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ABSTRACT: We demonstrate theoretically and numerically that
laser-driven many-electron dynamics, as described by bivariational
time-dependent coupled-cluster (CC) theory, may be analyzed in
terms of stationary-state populations. Projectors heuristically defined
from linear response theory and equation-of-motion CC theory are
proposed for the calculation of stationary-state populations during
interaction with laser pulses or other external forces, and
conservation laws of the populations are discussed. Numerical
tests of the proposed projectors, involving both linear and nonlinear
optical processes for He and Be atoms and for LiH, CH+, and LiF
molecules show that the laser-driven evolution of the stationary-state
populations at the coupled-cluster singles-and-doubles (CCSD) level
is very close to that obtained by full configuration interaction (FCI)
theory, provided that all stationary states actively participating in the
dynamics are sufficiently well approximated. When double-excited states are important for the dynamics, the quality of the CCSD
results deteriorates. Observing that populations computed from the linear response projector may show spurious small-amplitude,
high-frequency oscillations, the equation-of-motion projector emerges as the most promising approach to stationary-state
populations.

1. INTRODUCTION

Providing unique time-resolved insights into electronic
quantum dynamics and with the exciting prospect of detailed
manipulation and control of chemical reactions,1 increasing
experimental and theoretical research efforts have been
directed toward attosecond science in the past couple of
decadessee, for example, ref 2 for a recent perspective. While
the initial step usually involves ionization induced by extreme-
ultraviolet or near-infrared laser pulses, Hassan et al.3 have
demonstrated that optical attosecond pulses may be used to
observe and control the dynamics of bound electrons with little
or no ionization probability. Whether ionization plays a role or
not, the rapid development of experimental methodology
creates a strong demand for explicitly time-dependent
quantum chemical methods that can accurately simulate the
ultrafast many-electron dynamics driven by ultrashort laser
pulses.
While real-time time-dependent density functional theory4−6

is a highly attractive option from the viewpoint of computa-
tional efficiency, it suffers from a number of deficiencies caused
largely by the reliance on the adiabatic approximation in most
practical applications.7 Improved accuracy can be achieved
with wave function-based methods at the expense of increased

computational costs.7 In a finite basis, the exact solution to the
time-dependent electronic Schrödinger equation is the full
configuration interaction (FCI) wave function whose computa-
tional complexity, unfortunately, increases exponentially with
the number of electrons. We are thus forced to introduce
approximations. The perhaps most widely used time-depend-
ent wave function approximation for simulating many-electron
dynamics is multiconfigurational time-dependent Hartree−
Fock (MCTDHF) theory8−11 and the related time-dependent
complete active space self-consistent field and restricted active
space methods.11−14 Restricting the participating Slater
determinants to those that can be generated from a fixed
number of electrons and a carefully selected active space of
(time-dependent) spin orbitals, these methods still have the
FCI wave function at the heart, eventually facing the
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exponential scaling wall as the number of active electrons and
orbitals is increased.
Coupled-cluster (CC) theory offers a gentler polynomial-

scaling hierarchy of approximations that converge to the FCI
wave function. Besides the differences in computational
complexity, the two methods differ in the sense that MCTDHF
captures static (strong) correlation, whereas single-reference
CC theory aims at dynamical correlation effects. Yielding
energies, structures, and properties with excellent accuracy for
both ground and excited states of weakly correlated systems, it
has become one of the most trusted methods of molecular
quantum chemistry.15 Recent years have witnessed increasing
interest in time-dependent CC (TDCC) theory16−20 for
numerical simulations of many-body quantum dynamics in
nuclear21 and atomic and molecular22−38 systems. In addition,
TDCC theory has played a key role in a recent work on finite-
temperature CC theory for molecular39,40 and extended41

systems. While the papers by Christiansen and co-workers35,36

are concerned with vibrational CC theory and those of Pigg et
al.21 with nucleon dynamics, the remaining papers are focused
on the dynamics of atomic and molecular electrons exposed to
electromagnetic fields such as ultrashort laser pulses.
In many cases, the main goal is to compute absorption (or

emission) spectra24−28,37,38 by Fourier transformation of the
induced dipole moment. This requires the calculation of the
induced dipole moment for extended periods of time af ter the
perturbing field or laser pulse has been turned off. While
decisive for the features observed in the final spectrum, the
dynamics during the interaction with the laser pulse is rarely
analyzed in detail. Processes that occur during the pulse, such
as high harmonic generation and ionization, are studied using
TDCC theory in refs.31,34. Since energy is the physical quantity
associated with time translations, textbook analyses of such
interactions are naturally performed in terms of the population
of the energy eigenstatesthe stationary statesof the field-
free particle system, see, for example, ref 42. However, many-
body theories such as TDFCI, MCTDHF, and TDCC theories
do not express the wave function as a superposition of
stationary states, making the analysis difficult to perform in
simulations. Moreover, when approximations are introduced
(truncation of the many-body expansion), the stationary states
are hard to define precisely for nonlinear parameterizations
such as MCTDHF and TDCC theories. The problem is
particularly pronounced for approximate methods where the
orbitals are time-dependent such that a different subspace of
the full configuration space is spanned in each time step of a
simulation, leading to energies and eigenvectors of the
Hamilton matrix that vary depending on the laser pulse
applied to the system.43 This implies, for example, that
identification of stationary-state energies by Fourier trans-
formation of the postpulse autocorrelation function leads to
pulse-dependent results. Still, several reports of population
transfer during interaction with laser pulses have been reported
recently44−46 using MCTDHF theory.
The natural approach would be to define the stationary

states from the zero-field Hamiltonian and zero-field wave
function using, for example, linear response theory47 or
orthogonality-constrained imaginary time propagation.48 The
latter approach was investigated recently within the framework
of MCTDHF theory by Lötstedt et al.,49 who found that the
stationary-state populations oscillate even after the pulse is
turned off unless a sufficiently large number of active orbitals is
included in the wave function expansion. In this work, we use

both CC linear response (CCLR) theory19,50,51 and equation-
of-motion CC (EOMCC) theory52−55 to propose projectors
whose expectation values yield stationary-state populations.
Test simulations are presented with different laser pulses, and
the TDCC results are compared with the exact (TDFCI)
results.
The paper is organized as follows. In Section 2, we briefly

outline the exact quantum dynamics on the basis of energy
eigenstates and use analogies to propose projectors whose
expectation values can be interpreted as stationary-state
populations within TDCC theory. Technical details of the
numerical simulations are given in Section 3, and numerical
results are presented and discussed in Section 4 for atoms and
diatomic molecules in few-cycle laser pulses, including chirped
pulses. Concluding remarks are given in Section 5.

