). Treatment with ICG001 or AG490 significantly
reduced PDX-1 and insulin mRNA expression in geniposide-
treated exocrine cells.

Discussion

Loss of functional β-cells is the crucial event in the develop-
ment of diabetes.36 The main goal for diabetes therapy is to
prevent loss and dysfunction of existing β-cells, meanwhile,
to promote new β-cell formation. Evidence obtained from both
adult humans and animal models has shown that β-cell
regeneration occurs in a variety of natural and experimental
conditions.37–39 Unfortunately, adaptation of β-cell mass to
insulin demand fails to achieve in T2DM. Novel agents
designed to maintain β-cell numbers are urgently needed.
A recent study reported that FTY720, a potent immuno-
suppressant isolated from the Chinese herb Iscaria sinclarii, is
capable of promoting in vivo β-cell regeneration in db/db
mice.27

Natural products are important resources for the antidia-
betic drug development.40 For instance, metformin is deriva-
tive of plant products.41 However, the antidiabetic herbs
and their bioactive extracts have not been intensively
investigated so far. The effects of these compounds on β-cell
survival and regeneration are still largely unknown.
Here we investigated, for the first time, whether geniposide

may trigger new β-cell formation both in vitro and in vivo.
In cultured mouse islets, geniposide protected β-cells from
high glucose- or cytokine-induced apoptosis, and promoted
β-cell proliferation. We demonstrated that geniposide acti-
vated Wnt/β-catenin signaling via upregulating TCF7L2
expression. Importantly, geniposide could stimulate β-cell
replication and induce ICC formation originated from the
ductal epithelium both in HFD and db/db mice, with
a concomitant increase in TCF7L2 expression. Our findings
revealed a novel role for geniposide in the promotion of β-cell
survival and regeneration through activation of β-catenin/
TCF7L2 signaling. Interesting, a JBC paper reported that
GLP-1 and Exendin 4-activated TCF7L2-dependent Wnt
signaling to enhance β-cell proliferation,42 which provided
additional evidence to imply a possible interaction between
GLP-1R and Wnt signaling.
Currently, targets of antidiabetic drugs address several

separate elements in the β-cell that potentially converge on
TCF7L2 function.43 Direct or indirect stimulation of GLP-1
activity via treatment with DPP-4 inhibitors, GLP-1R agonists,
or GPR119 agonists leads to activation of β-catenin via
increased cAMP levels and improved TCF7L2-driven β-cell
function.43 TCF7L2 could be appreciated as a new target for
diabetes treatments. As we described before,9,11 TCF7L2
itself promoted β-cell proliferation, protected β-cell from
apoptosis and improved insulin secretion in cultured islets. In
line with our studies, other reports showed mouse islets
treated with TCF7L2 siRNA displayed abnormal glucose-
stimulated insulin secretion.12 In TCF7L2 knockdown rats
(generated with specific TCF7L2 morpholino-oligonucleo-
tides), the process of β-cell regeneration was significantly
inhibited.8 Selective deletion of TCF7L2 in mouse pancreas
impairs insulin release and glucose homeostasis, indicating
the direct role of this factor in controlling β-cell function.13 Our
study implies a correlation between TCF7L2 expression and
β-cell regeneration. TCF7L2 can trigger differentiation from
ductal epithelial cells into β-cells in vitro.10 Similarly, Takamoto
et al.14 reported that in mouse pancreatic β-cells, TCF7L2 has
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a crucial role in glucose homeostasis by regulating
β-cell mass. DN-TCF7L2 mice (expressing a dominant-
negative form of TCF7L2) showed impaired glucose tolerance
and decreased insulin secretion. Marked reduction of

the β-cell area and whole-pancreas insulin content were
observed.
Notably, other reports have presented controversial

results.44,45 Boj et al.45 demonstrated that manipulation of
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islet TCF7L2 expression in adult mice had no significant
effects on glucose-stimulated insulin secretion. The authors
argued that TCF7L2-related disruption of β-cell function is
probably an indirect consequence of primary events in liver
and elsewhere. Thus, it is still far from a clear understanding of
functions of TCF7L2 in metabolism. Novel approaches that
address the evident complexity of these systemswill be crucial
for elucidating the biological functions of TCF7L2.46

The underlying mechanisms of β-cell regeneration are not
fully understood so far. Growth factors have been shown to
promote duct cell differentiation and β-cell neogenesis.
Epidermal growth factor in combination with gastrin,47

insulin-like growth factor, transforming growth factor-β,35,48

and islet neogenesis-associated protein49 have been demon-
strated to stimulate β-cell growth. The Wnt/β-catenin signaling
has a crucial role in embryonic development and cell
regeneration, differentiation, proliferation, and apoptosis.
The JAK2/STAT3 pathway is an important signaling pathway
during β-cell generation,35 and STAT–Wnt interactions were
reported before in other cells.50,51 A functional TCF-binding
element was detected in the STAT3 promoter, which specifi-
cally bound to TCF7L2.51 Aswe described previously, TCF7L2
can trigger differentiation of ductal epithelial cells into β-cells
in vitro by activating the JAK2/STAT3 pathway.10 Here we
identified that the upregulation of TCF7L2 expression by
geniposide in vitro could lead to JAK2/STAT3 activation
and duct cell differentiation consequently, which further
confirmed the involvement of STAT–Wnt interactions in cell
differentiation.
On the basis of the crosstalk betweenGLP-1R signaling and

