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Abstract: CRANAD-28, a difluoroboron curcumin analogue, has been demonstrated in earlier reports
to successfully label amyloid beta (Aβ) plaques for imaging both ex vivo and in vivo. CRANAD-28’s
imaging brightness, ability to penetrate the blood brain barrier, and low toxicity make the compound
a potentially potent imaging tool in Alzheimer’s research. In this study, the Aβ-labeling ability of
CRANAD-28 was investigated in further detail using histological staining to assess different criteria,
including stained Aβ plaque brightness, Aβ plaque size, and Aβ plaque number count. The results
of this study demonstrated CRANAD-28 to be superior across all criteria assessed. Furthermore,
CRANAD-28 and IBA-1 antibody were used to label Aβ-plaques and microglia respectively. Statistical
analysis with Spearman regression revealed a statistically significant negative correlation between
the size of labeled Aβ plaques and surrounding microglia density. This finding provides interesting
insight into Aβ plaque and microglia dynamism in AD pathology and corroborates the findings of
previous studies. In addition, we found that CRANAD-28 provided distinct spectral signatures for
Aβs in the core and periphery of the plaques. Based on the study’s results, CRANAD-28 could be
considered as an alternative standard for imaging Aβ-plaques in future research studies.
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1. Introduction

The current, prevailing understanding of Alzheimer’s disease (AD) pathology is rooted in the
amyloid hypothesis and Tau hypothesis. The amyloid hypothesis attributes cognitive decline and
neurodegeneration to the accumulation and deposition of Aβpeptides within the brain [1–3]. According
to the amyloid hypothesis, Aβ peptide is the causative agent which instigates neurofibrillary tangle
formation, neuron death, and vascular damage, culminating in the disease’s most visible symptom,
dementia [1,4,5]. Deposits of Aβ peptides form Aβ plaques, which are the characteristic hallmarks
of AD. However, the role of Aβ plaques in AD pathology has increasingly come under attack as
Aβ-clearing drugs have failed to halt or reverse cognitive decline in clinical trials [2,3]. Furthermore,
the specific mechanism of neurodegeneration in AD remains unclear and is an area of continuing
dispute among scientists [6–8]. Regardless, imaging Aβ plaques remains a crucial aspect of such
studies and finding effective imaging tools can help clarify the pathological role of Aβ plaques in AD.

CRANAD-28 is a small molecular compound derivatized from a curcumin scaffold. The compound
is brightly fluorescent (quantum yield > 0.32 in PBS), with an excitation/emission peak of 498/578
nm in PBS solution [9]. CRANAD-28 has been previously shown to bind to monomeric, dimeric,
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and oligomeric Aβ peptides in vitro as well as bind to Aβ plaques in ex vivo histological staining.
Furthermore, CRANAD-28’s ability to penetrate the blood brain barrier and low toxicity make the
compound suitable for imaging Aβ plaques in vivo using two photon microscopy [9]. The capacity of
CRANAD-28 to image Aβ plaques both in vivo and ex vivo makes the compound advantageous for
streamlining experimental methods. In this study, we investigated the staining quality of Aβ plaque
achieved by CRANAD-28 compared to that achieved by Thioflavin S, the currently gold standard for
Aβ plaque staining [10–12].

2. Results

2.1. Brightness Comparison between CRANAD-28 and Thioflavin S

To evaluate the quality and robustness of CRANAD-28 Aβ plaque staining, Thioflavin S was used
as the gold standard. The staining capability of CRANAD-28 was compared against Thioflavin S across
several criteria. The first criterion was the brightness of labeled Aβ plaques. For the brightness assay,
APP/PS1 transgenic mice brain tissue sections were incubated in matched concentrations of CRANAD-28
and Thioflavin S. Aβ plaques stained with CRANAD-28 were noticeably brighter than those stained
with Thioflavin S at matched concentrations (Figure 1a–d). Brightness of the stained plaques was
qualitatively assessed due to obvious differences upon visual inspection. Quantitative analysis was
also used to calculate the signal to noise ratio (SNR) of both compounds. SNR(CRANAD-28) = 5.54,
while SNR(Thioflavin S) = 4.27. The difference between the two SNRs calculated was determined to be
statistically significant (p < 0.001) using a 2-sample equal variance t-test. These results matched our
expectation that CRANAD-28 could provide brighter staining with a higher SNR.
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Figure 1. Representative images from APP/PS1 brain slice staining for brightness assay and SNR
analysis. (a) A brain section stained with 20 uM CRANAD-28 (with a 20× object lens); (b) a brain
section stained with 20 uM CRANAD-28 (with a 10× object lens); (c) a brain section stained with 20 uM
Thioflavin S (with a 20× object lens); (d) a brain section stained with 1mg/mL Thioflavin S (with a 10×
object lens); All images taken with fluorescence microscope and SPOT Advanced Imaging Software.
Blue excitation filter with gain 4 and exposure time 335 ms. Scale bar: 20 µm; (e) quantitative SNR
analysis results of staining with CRANAD-28 and Thioflavin S; (f) chemical structures of CRANAD-28
and Thioflavin T.
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2.2. Aβ Plaque Morphology and Quantification Assay