2. THEORY
2.1. Recapitulation of Exact Quantum Dynamics.

Laser-driven quantum dynamics of a particle system is usually
interpreted in terms of stationary states |n⟩ defined as solutions
of the time-independent Schrödinger equation

H n E nn0| ⟩ = | ⟩ (1)

where H0 is the time-independent Hamiltonian of the particle
system and En is the energy of the stationary state |n⟩. The
stationary states evolve in time according to

n t n( ) e iE tn| ⟩ = | ⟩ −
(2)

and are assumed to form a complete orthonormal set such that

P n n n t n t P( ) ( ) , 1n
n

n∑= | ⟩⟨ | = | ⟩⟨ | =
(3)

where 1 is the identity operator. Note that the continuum is
formally included in the summation over states.
The time evolution of the particle system is determined by

the time-dependent Schrödinger equation [using atomic units
(a.u.) throughout],

H t t i t t( ) ( ) ( ) , ( 0) 0|Ψ ⟩ = |Ψ̇ ⟩ |Ψ = ⟩ = |Ψ ⟩ (4)

where |Ψ(t)⟩ is the normalized state of the system with a
known initial value |Ψ0⟩ and the dot denotes the time
derivative. Within semiclassical radiation theory, the time
dependence of the Hamiltonian,

H t H V t( ) ( )0= + (5)

stems from the operator V(t) describing the interaction
between the particle system and external electromagnetic
fields.
Expressing the time-dependent state as a superposition of

stationary states,

t P t n C t( ) ( ) ( )e
n

n
n

n
iE tn∑ ∑|Ψ ⟩ = |Ψ ⟩ = | ⟩ −

(6)

where Cn(t) = ⟨n(t)|Ψ(t)⟩, the time-dependent Scrödinger
equation may be recast as an ordinary differential equation

iC t n V t m C t( ) ( ) ( )en
m

m
i E E t( )n m∑̇ = ⟨ | | ⟩ −

(7)

with the initial conditions Cn(0) = ⟨n|Ψ0⟩.
The population of stationary state |n⟩ at any time t ≥ 0 may

be determined as the expectation value of the projection
operator Pn
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p t t P t C t( ) ( ) ( ) ( )n n n
2= ⟨Ψ | |Ψ ⟩ = | | (8)

which is real and non-negative. Since the state is assumed
normalized, ⟨Ψ(t)|Ψ(t)⟩ = 1, the stationary-state populations
sum up to one, n∑ pn(t) = 1, and, hence, are bound from above
as well as from below: 0 ≤ pn(t) ≤ 1.
It follows from the time-dependent Schrödinger equation

that the expectation value of some operator, say B, evolves
according to the Ehrenfest theorem,

t
t B t i t B H t

t
B
t

t

d
d

( ) ( ) ( ) , ( )

( ) ( )

⟨Ψ | |Ψ ⟩ = − ⟨Ψ |[ ]|Ψ ⟩

+ Ψ ∂
∂

Ψ
(9)

where the last term vanishes when B is a time-independent
operator such as a stationary-state projector. Hence, stationary-
state populations are conserved in the absence of external
forces as the projectors commute with the time-independent
Hamiltonian, [Pn,H0] = 0.
Stationary-state populations are required to identify

transient phenomena such as Rabi oscillations in simulations
and may be used to determine the composition of the quantum
state resulting from the application of a short pump laser,
facilitating interpretation of spectra recorded by means of a
subsequent probe laser. The stationary-state populations can
be controlled by varying the pump laser parameters such as
peak intensity, shape, and duration. Predicting final popula-
tions with varying laser parameters thus becomes a central
computational goal.
Unfortunately, computing all stationary states of a particle

system followed by integration of the time-dependent
Schrödinger equation presents an insurmountable challenge,
even if the number of stationary states is kept finite through
the use of a finite set of basis functions. In practice, the
quantum state is parameterized in a finite-dimensional Hilbert
space spanned by well-defined basis vectors (Slater determi-
nants, in the case of electronic systems) rather than stationary
states. Populations of a few selected (low-lying) stationary
states can then be computed as a function of time with varying
pump laser parameters. This procedure is easily implemented
for any electronic-structure method with explicit parameter-
ization of orthogonal ground- and excited-state wave functions
and has been used recently by, for example, Peng et al.56 within
time-dependent configuration-interaction theory to predict
populations of stationary electronic states of the rigid decacene
molecule with varying laser parameters. In the following, we
will present an approach to the calculation of stationary-state
populations within the framework of TDCC theory.
2.2. TDCC State Vector. Our starting point is Arponen’s

time-dependent bivariational formulation of CC theory20

within the clamped-nucleus Born−Oppenheimer approxima-
tion. This allows us to parameterize the CC ket and bra wave
functions as independent approximations to the FCI wave
function and its Hermitian conjugate. The quantum state of an
atomic or molecular many-electron system at time t is then
represented by the TDCC state vector29

i

k

jjjjjj
y

{

zzzzzzS t
t

t
( )

1
2

( )

( )
| ⟩⟩ =

|Ψ ⟩

|Ψ̃ ⟩ (10)

where the component functions are defined by

t( ) e eT t t( )
0

( )0|Ψ ⟩ = |Φ ⟩ τ
(11)

t t t( ) e ( ( ) ( ))et T t( )
0 0

( )0 λ⟨Ψ∼ | = ⟨Φ | + Λτ− −
(12)

Although the reference determinant |Φ0⟩ should be
constructed from time-dependent orthonormal16,31,57 or
biorthonormal23,30,58 orbitals to capture the main effects of
interactions between the electrons and external fields, we shall
in this work use the static Hartree−Fock (HF) ground-state
determinant for simplicity. As long as the external field does
not lead to nearly complete depletion of the ground state, we
found in ref 30 that the results obtained with static and
dynamic orbitals are virtually identical. In addition, using static
HF reference orbitals allows us to exploit well-known CC
theories for excited states, as discussed in more detail below,
and we avoid the complexity of computing overlaps between
determinants in different nonorthogonal orbital bases.
The cluster operators are defined as

T t t X t Y( ) ( ) , ( )∑ ∑τ λ= Λ =
μ

μ μ
μ

μ μ
†

(13)

where μ > 0 labels excitations out of the reference determinant,
i.e.,

X Y, ,0 0

δ

|Φ ⟩ = |Φ ⟩ ⟨Φ∼ | = ⟨Φ |

⟨Φ∼ |Φ ⟩ =
μ μ μ μ

μ ν

†

μν (14)

If the cluster operators include all excited determinants, the
CC state becomes equivalent to the exact wave function, the
FCI wave function. Approximations are obtained by truncating
the cluster operators after singles to give the CCS method,
after singles and doubles to give the CC singles-and-doubles
(CCSD) model, and so on. Since the HF reference
determinant is static, the time dependence of the cluster
operators is carried by the amplitudes τμ(t) and λμ(t) only. The
amplitude τ0(t) is a phase parameter related to the so-called
quasi-energy,59,60 and λ0(t) determines the normalization of
the state, as discussed in more detail below.
In the closed-shell spin-restricted CCSD model, the singles-

and-doubles excitation and de-excitation operators are defined
as61

X E X E E,ai ai aibj ai bj= = (15)