TCF7L2, we used exendin (9–39), and ICG001 to clarify the
role of GLP-1R and Wnt signaling in geniposide activity.
Interestingly, the regulatory effects of geniposide on p-AKT,
p-GSK3β, and c-casp3 were strongly blocked by ICG001,
whereas exen (9–39) only exhibited mild suppressive effects.
Similarly, the protecting effect of geniposide on β-cell survival
was prevented by ICG001. Moreover, β-cell survival could not
be preserved by geniposide in the case of β-catenin knocked
down by siβ-catenin. Here we noticed that geniposide could
enhance the GLP-1R expression. We hypothesize that
geniposide could counteract the negative effects of exendin
(9–39) by upregulating TCF7L2 and GLP-1R, which can
enhance the activation of GLP-1R downstream pathway.
Collectively, we propose a novel mechanism for the effects

of geniposide on β-cell regeneration and survival. In this
model, β-catenin/TCF7L2 is the core component required for
the functions of geniposide. Geniposide activates β-catenin/
TCF7L2 transcription complex, which could lead to β-cell

regeneration via stimulating β-cell proliferation and differentia-
tion. Meanwhile, geniposide promoted β-cell survival by
inhibiting c-casp3 level to suppress β-cell apoptosis. Our data
support β-catenin/TCF7L2 as a possible target for diabetes
treatment to promote new β-cell formation.
The latest report published in August 2014 by a group at

Lund University stated new information that TCF7L2 could
positively regulate expressions of transcription factors like
MAFA, PDX-1, and NKX6.1, which are crucial for β-cell
neogenesis, through targeting on insulin gene enhancer-
binding protein-1 (ISL1).34 This finding provides additional
evidence to imply the role of TCF7L2 in β-cell regeneration.
The association between geniposide and ISL1 needs to be
further investigated in our future studies.

Materials and Methods
Reagent. Geniposide (purity 498%) was purchased from the National Institute
for the Control of Pharmaceutical and Biological Products (Beijing, China). AG490,
Exendin (9–39) were from Sigma (St. Louis, MO, USA), and ICG001 was from
Selleckchem (Houston, TX, USA).

Animals. All animal experiments were conducted in accordance with Provisions
and General Recommendation of Chinese Experimental Animals Administration
Legislation and approved by the Research Animal Care Committee of Nanjing
Medical University. The animals were housed in a temperature-controlled room with
a 12-h light/dark cycle and were allowed free access to food and water in the course
of experiments. Four-week-month old male C57BL/6J mice (SLAC Laboratory
Animals, Shanghai, China) were fed with a HFD (60 kcal% fat, D12492, Research
Diets, New Brunswick, NJ, USA)10 or normal chow diet. Geniposide intervention
(100 mg/kg) was initiated after 12 weeks of the HFD. Four-week old male C57Bl/KsJ
(BKS) mice and BKS.Cg-Dock7m +/+ Leprdb/JNju (db/db) mice were ordered from
Model Animal Research Center of Nanjing University. Geniposide solution was
prepared in 0.9% NaCl and delivered by oral gavage at dosage of 100 mg/kg daily.
The control group was given vehicle. Geniposide or vehicle was given for additional
35–56 days. A total of 12 mice in each group were used.

Intraperitoneal glucose tolerance tests (IPGTTs). For IPGTTs, mice
were fasted 12 h overnight and injected intraperitoneally with glucose at a dose of
2 mg/g body weight. Blood samples were obtained at time points 0, 30, 60, 90, and
120 min for glucose measurements using a Glucometer (Accu-Chek Active; Roche,
Indianapolis, IN, USA). Insulin was determined using a mouse insulin ELISA kit
(Alpco, Windham, NH, USA).

Analysis of β-cell mass. β-cell mass was measured as previously
described.10 In brief, pancreatic sections (spanning the width of the pancreas,
which was cut along the head–tail axis) were stained with anti-mouse insulin
antibody (ab7842, Abcam, Cambridge, MA, USA) and scanned by a Nikon
MEA53200 (Nikon, Tokyo, Japan) microscope. The cross-sectional areas of
pancreas and β-cells were determined by NIS-Elements software (Nikon). β-cell
mass/pancreas was estimated by the product of the relative cross-sectional area of
β-cells per total tissue and the weight of the pancreas.