The next criterion assessed was the diameter of the stained Aβ plaques. Since CRANAD-28
has an excitation/emission spectrum of 498/573 nm and Thioflavin S 480/525 nm, tissue stained with
either compound must be imaged using the blue excitation filter on the fluorescence microscope.
Consequently, co-staining of Aβ plaques with both compounds could not be used as a means of
assessment due to inability to distinguish the two compounds when using the same ex/em filters. Thus,
antibody staining with 3D6 [13–15], a well-validated labeler of Aβ plaques, was used as a control
against which CRANAD-28 and Thioflavin S staining were each compared. For this part of the study,
the concentration of Thioflavin S was increased to 100 µM. APP/PS1 brain sections were first stained
with the either Thioflavin S or CRANAD-28 followed by incubation with 3D6 antibody. The sections
were then imaged under a fluorescence microscope using the green filter to detect CRANAD-28 or
Thioflavin S and the red filter to detect 3D6. Plaque diameters were measured using ImageJ software
and the ratios of ThioS:3D6 and CRANAD-28:3D6 were compared.

Plaques labeled with 3D6 antibody were the largest and used as a control against which Thioflavin
S and CRANAD-28 labeled plaques were compared. The diameters of Aβ plaques stained with
CRANAD-28 demonstrated stronger correlation with those of Aβ plaques stained with 3D6 (R2 = 0.90
vs. 0.69). The average size of CRANAD-28, ThioS, and 3D6 labeling was 18-, 14-, and 20-micron
respectively. The exact reason for the diameter difference between plaques stained with CRANAD-28
and Thioflavin S remains unclear. A possible explanation is that CRANAD-28 is able to bind to smaller
Aβ species which make up the Aβ plaque periphery. This possibility is supported by the ability of
CRANAD-28 to bind to soluble Aβ species in vitro.

Using the same co-staining method previously described, the number of plaques successfully
labeled by CRANAD-28 and Thioflavin S was also compared. Images of Aβ plaques in the cortex were
selected at random. The number of 3D6 antibody stained plaques was used as a control, since antibody
staining was found in this study to be most inclusive in number of plaques stained. From the acquired
images, the number of plaques stained by either compound was calculated as a ratio over the number
of plaques stained by 3D6. Plaques were manually counted. On average, CRANAD-28 successfully
labeled more plaques than Thioflavin S (Figure 2b).

2.3. Aβ Plaque and Microglia Staining

Recent evidence indicates that Aβ plaques transform in a dynamic way. As they develop, the
plaques have a different impact on the environment in which they reside. Data shows that at the
early stage of growth, Aβ plaques lead to higher toxicity than in the later/mature stage. Based on
recent experimental findings, we hypothesize that plaques of high toxicity are “active” plaques, while
plaques of low (or no) toxicity are “silent” plaques [16], and the abundance of “active plaques” may
have better correlations with the severity of AD than the number of total plaques. Considering the
excellent staining capacity of CRANAD-28, we further investigated the relationship between plaque
size and the density of surrounding microglia.

To investigate the relationship between microglia density and plaque size, APP/PS1 brain sections
were first incubated in CRANAD-28 followed by staining with IBA-1 antibody, the widely accepted
biomarker for microglia. The blue filter was used to detect Aβ plaques stained by CRANAD-28,
and the green filter was used to detect microglia stained with IBA1 antibody. Microglia density was
calculated by taking the total number of microglia surrounding an individual plaque over the area
of the plaque. ImageJ software was used to stack images as well as keep track of counted microglia
using ROI manager. For the microglia count, the region of interest was defined as the circular area
2× the diameter of the plaque. As we expected, the smaller plaques generally have higher microglia
density around them (Figure 2c). A Spearman regression correlation coefficient of −0.70 (p < 0.001)
was calculated for Aβ plaque area versus surrounding microglia density.
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Figure 2. (a) Correlations between CRANAD-28 labeling, ThioS and 3D6 antibody staining. It can be
seen that in the term of plaque size CRANAD-28 has a better correlation with 3D6; (b) consistency
count comparation between CRANAD-28 and ThioS. Ratio of stained number of plaques compared as
ratios CRANAD-28:3D6 and ThioS:3D6; p value *** < 0.001. (c) representative image of plaque staining
with CRANAD-28 (green) and microglia staining with IBA-1(red); (d) correlation between diameter of
plaques labeled with CRANAD-28 and microglia density taken as microglia count divided by plaque
area. Rs = −0.70, p < 0.001.