Y X Y X X
1
2

,
1

6(1 )
(2 )ai ai aibj

ab ij
aibj ajbiδ δ

= =
+

+† † † † †

(16)

where i, j and a, b refer to occupied and virtual spatial HF
orbitals, respectively, and

E c c c cai a i a i= +α α β β
† †

(17)

is a unitary group generator expressed in terms of the
elementary second-quantization spin−orbital (α and β here
refer to the spin-up and spin-down states) creation and
annihilation operators.
The equations of motion for the amplitudes are derived from

the time-dependent bivariational principle and are given by20,29

i H t

i H t

2 e ( )e ,

e ( )e

T t T t

T t T t
0 0

( ) ( )
0

( ) ( )
0

τ

τ

̇ = ⟨Φ | |Φ ⟩

̇ = ⟨Φ∼ | |Φ ⟩μ μ

−

−
(18)
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i i t H t X t0, ( ) ( ), ( )0λ λ− ̇ = − ̇ = ⟨Ψ∼ |[ ]|Ψ ⟩μ μ (19)

where the dot denotes the time derivative and where

H t H V t( ) ( )0= + (20)

While H0 is the time-independent molecular electronic
Hamiltonian in the clamped-nucleus Born−Oppenheimer
approximation, V(t) describes the interaction of the electrons
with explicitly time-dependent external fields in the semi-
classical approximation. Note that the normalization amplitude
λ0 is constant.
The equations of motion (18) and (19) must be integrated

with suitable initial conditions. In this work, we use the CC
ground-state

i

k

jjjjjjj
y

{

zzzzzzzS t S( 0)
1
20

0

0

| = ⟩⟩ = | ⟩⟩ =
|Ψ ⟩

|Ψ∼ ⟩ (21)

where

T Xe ,T
0 0 0

00 ∑ τ|Ψ ⟩ = |Φ ⟩ =
μ

μ μ
(22)

Y( )e ,T
0 0 0 0 0

00 ∑λ λ⟨Ψ∼ | = ⟨Φ | + Λ Λ =
μ

μ μ
− †

(23)

The ground-state amplitudes satisfy the stationary CC
equations

H0 e eT T
0 0

0 0= ⟨Φ∼ | |Φ ⟩μ
−

(24)

H X0 ,0 0 0= ⟨Ψ∼ |[ ]|Ψ ⟩μ (25)

and τ0(t = 0) = 0 such that, in the absence of external
perturbations, the time-dependence of the TDCC state vector
correctly becomes |S(t)⟩⟩ = |S0⟩⟩ exp(−iE0t), where E0 is the
CC ground-state energy

E He eT T
0 0 0 0

0 0= ⟨Φ | |Φ ⟩−
(26)

2.3. Interpretation. We now introduce the indefinite inner
product29

i

k

jjjjjjj
y

{

zzzzzzzS S
1
2

( )
1
2

1
21 2 1 1

2

2
1 2 2 1⟨⟨ | ⟩⟩ = ⟨Ψ∼|⟨Ψ|

|Ψ ⟩

|Ψ∼ ⟩
= ⟨Ψ∼|Ψ ⟩ + ⟨Ψ∼ |Ψ⟩*

(27)

with respect to which the TDCC state vector is normalized,
i.e.,

S t S t( ) ( ) 1⟨⟨ | ⟩⟩ = (28)

provided we choose Re(λ0) = 1. In practice, we choose λ0 = 1.
The indefinite inner product induces the expectation value

expression29

C t S t C S t

t C t t C t

( ) ( ) ( )
1
2

( ) ( )
1
2

( ) ( )

⟨ ⟩ = ⟨⟨ | ̂| ⟩⟩

= ⟨Ψ∼ | |Ψ ⟩ + ⟨Ψ∼ | |Ψ ⟩*†
(29)

where the two-component form of the quantum mechanical
operator C reads

i
k
jjjj

y
{
zzzzC

C
C
0

0
̂ =

(30)

While the expectation value of an anti-Hermitian operator C† =
−C is imaginary, the expectation value of a Hermitian operator
C† = C is real. This symmetrized form of the CC expectation
value was first introduced by Pedersen and Koch62 in order to
ensure correct symmetries, including time-reversal symmetry,
of CC response functions. Using the expectation value
expression to compute the electric dipole moment induced
by an external laser field, absorption spectra can be obtained by
Fourier transformation.
Given a set of orthonormal excited-state vectors |En⟩⟩, which

are orthogonal to the ground state with respect to the
indefinite inner product, we may define the projection operator

P E En n n
̂ = | ⟩⟩⟨⟨ | (31)

and compute the population pn(t) of excited state n at time t as
the expectation value

p t S t P S t( ) ( ) ( )n n= ⟨⟨ | ̂ | ⟩⟩ (32)

This would provide a time-resolved picture of the
populations of excited states within TDCC theory. Unfortu-
nately, a fully consistent set of CC excited-state vectors is not
known.
There are two distinct approaches to excited states in

common use within CC theory today.63 One is the
EOMCC52−55 approach where the excited states are para-
meterized explicitly in terms of linear excitation and de-
excitation operators, which generate the excited-state vectors
from the ground state. While making it straightforward to
express the projection operator in eq 31, the linear Ansatz of
EOMCC theory leads to size-intensivity issues in transition
moments and response properties such as polarizabilities.64−66

The other approach is CC response theory19,50,51 where the
time-dependent Schrödinger equation is solved in the
frequency domain using a combination of Fourier trans-
formation and adiabatic perturbation theory. The amplitudes
at each order are then used to express linear, quadratic, and
higher-order response functions. This leads to the identi-
fication of excitation energies and one- and multiphoton
transition moments by analogy with response theory for exact
stationary states.47 It does not, however, lead to explicit
expressions for the excited-state vectors, making it impossible
to construct projection operators of the form (31). While the
excitation energies from EOMCC theory and CC response
theory are identical and properly size-intensive, the transition
moments differ and no size-extensivity issues are present in CC
response theory.64,65

We note in passing that Hansen et al.36 offer a detailed
discussion of size-extensivity (and, by extension, size-
intensivity) and size-consistency issues within CC theory
using the more concise and accessible concepts of additive and
multiplicative separability.