Figure 6 Geniposide triggered ductal epithelial cell to β-cell conversion through upregulating TCF7L2 and activating JAK2/STAT3 pathway. TCF7L2 expression in islets
β-cells (a) and in the ductal epithelium cells (b) were examined by triple staining of mice pancreatic sections for TCF7L2 in red, insulin, or CK19 in green, and DAPI in blue. Values
are representative of three to four slides spanning the whole pancreas of each mouse and six mice per group. Data are shown as mean± S.E. (#Po0.01 vehicle to WTor ND
group; *Po0.01 geniposide to vehicle group). (c) Isolated mouse exocrine cells were cultured with 20 μM geniposide for 4 days, then embedded in paraffin and sections were
analyzed by immunostaining of CK19, insulin, PDX-1, MafA, and Glut2 to confirm the effect of geniposide on ductal cell differentiation. (d) Isolated mouse exocrine cells were
cultured with different treatments (20 μM geniposide, 20 mM AG490, and 25 μM ICG001) for 4 days. Upregulation of TCF7L2 and activation of JAK2/STAT3 were analyzed by
western blot analysis. Data are shown from three independent experiments. (e) Effects of AG490 and ICG001 on the differentiation of ductal epithelial cells. The cells were
examined by insulin (red, indicated by white arrows) and CK19 (green), and DAPI (blue) triple staining. (f) RT-PCR analyses of Pdx-1, insulin, and TCF7L2 expressions in treated
ductal epithelial cells. The experiments were performed in triplicate. The levels of gene expressions were normalized to tubulin (#Po0.01, geniposide to DMSO-treated group;
*Po0.01, geniposide to AG490- or ICG001-treated group). Scale bars, 20 μm
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Mouse pancreatic islets, exocrine cell isolation and culture.
Mouse islets were isolated from C57BL/6J mice (SLAC Laboratory Animals) by
common bile duct perfusion using Collagenase type 4 (Worthington, Lakewood, NJ,
USA) as described previously11 and cultured in RPMI 1640 containing 11.1 mmol/l
glucose, 100 U/ml penicillin, 100 mg/ml streptomycin, and 10% FCS (Invitrogen,
Carlsbad, CA, USA). Isolated pancreatic exocrine cells from islet isolation were
cultured in DMEM supplemented with 10% FCS and penicillin–streptomycin (1%).

Min6 cell culture. Min6 cells were obtained from ATCC (American Type
Culture Collection, Manassas, VA, USA) and maintained in 5 mM glucose DMEM,
supplemented with 10% FBS (Invitrogen), 50 mmol/l b-mercaptoethanol, 100 U/ml
penicillin, and 0.1 mg/ml streptomycin in 5% CO2 at 37 °C.

Treatments of diabetic stimuli. For treatment of islets or Min6 cells with
diabetic stimuli, the culture medium contained 33.3 mM glucose or 2 ng/ml
recombinant IL-1β plus 1000 U/ml recombinant IFN-γ (ILIF; R&D Systems) with
geniposide (20 μM) for 3 days, cells treated with DMSO served as a control.

RNA interference transfection. The small interfering RNA transfection
experiment was performed by using lipofectamine 2000 reagent (Liptofecta-
mine2000; Invitrogen) according to the manufacturer’s instructions. Islets were
transfected with 100 nmol/l siRNA against β-catenin (sc-29210, Santa Cruz, Dallas,
TX, USA) or scramble siRNA (sc-37007, Santa Cruz). After transfection for 24 h, the
medium was aspirated and replaced by fresh culture medium with/without
geniposide for the next 3-day culture.

Immunofluorescence staining. Pancreatic tissue and cultured mouse
islets were processed as previously described.9 Details of antibodies used and the
staining procedures were provided in the supplemental files.

RNA extraction and RT-PCR. Total RNA was isolated from cultured
mouse pancreatic islets or exocrine cells as described previously.10 For
quantitative analysis, Applied Biosystems StepOne Real-Time PCR system
(Applied Biosystems, Carlsbad, CA, USA) with a commercial kit (Power SYBR
Green PCR Master Mix; Applied Biosystems) was used. Primers used were
provided in Supplementary Files.

Nuclear fractionation. Nuclear and cytoplasm extractions of Min6 cells were
performed according to the instructions of NE-PER Nuclear and Cytoplasm
Extraction Reagents (Pierce Biotechnology, Rockford, IL, USA). The purity of
fractions was analyzed by probing the membranes with anti-GAPDH for cytosolic
and anti-PARP for nuclear extracts.

Western blot analysis. Cultured islets or Min6 cells were washed in PBS and
lysed. PVDF membranes were incubated with anti-TCF7L2 (#2565), anti-actin
(#4967), anti-p-AKT (Serine473, #9271), anti-AKT (#9272), anti-p-GSK3β
(Ser9 #9336), anti-PARP (#9542), anti-GAPDH (#2118), anti-c-casp3 (#9661),
anti-stat3 (#9132), anti-p-stat3 (Tyr705, #9131), anti-PKA C-α ( #5842; all from Cell
Signaling, Danvers, MA, USA), anti-β-catenin (ab6302), anti-GLP-1R (ab39072),
anti-p-Jak2 (ab68268; all from Abcam), followed by incubation with horseradish-
peroxidase-linked IgG peroxidase. The bands were visualized and densities of the
bands were analyzed using Tanon ChemImaging Systems (Nanjing, China).

Statistical analysis. Data are presented as means±S.D. and were analyzed
by paired Student’s t-test or by analysis of variance with a Bonferroni correction for
multiple group comparisons.
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