2.4. Spectral Signatures of CRANAD-28 for Core and Periphery of the Aβ Plaques

For spectrum analysis of Aβ plaques stained with CRANAD-28, images were taken using the 40×
oil immersion lens of a Nikon A1 confocal microscope. For each imaged plaque, the spectrum emission
from 4 regions of interest in the core and 4–8 regions of interest in the periphery were measured using
the Spectrum Profile function in NIS Elements. The extracted spectra from the core and periphery were
averaged and stored. We found that there were two distinguishable signatures from the spectra. First,
the averaged emission from the core had a maximum peak in intensity at 512 nm, while the averaged
emission spectrum from the periphery had a maximum peak in intensity at 520 nm (Figure 3a). Another
obvious signature could be seen from 540–570 nm, and the relative intensity from the peripheral area
was higher than that from the core. Spectral un-mixing was used to assign the different peaks present in
the signatures to either the core or peripheral regions of the plaques. For spectral un-mixing, the stored
spectra previously extracted from the core and peripheral regions served as reference spectra. A visible
difference in emission peak wavelength was observed between the core and periphery regions of the
plaques, indicating that CRANAD-28 exhibits differential binding to Aβ species within the plaques
(Figure 3b,c). Our data also suggested that CRANAD-28 could be used to investigate the pathological
effects of the Aβ species from the core and periphery. While the spectra from the core and periphery
are not the same spectra from the solution testing, signature differences could be identified in the range
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of 530–570 nm, which responds to the fluorescence of CRANAD-28. In this experiment, we used the
spectral unmixing function from the software for the microscope. We believe that better algorithms
will be able to tease out larger signature differences.
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Figure 3. (a) Emission spectra peaks from 5× FAD transgenic mouse brain sections stained with
CRANAD-28; (b) Merged confocal microscope images Aβ plaques from the unmixed image of core
(green) and the unmixed image of periphery (red). 488 nm excitation, 40× objective, zoom 2×;
(c) confocal microscope image of the unmixed core component using the extracted spectra; and (d)
confocal microscope image of the unmixed periphery component using the extracted spectra.

3. Discussion

In the broader scope of biological mechanisms driving AD pathology, our microglia correlation
results support the idea that Aβ plaques are dynamic rather than static structures. A number of
recent studies have demonstrated increased interest in Aβ plaques as potentially dynamic sites
of AD pathology [17,18]. Furthermore, numerous studies suggest that Aβ plaques grow and
expand dynamically throughout AD progression. This could potentially explain several postmortem
clinicopathological studies reporting poor correlation between Aβ plaque loading and severity of
sporadic AD [19–22]. Consistent with the previous studies, the significant inverse relationship between
Aβ plaque size and microglia density in this study suggests that perhaps smaller plaques are more
active sites of pathology, inducing more neuronal degeneration than larger plaques [23,24]. This finding
indicates that the evolution of Aβ plaque function during the plaque growth process may be an
interesting avenue for future research.

Based on the finding that staining with CRANAD-28 generally results in larger amyloid beta
plaques, we speculate that CRANAD-28 exhibits binding to soluble Aβ species such as oligomers
and monomers. Although the structures of monomeric and oligomeric Aβ species require electron
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microscopy for visualization, it is possible that upon labeling with CRANAD-28 they can cause a
measurable increase in the diameter of imaged plaques. Aβ oligomers are of particular interest in
Alzheimer’s disease pathology. The Aβ oligomer toxicity hypothesis postulates that Aβ oligomers,
as opposed to the plaques, instigate neuron damage in Alzheimer’s disease. Previous studies have
demonstrated that Aβ oligomers instigate synapse loss, inflammation, and oxidative damage in
neuron cells [6,25]. Our speculation that CRANAD-28 possesses an ability to bind to soluble species is
supported by our spectral unmixing results, in which the emission spectrum peak from the periphery
region of the plaque occurs at a slightly longer wavelength than the emission spectrum peak from the
core region. A possible cause for the observed difference is the difference in hydrophobicity of the
oligomers versus aggregates. Since aggregates are more hydrophobic, the emission spectrum from the
aggregate-dense core would be expected to have a greater blue shift upon binding with CRANAD-28.