2.4. Projection Operators from EOMCC Theory.
Exploiting that EOMCC theory provides an explicit parameter-
ization of “left” (bra) and “right” (ket) excited states, we
investigate the EOMCC projector defined as

i

k

jjjjjjjj

y

{

zzzzzzzz
P

0

0
n

n n

n n

̂ =
|Ψ ⟩⟨Ψ∼ |

|Ψ∼ ⟩⟨Ψ | (33)

where
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R

L

( ) ,

e
n n

x n
n

n

n n
T

0 0 0 0

0
0

|Ψ ⟩ = |Ψ ⟩ + |Ψ ⟩ = + |Ψ ⟩

⟨Ψ∼ | = ⟨Φ | −
(34)

and the linear excitation and de-excitation operators are given
by

R X L Y,n
n

n
n∑ ∑= =

μ
μ μ

μ
μ μ

†

(35)

The EOMCC excitation and de-excitation operators are
truncated at the same level as the underlying CC ground-state
cluster operators T0 and Λ0. The ground-state component
reads

Rn
n
x

n0 0 0 0= −⟨Ψ∼ |Ψ ⟩ = −⟨Ψ∼ | |Ψ ⟩ (36)

The EOMCC amplitudes are determined from the non-
Hermitian eigenvalue problem

A E R, 1= Δ = (37)

where 1 is the unit matrix and ΔE is a diagonal matrix with the
excitation energies ΔEn = En − E0 as elements. The elements of
the non-Hermitian Jacobian matrix are defined by

A H X,0 0= ⟨Φ∼ |[ ̅ ]|Φ ⟩μ νμν (38)

where H0 = exp(−T0)H0 exp(T0).
Note that the components of the EOMCC excited-state

vector are biorthonormal

n m nmδ⟨Ψ∼ |Ψ ⟩ = (39)

and orthogonal to the CC ground state in the sense of

0n n0 0⟨Ψ∼ |Ψ ⟩ = ⟨Ψ∼ |Ψ ⟩ = (40)

This implies that the EOMCC projectors in eq 33 are
Hermitian with respect to the indefinite inner product,
annihilate the ground state, P̂n|S0⟩⟩ = 0, and are idempotent
and orthogonal,

P P Pn m nm nδ̂ ̂ = ̂ (41)

In the limit of untruncated cluster operators, it is readily
verifiedusing the orthonormality of the left and right
eigenvectors in eq 37that the EOMCC projectors satisfy
the completeness relation

i
k
jjj

y
{
zzz

i

k

jjjjjjjj

y

{

zzzzzzzz
P

1 0
0 1

0

0n
n

0 0

0 0

∑ ̂ = −
|Ψ ⟩⟨Ψ∼ |

|Ψ∼ ⟩⟨Ψ | (42)

If the cluster operators are truncated, the right-hand side
must be corrected for excited determinants beyond the CC
truncation level (e.g., triples, quadruples, etc. for EOMCCSD).
The one-photon transition strength obtained from the

EOMCC projector is given by

S BP C S B C C

B

1
2

(

)

n n n n

n

0 0 0 0 0

0

⟨⟨ | ̂ ̂ ̂| ⟩⟩ = ⟨Ψ∼ | |Ψ ⟩⟨Ψ∼ | |Ψ ⟩ + ⟨Ψ∼ | |Ψ ⟩

*⟨Ψ∼ | |Ψ ⟩* (43)

where B and C are Hermitian operators representing electric or
magnetic multipole moments and B̂ and Ĉ are their two-
component forms defined in eq 30. The transition strength is
properly symmetrized with respect to simultaneous permuta-
tion of the multipole operators and complex conjugation, ⟨⟨S0|
ĈP̂nB̂|S0⟩⟩* = ⟨⟨S0|B̂P̂nĈ|S0⟩⟩ and agrees with the commonly

used expression in EOMCC theory, which is based on a
configuration-interaction-like interpretation of the bra and ket
states. This expression yields the correct FCI limit but, as
mentioned above, the transition strength is not properly size-
intensive when the cluster operators are truncated.64−66

We may now use eq 33 to extract excited-state populations
from the TDCC state vector according to eq 32,

p t t t( ) Re( ( ) ( ) )n n n= ⟨Ψ∼ |Ψ ⟩⟨Ψ∼ |Ψ ⟩ (44)

While the EOMCC excited-state populations are manifestly
real, they are neither bounded above by 1 nor below by 0. Lack
of proper bounds is common in CC theory, but problems are
rarely experienced in practical calculations as long as the CC
state vector is a sufficiently good approximation to the FCI
wave function. This, in turn, is related to the distance in
Hilbert space between the reference determinant and the FCI
wave function, as discussed in more detail by Kristiansen et
al.30 for TDCC theory.
Consistent with this analysis, we compute the ground-state

population via the ground-state projector
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as

p t S t P S t t t( ) ( ) ( ) Re( ( ) ( ) )0 0 0 0= ⟨⟨ | ̂ | ⟩⟩ = ⟨Ψ∼ |Ψ ⟩⟨Ψ∼ |Ψ ⟩ (46)

2.5. Projection Operators from CC Linear Response
Theory. In lieu of explicitly defined excited states in CC
response theory, we investigate the CCLR projector
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̂ =
⟨Ψ∼ |

|Ψ̆ ]⟨Ψ∼ | + |Ψ∼ ⟩[Ψ̆ | |Ψ∼ ⟩⟨Ψ | (47)

where we have introduced the notation ( f and g are arbitrary
functions)

g f g f f g f g g f g f,⟨ | ] ≡ ⟨ | ⟩* [ | ⟩ ≡ ⟨ | ⟩* = ⟨ | ⟩ = ⟨ | ]*
(48)

The functions |Ψn⟩ and ⟨Ψ̃n| are defined in eq 34, and

n n
n
0 0⟨Ψ̆ | = ⟨Ψ̅ | − ⟨Ψ∼ | (49)

where

M R M Ye ,n n
T

n n
n

0 0
0 ∑⟨Ψ̅ | = ⟨Φ | ̅ − ⟨Ψ∼ | ̅ = ̅

μ
μ μ

− †

(50)

The amplitudes
n̅ μ are determined by the linear

equations51

EA F( 1)n
n nT + Δ ̅ = − (51)

where the superscript T denotes matrix transposition, 1 is the
unit matrix, A is the CC Jacobian matrix defined in eq 38, ΔEn
is the eigenvalue (excitation energy) corresponding to the right
eigenvector n (cf. eq 37), and the symmetric matrix F is
defined by

F H X X, ,0 0 0= ⟨Ψ∼ |[[ ] ]|Ψ ⟩μ νμν (52)

The main arguments in favor of the CCLR projector (47) are
as follows:
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1. it becomes identical to the EOMCC projector in the
FCI limit, and

2. it yields the correct size-intensive CCLR ground-to-
excited state transition strength.

We demonstrate in the Appendix that ⟨Ψ̑n| = 0 in the FCI
limit, implying that the CCLR projector (47) becomes identical
to the EOMCC projector (33) in this limit. The CCLR
projector (47) gives the correct transition strength, i.e.,
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0 0 0 0 0

0 0 0
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+ ⟨Ψ∼ | |Ψ ⟩ + ⟨Ψ̅ | |Ψ ⟩ *⟨Ψ∼ | |Ψ ⟩*

(53)

To make the equivalence evident, we note that in the
notation used by Christiansen et al.51 for “right” and “left”
transition moments Tn0

B and T0n
B (see eqs 5.42 and 5.60 of ref

51),

B B
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(54)
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(55)

This allows us to recast the transition strength as

S BP C S T T T T
1
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( ( ) )n n
B
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n
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n
B

0 0 0 0 0 0⟨⟨ | ̂ ̂ ̂| ⟩⟩ = + *
(56)

which is identical to the expression obtained as a residue of the
CCLR function in eq 5.49 of ref 51.
While the CCLR projectors are Hermitian with respect to

the indefinite inner product, ⟨⟨S1|P̂n|S2⟩⟩ = ⟨⟨S2|P̂n|S1⟩⟩*, they
are not proper projection operators as they are neither
orthogonal nor idempotent, i.e.,
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The correction term only vanishes in the FCI limit. They do,
however, project onto the orthogonal complement of the CC
ground state as

i

k

jjjjjjjj

y

{

zzzzzzzz
i
k
jjj

y
{
zzz

P S
1
2 ( )

0
0

n
n n

n n n n n

0
0

0 0 0

̂ | ⟩⟩ =
|Ψ ⟩⟨Ψ∼ |Ψ ⟩

|Ψ∼ ⟩ ⟨Ψ̆ |Ψ ⟩ + ⟨Ψ∼ |Ψ ⟩ * + |Ψ̆ ]⟨Ψ∼ |Ψ ⟩

=
(58)

due to eq 40 and

R 0n n
n

n
n

0 0 0 0 0 0⟨Ψ̆ |Ψ ⟩ = ⟨Ψ̅ |Ψ ⟩ − = −⟨Ψ∼ | |Ψ ⟩ − = (59)

Excited-state populations extracted by the CCLR projectors
according to eq 32 become

p t t t t( ) Re ( ( ) ( ) ) ( )n n n n= [ ⟨Ψ̆ |Ψ ⟩ + ⟨Ψ∼ |Ψ ⟩ ⟨Ψ∼ |Ψ ⟩] (60)

While real, the CCLR population is neither bound below by
0 nor bound above by 1. The ground-state population is given
by eq 46.

2.6. Conservation Laws. As noted in Section 2.1, exact
stationary-state populations are conserved in time intervals
where no external forces act on the particle system.
Conservation laws in the framework of TDCC theory have
been discussed at various levels of detail previ-
ously.21,29,35,38,67,68

To this end, we recast the TDCC equations of motion in the
Hamiltonian form29

i i, , 0τ
∂λ

λ
τ

μ̇ = − ∂ ̇ = ∂
∂

≥μ
μ

μ
μ (61)

where the Hamiltonian function t( , , )τ λ= is defined by

H= ⟨Ψ∼| |Ψ⟩ (62)

Introducing the Poisson-like bracket
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for any analytic function f = f(τ,λ,t) and g = g(τ,λ,t), the
relation

f
t

i f
f
t

d
d

,= − { } +
∂
∂ (64)

is readily obtained from the Hamiltonian eq 61. The equation
of motion (64) allows us to identify constants of motion within
TDCC theory, including truncated TDCC methods. If the
function f does not depend explicitly on time, that is, if it only
depends on time through the amplitudes, it is conserved if its
Poisson-like bracket with vanishes, f , 0{ } = . Since

, 0{ } = , we have

t t
H
t

d
d

= ∂
∂

= Ψ∼ ∂
∂

Ψ
(65)

which shows that energy is conserved whenever the
Hamiltonian operator is constant in time, including before
and after the application of external forces such as laser pulses.
Note that this is true regardless of the truncation of the cluster
operators and regardless of the initial conditions of the
amplitudes. This observation was used in ref 29 to propose
symplectic numerical integration as a stable method for solving
the TDCC equations of motion.
The time evolution of the TDCC expectation value in eq 29

is obtained by choosing f = ⟨Ψ̃|C|Ψ⟩. Using a derivation
analogous to that of Skeidsvoll et al.,38 we find

f C f C H, ,= ⟨Ψ∼| |Ψ⟩ ⇒ { } = ⟨Ψ∼|[ ] |Ψ⟩ (66)

where we have introduced the projected commutator

C H C P H H P C, e e e eT T T T[ ] = −− −
(67)

with

P 0 0 ∑= |Φ ⟩⟨Φ | + |Φ ⟩⟨Φ∼ |
μ

μ μ
(68)

Here, the summation over excited determinants is truncated at
the same level as the cluster operators. The time evolution of
the TDCC expectation value thus is
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+ ∂
∂

†

(69)

This is not quite the form of a generalized Ehrenfest
theorem since, in general, [C†,H]∥ ≠ −[C,H]∥†. Consequently,
constants of motion in exact quantum dynamics are not
necessarily conserved in truncated TDCC theory. In the FCI
limit, however, P∥ = 1 and the Ehrenfest theorem

t
C i C H

C
t

d
d

,⟨ ⟩ = − ⟨[ ]⟩ + ∂
∂ (70)

is recovered from eq 69.
The EOMCC stationary-state population, eq 44, is of the

form (29) with C = |Ψn⟩⟨Ψ̃n|, and the time evolution, therefore,
is given by eq 69. The proposed EOMCC projector thus
breaks the conservation law of stationary-state populations in
truncated TDCC simulations, although we note that it is
properly restored in the FCI limit since C = |Ψn⟩⟨Ψ̃n|
commutes with H0 according to eqs 81 and 82 in the
Appendix. It seems reasonable to expect that the conservation
law is approximately fulfilled whenever the many-electron
dynamics predominantly involves stationary states that are well
approximated within (truncated) EOMCC theory.
The CCLR stationary-state population, eq 60, is not of the

form (29). Instead, the time evolution is given by eq 64 with

f t t t( ( ) ( ) ) ( )n n n= ⟨Ψ̆ |Ψ ⟩ + ⟨Ψ∼ |Ψ ⟩ ⟨Ψ∼ |Ψ ⟩ (71)

which only depends on time through the amplitudes (∂f/∂t =
0). Hence, the CCLR projector also breaks the conservation
law of stationary-state populations in truncated TDCC
simulations. It is restored in the FCI limit where the CCLR
and EOMCC projectors are identical. Again, it seems
reasonable to expect that the conservation law is approximately
fulfilled whenever CCLR theory provides a sufficiently good
approximation to the FCI states.