The excellent staining capabilities of CRANAD-28 determined in this study indicate that the
compound is a superior candidate for Aβ plaque labeling and widely applicable for different studies
of AD pathology. The compound’s comprehensive staining of Aβ plaques makes it a potent tool
for studying Aβ plaque development over the progression of Alzheimer’s disease, allowing for
more detailed and informative data collection. Furthermore, unlike Thioflavin S and 3D6 antibody,
CRANAD-28 can be used for in vivo imaging, making it possible to track Aβ plaque development in
living mouse models. Based on our studies, we can conclude that CRANAD-28 is a robust fluorescent
compound for the visualization of Aβ plaques.

4. Materials and Methods

All the chemicals employed in the syntheses were purchased from commercial vendors and used
without further purification. The pH of the PBS buffer was 7.4. CRANAD-28 was prepared according
to the previously reported procedure [9]. Transgenic female APP/PS1 mice and age matched wild-type
female mice were purchased from Jackson Laboratory. A brain of a 24-month old APP/PS1 mouse was
sacrificed and the brain was extracted. All animal experiments were approved by the Institutional
Animal Use and Care Committee at Massachusetts General Hospital.

4.1. Transgenic Mouse Brain Slide Preparation

A 24-month old APP/PS1 mouse was sacrificed, and the brain was extracted. The brain was fixed
with 4% formalin for 48 hours, and washed with PBS buffer 3–4 times. The brain was then placed in
30% sucrose PBS buffer and soaked at 4 ◦C until it sunk to the bottom of the container. The sunken
brain was removed from solution and imbedded in OCT via gradual freezing over liquid nitrogen.
The OCT brain block was cut into 20-µm thick slices with a cryostat machine.

4.2. Slide Staining and Fluorescence Imaging with CRANAD-28 and Thioflavin S

Brain sections were mounted onto a glass slide and fixed in 4% formalin for 5 min and washed
with PBS buffer twice. A hydrophobic barrier pen was used to draw a waterproof barrier around the
mounted sections. Sections were incubated in a solution of CRANAD-28 (20 uM, 50% ethanol) followed
by washing with distilled water 3–4 times. After drying at RT, the slide was ready for fluorescence
microscope imaging. For thioflavin S staining, the same staining method was used with a thioflavin
S solution 20 µM. Images were captured by using a microscope (Nikon Y-FL model E400, Nikon
Instruments Inc, Melville, NY, USA) with advanced SPOT imaging software. The fluorescence intensity
and size of Aβ plaques and microglia cells were quantified by using ImageJ software (National Institute
of Health, USA).

4.3. Slide Staining with 3D6 Antibody and IBA-1 Antibody

Brain sections were mounted onto glass slides, fixed in 4% formalin for 5 min, washed twice for
5 min in 50% ethanol, and washed twice for 5 min in distilled water. Then, sections were blocked
with 20% Goat serum for 1 hour at room temperature. After, sections were incubated with anti-Aβ
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antibody 3D6 (diluted in a diluting buffer: TBS containing 0.4% Triton X-100, 1% goat serum and 2%
BSA) overnight at 4 ◦C. After 3 × 10 min washes with diluting buffer, sections were incubated with
secondary AlexaFluor-555 goat anti-rabbit antibody for 4 h at RT. Sections were washed 3 × 10 min
in TBS. Fluorescent Vectashield mounting medium was applied to the sections, and sections were
covered with a coverslip and nail polish airtight seal. For IBA-1 antibody staining, the same protocol
was followed using IBA-1 as the primary antibody. The primary antibody concentration used was
1:500 and the secondary antibody concentration used was 1:1000. Slides were stored at 4 ◦C in a dark
area until observation and analysis. Florescence images were observed using the Nikon Y-FL model
E400 microscope.

4.4. Confocal Microscope and Spectrum Extraction

Stained brain sections were imaged using a Nikon A1 confocal microscope (Nikon Instruments
Inc, Melville, NY, USA). All images were taken using the 40× oil objective lens and 457 nm excitation.
Extracted spectra from ROIs within the core and periphery were averaged and stored using the
Spectrum Profile function. Spectral unmixing was also performed with the Spectrum Profile function.
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