3. COMPUTATIONAL DETAILS
Explicitly time-dependent simulations are performed with a
closed-shell spin-restricted TDCCSD Python code generated
using a locally modified version of the Drudge/Gristmill suite
for symbolic tensor algebra developed by Zhao and Scuseria.69

The static HF reference orbitals and Hamiltonian integrals are
computed by the Dalton quantum chemistry program70,71

along with the response vectors required for the EOMCC and
CCLR projectors using the implementations described in
refs.72−75 Tight convergence criteria are employed: 10−10 a.u.
for the HF orbital gradient norm (implying machine precision
for the HF ground-state energy) and 10−8 a.u. for the CCSD
residual norms (both ground state and response equations).
Dunning’s correlation-consistent basis sets,76−78 downloaded
from the Basis Set Exchange,79 are used throughout. We also
perform TDFCI simulations using the contraction routines
implemented in the PySCF package.80 The TDCCSD and
TDFCI equations of motion are integrated using the
symplectic Gauss−Legendre integrator81 as described in ref 29.
To test the proposed EOMCC and CCLR projectors,

TDCCSD and TDFCI simulations are carried out for the He
and Be atoms placed at the coordinate origin. Further tests are
performed for the LiH molecule placed on the z-axis with the
Li atom at the origin and the H atom at z = 3.08 a.u. and for

the CH+ ion placed on the z-axis with the C atom at the origin
and the H atom at z = 2.13713 a.u. Finally, we study the time
evolution of stationary-state populations during the optical
pump pulse applied by Skeidsvoll et al.38 to investigate
transient X-ray spectroscopy of LiF. As in ref 38, we place the
LiF molecule on the z-axis with the F atom at the origin and
the Li atom at z = −2.9552749018 a.u. All electrons are
correlated, and point group symmetry is not exploited in these
simulations.
We assume the systems are initially in the ground state and

expose them to a laser pulse described by the semiclassical
interaction operator in the electric dipole approximation

d uV t t( ) ( )ε= − · (72)

where d is the electric dipole operator of the electrons, u is the
real unit polarization vector of the electric field, and ε(t) is the
time-dependent electric-field amplitude.
Two forms of the electric-field amplitude are used in this

work. One is the sinusoidal pulse

t t t t G t( ) sin( ( ) ( )) ( )0 0 0ε ε ω ϕ= − + (73)

where ε0 is the field strength, ω0 is the carrier frequency of the
pulse, and t0 is the time at which the pulse is turned on. The
time-dependent phase ϕ(t) may effectively alter the instanta-
neous carrier frequency, creating a chirped laser pulse, if it
depends on time at least quadratically.82 In this work, we use
the quadratic form

t a t t b t t( ) ( ) ( )0 0
2ϕ = − + − (74)

which, for b ≠ 0, creates a linearly chirped laser pulse with
instantaneous frequency ω(t) = ω0 + a + b(t − t0). The
envelope G(t) controls the shape and duration of the pulse and
is defined by
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where td is the duration of the pulse and Θ(t) is the Heaviside
step function.
The second form of the electric-field amplitude used in this

work is the Gaussian pulse

t t t G t( ) cos( ( )) ( )0 0 0ε ε ω= − (76)

with the envelope

G t t t N t N t( ) e ( ( )) (( ) )t t( ) /2
0 0

0
2 2

σ σ= Θ − − Θ + −σ− −

(77)

where t0 is the central time of the pulse and σ is the Gaussian
root-mean-square (rms) width and N defines the start time (t0
− Nσ) and end time (t0 + Nσ) of the pulse through the
Heaviside step functions. Note that N thus introduces
discontinuities of the Gaussian pulse at each end. Unless a
sudden disturbance of the system is intended, one must choose
N large enough that the discontinuities are negligible.

4. RESULTS AND DISCUSSION
4.1. Excited-State Rabi Oscillations. Involving popula-

tion inversion, Rabi oscillations between the ground state and
an excited state are very hard to simulate within conventional
TDCC theory with a static HF reference determinant. At the
periodically recurring points in time where the ground-state
population vanishes, the weight of the HF determinant
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becomes very small or zero, making the numerical integration
of the TDCC equations exceedingly challenging.29,30 Dynamic
orbitals, such as those of orbital-adaptive TDCC theory,23 are
required for a numerically stable integration of the equations of
motion.30 Consequently, in this work, we will focus on Rabi
oscillations between excited states.
Rabi oscillations between two excited states can be achieved

by the application of two consecutive laser pulses, the first of
which is resonant with a dipole-allowed transition from the
ground state, while the second is resonant with a dipole-
allowed transition between the resulting excited state and
another one. The intensity and duration of the first pulse must
be such that the ground-state population is significantly
reduced but not entirely depleted. Nonlinear optical processes
are thus involved, making it an ideal test case for the CCLR
and EOMCC projectors, which are constructed on the basis of
first-order perturbative arguments (first-order perturbation
theory in the case of CCLR and linearization of the cluster
exponential in the case of EOMCC), which cannot necessarily
be expected to correctly capture higher-order optical processes.
In particular, transition moments between excited states are
quadratic response properties, which cannot be expressed
solely in terms of linear response parameters.51 It is, therefore,
important to test if the proposed projectors correctly capture
the effects of nonlinear optical processes.
Results for the He atom with the aug-cc-pVTZ basis set are

presented in Figure 1. The integration of the TDCCSD

equations of motion was performed with time step Δt = 0.1
a.u. = 2.42 as using the eighth-order (s = 4) Gauss−Legendre
integrator and a convergence threshold of 10−10 (residual
norm) for the fixed-point iterations. The ground- and excited-
state energy levels shown in the left panel of Figure 1 were
computed using CCSD linear response theory. In total, 14
excited states were computed, several of which lie above the
ionization energy, which is estimated to be 0.902 a.u. using the
total ground-state energy difference between the neutral and
ionized atoms at the (spin unrestricted) CCSD/aug-cc-pVTZ
level of theory.83 Although the states above the ionization
energy are unphysical, we keep them for the purpose of
comparing with regular TDFCI simulations with the same
basis set.
The first sinusoidal laser pulse, applied at t0 = 0 a.u., is

resonant with the 01S → 21P transition at ω0 = 0.932 a.u. and
has peak intensity 87.7 TW/cm2 (ε0 = 0.05 a.u.) with a
duration of 10 optical cycles (td = 67.41 a.u. = 1.63 fs). The
second sinusoidal pulse, applied immediately after the first

pulse, is resonant with the 21P → 11S transition at ω0 = 0.163
a.u. at the same peak intensity as the first pulse with a duration
of 40 optical cycles (td = 1545.19 a.u. = 37.38 fs). Both lasers
are polarized along the z-axis with constant phase ϕ(t) = 0.
The ground and excited levels are dominated by the electron
configurations 1s2 (ground state, 01S), 1s12s1 (11S), and 1s12p1

(21P).
The right panel of Figure 1 shows the total energy-level

populations computed using the CCLR projector as a function
of time during the application of two consecutive laser pulses.
Energy levels that are never populated above 0.01 are excluded.
The level populations are computed by summing up the
populations of all states belonging to each energy level, thus
avoiding ambiguities arising from the arbitrariness of the basis
of a degenerate subspace. As expected, the first laser pulse
causes significant population of the 21P energy level. The high-
lying 41D level, which is dominated by the 1s13d1 electron
configuration and located 0.972 a.u. above the 21P level, also
becomes populated toward the end of the first pulse because of
the dipole-allowed transition 21P → 41D. The length-gauge
oscillator strength of this transition is f = 0.484 compared with
f = 0.355 for the 01S → 21P transition. The population of the
41D level is still modest, however, since the transition can only
occur once the 21P level is significantly populated.
The second pulse induces several cycles of Rabi oscillations

between the 21P and 11S levels. The Rabi oscillations are
slightly perturbed by weak transitions between the 21P level
and the 01S ground state, as witnessed by the increasing
oscillation of the ground-state population when the population
of the 21P level is close to its maximum value. We also observe
an even weaker perturbation caused by the higher-lying 41D
level. The CCLR populations agree both with TDFCI
populations and EOMCC populations: the rms deviation for
the entire simulation is 10−3 between the CCLR and TDFCI
populations and 3 × 10−7 between CCLR and EOMCC
populations. We have previously demonstrated that discrep-
ancies with TDFCI simulations for the He atom can be
reduced by tightening the computational parameters such as
convergence thresholds and, most importantly, by reducing the
time step of the numerical integration.30 We thus ascribe the
small discrepancies between the CCLR and TDFCI
populations to the rather coarse discretization (Δt = 0.1
a.u.) employed in the numerical integration scheme and
conclude that the proposed CCLR and EOMCC projectors
behave correctly in the FCI limit.
It is of interest to compare the TDCCSD simulation with a

much simpler model based on an eigenstate expansion
propagated according to eq 7. Letting |n⟩,n = 0,1,2,...,14
represent the stationary states computed with CCSD linear
response theory, all we need to integrate eq 7 in the presence
of external laser pulses of the form (72) is the dipole matrix in
the energy eigenbasis. This model is essentially identical to that
employed by Sonk et al.,84 except that we use CCSD linear and
quadratic response theories rather than EOMCCSD theory to
build the dipole matrix. (Note, however, that the CCSD
response and EOMCCSD approaches yield identical results for
He.) It is also similar to the EOMCCSD model employed by
Luppi and Head-Gordon,85 who propagated both bra and ket
states.
The only obstacle is that the “right” and “left” transition

moments from CC response theory, cf. eqs 54 and 55, are not
related by complex conjugation, yielding a spurious non-
Hermiticity of the dipole matrix. Sonk et al.84 and Luppi and

Figure 1. Energy-level populations computed with the aug-cc-pVTZ
basis set through CCLR projectors plotted as functions of time for He
exposed to two consecutive laser pulses, the first resonant with the 01S
→ 21P transition and the second resonant with the 21P → 11S
transition, with peak intensity 87.7 TW/cm2. The black curves show
the populations during the TDFCI simulation.
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Head-Gordon85 circumvented this issue by only using the
Hermitian part of the matrix. In the present case, due to
symmetry, the CCSD electric-dipole transition moments are
either zero or may be chosen parallel to one of the three
Cartesian axes, making it easy to define the off-diagonal dipole
matrix elements as the negative square root of the dipole
transition strength (cf. eq 56 with B = C a Cartesian
component of the position operator). With the dipole matrix
thus constructed for the 15 states, we have integrated eq 7 with
the initial condition Cn(t = 0) = δn0 and the same consecutive
laser pulses as in the He/aug-cc-pVTZ TDCCSD simulations.
The Gauss−Legendre integrator was used with the same
parameters and time step.
The rms population deviation between the model and the

full TDCCSD simulations is about twice that between the
TDFCI and TDCCSD simulations. The maximum absolute
deviation is an order of magnitude greater (0.02 vs 0.002),
however, indicating that a potentially large number of states,
including states above the ionization energy, may be required
for the simple model to agree quantitatively with full TDCCSD
simulations in general.
Moving away from the FCI limit, we repeat the study of

excited-state Rabi oscillations for the Be atom with the aug-cc-
pVDZ basis set. The integration parameters were the same as
those used for He above. The ground- and excited-state energy
levels shown in the left panel of Figure 2 were computed using

CCSD linear response theory. In total, 21 excited states were
computed, and the CCSD excitation energies agree with those
of FCI theory to within 3 × 10−4 a.u. Several of the computed
excited states lie above the ionization energy, which is
estimated to be 0.341 a.u. using the total ground-state energy
difference between the neutral and ionized atoms at the (spin
unrestricted) CCSD/aug-cc-pVDZ level of theory.83 The high-
lying excited states are retained in order to compare with
regular TDFCI simulations with the same basis set.
The first sinusoidal laser pulse, applied at t0 = 0 a.u., is

resonant with the 01S → 11P transition at ω0 = 0.198 a.u. and
has peak intensity 0.877 TW/cm2 (ε0 = 0.05 a.u.) with a
duration of 10 optical cycles (td = 316.93 a.u. = 7.64 fs). The
second sinusoidal pulse, applied immediately after the first
pulse, is resonant with the 11P → 21S transition at ω0 = 0.0522
a.u. at the same peak intensity as the first pulse with a duration
of 10 optical cycles (td = 1204.59 a.u. = 29.14 fs). Both lasers
are polarized along the z-axis with constant phase ϕ(t) = 0.
The ground and excited levels are dominated by the electron

configurations 1s22s2 (ground state, 01S), 1s22s12p1 (11P), and
1s12s13s1 (21S).
The right panel of Figure 2 shows the total energy-level

populations computed using the CCLR projector as a function
of time during the application of the two consecutive laser
pulses. Energy levels that are never populated above 0.01 are
excluded. The first laser pulse causes significant population of
the 11P energy level by excitation from the ground state
(oscillator strength f = 0.478), although the transition is
quenched by further excitation to the high-lying 71D level from
the 11P level ( f = 0.685). The 71D level, which is dominated by
the 1s22s13d1 electron configuration, is located 0.195 a.u. above
the 11P level, and hence, the 11P → 71D transition is nearly
resonant with the first laser. Consequently, the 71D level
population increases once sufficient population of the 11P level
is achieved toward the end of the first pulse. The second pulse
induces a single-cycle Rabi oscillation between the 11P and 21S
levels ( f = 0.118), which is quite significantly perturbed by the
transition between the 21S and 41P levels ( f = 0.211). The
population of the 41P level drops to zero as the Rabi oscillation
enters the final stage where the population of the 21S level
decreases.
The CCLR populations are in close agreement with TDFCI

populations and with EOMCC populations: the rms deviation
for the entire simulation is 7.4 × 10−3 between the CCLR and
TDFCI populations and 9.1 × 10−5 between the CCLR and
EOMCC populations.
Increasing the basis set to aug-cc-pVTZ, the CCSD levels,

the higher-lying ones in particular, move down in energy as
seen by comparing the left panel of Figure 3 with that of Figure
2.

The right panel of Figure 3 shows the variation of the level
populations as the Be atom is exposed to the same sinusoidal
laser pulses as in Figure 2, albeit with the carrier frequencies
adjusted to match the 01S → 11P and 11P → 21S transitions at
ω0 = 0.195 a.u. and ω0 = 0.0539 a.u., respectively. The
duration is 10 optical cycles for each pulse, as above. The
populations obtained from the CCLR and EOMCC projectors
are virtually identical, with an overall rms deviation of 1.6 ×
10−4.
The lowering of the 71D level, which is now 0.162 a.u. above

the 11P level, implies that the probability of the 11P → 71D
transition ( f = 0.648) diminishes, resulting in a very low
population of the 71D level an and increased population of the

Figure 2. Energy-level populations computed with the aug-cc-pVDZ
basis set through CCLR projectors plotted as functions of time for Be
exposed to two consecutive laser pulses, the first resonant with the 01S
→ 11P transition and the second resonant with the 11P → 21S
transition, with peak intensity 0.877 TW/cm2.

Figure 3. Energy-level populations computed with the aug-cc-pVTZ
basis set through CCLR projectors plotted as functions of time for Be
exposed to two consecutive laser pulses, the first resonant with the 01S
→ 11P transition and the second resonant with the 11P → 21S
transition, with peak intensity 0.877 TW/cm2. The dotted lines show
the populations obtained using a simplified eigenstate expansion (see
text) with the 22 states forming the 8 energy levels of the left panel
included.
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11P level (compared with the aug-cc-pVDZ simulation) during
the first pulse. Although the populations of the states involved
thus are different, the perturbed Rabi oscillation induced by
the second pulse is essentially the same as in Figure 2.
While a full TDFCI simulation is too costly with the aug-cc-

pVTZ basis set, we compare with the much simpler model
introduced for He above. We use the same consecutive laser
pulses and the Gauss−Legendre integrator with the same
parameters as in the Be/aug-cc-pVTZ TDCCSD simulation for
the model simulation with 22 states included.
The resulting energy-level populations, plotted as dotted

lines in Figure 3, are remarkably similar to the full TDCCSD
results. The maximum absolute deviations between the model
and TDCCSD populations are just 15% for the 11P level, 2%
for the 21S and 71D levels, and below 1% for the remaining
levels, including the ground state. Such good results can only
be expected from the simple model when all, or very nearly all,
participating CCSD states are included. How many states are
needed will in general be very hard to estimate a priori.
4.2. Control by Chirped Laser Pulses. Control by

shaped laser pulses is an important challenge to theoretical
simulations and requires information about population of
energy levels. For the LiH molecule described with the aug-cc-
pVDZ basis set, which is small enough to allow TDFCI
reference simulations, we use chirped sinusoidal laser pulses to
further test the proposed CCLR and EOMCC projectors
within TDCCSD simulations. The laser pulses are polarized
along the x-axis, perpendicular to the molecular axis, and the
duration is kept fixed at td = 378.4 a.u. = 9.152 fs,
corresponding to 10 optical cycles of radiation resonant with
the lowest-lying electric-dipole allowed transition from the
ground state, the x-polarized 1Σ+ → 1Π transition at ω0 =
0.166 a.u. The laser pulses are turned on at t0 = 0 a.u. with peak
intensity 3.51 TW/cm2 (ε0 = 0.01 a.u.). The oscillator strength
of this transition is estimated to be f = 0.208 by CCSD linear
response theory with the aug-cc-pVDZ basis set. The phase of
the laser pulse is defined such that the instantaneous frequency
is
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jjj

y
{
zzzt b t

t
( )

30
dω ω= + −
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and the chirp rate b is varied between −0.513 and +0.513 fs−2.
A few such laser pulses with different chirp rates are shown in
Figure 4.
The 31 lowest-lying states, organized into 21 energy levels in

the left panel of Figure 5, were computed with CCSD linear
response theory (aug-cc-pVDZ basis) and used to construct
CCLR and EOMCC projectors for the simulations.
The highest-lying energy level is 0.603 a.u. above the ground

state, well beyond the ionization energy estimated by CCSD/
aug-cc-pVDZ total-energy difference to be 0.281 a.u.83 The
most important energy levels in the simulations are marked by
their term symbols. These states are all predominantly single-
excited states, with at least 90% contribution from singles in
the EOMCC excitation amplitudes. While the 1Π level at 0.166
a.u. is well below the estimated ionization energy, the 1Δ and
1Σ+ levels at 0.291 and 0.312 a.u., respectively, are slightly
above. With x-polarized laser pulses, one-photon transitions
from the ground state to the 1Δ and 1Σ+ levels are electric-
dipole forbidden, implying that these excited levels can only
become populated by nonlinear optical processes.

The final populations of these levels, computed immediately
after the interaction with the chirped sinusoidal laser pulse, are
shown in the right panel of Figure 5 along with a few reference
TDFCI results. The TDCCSD (and TDFCI) equations of
motion were integrated using the sixth-order (s = 3) Gauss-
Legendre integrator with time step Δt = 0.1 a.u. and
convergence threshold 10−6. The sum of the populations of
the remaining 27 energy levels is labelled “Rest” and is seen to
be insignificant for all but the most up- or down-chirped
pulses. At b = 0 fs−2, the pulse is resonant with the ground-state
1Σ+ → 1Π transition and, therefore, other levels are hardly
populated. The maximum population of the 1Π level is
observed at a slightly up-chirped pulse (at b = 0.023 fs−2),
which prevents further excitation from the 1Π level to the
higher-lying 1Σ+ and 1Δ levels. As the chirp rate increases, the
laser pulse becomes increasingly off-resonant, and the ground-
state population increases.
The population of the excited 1Σ+ level and, in particular, of

the 1Δ level increases with moderately down-chirped pulses
because of transitions from the 1Π level, whose probability
increases as the laser frequency decreases. At b = −0.102 fs−2,
the population of the 1Π level is just 9.3 × 10−4, while the
excited 1Σ+ and 1Δ populations are close to their maximum
values. These nonlinear optical processes can easily be
understood by studying the populations during interaction
with the laser pulse in Figure 6.
During the first half of the pulse, the instantaneous laser

frequency is nearly resonant with the ground-state 1Σ+ → 1Π
transition at 0.166 a.u. ( f = 0.207), causing the population of

Figure 4. Laser pulses with different chirp rates.

Figure 5. Final population of CCSD energy levels, computed with the
CCLR projector, as a function of the chirp rate for LiH with the aug-
cc-pVDZ basis set. The squares mark reference populations from
TDFCI simulations.
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the 1Π level to increase. As the instantaneous frequency
decreases, it comes closer to the transition frequencies of the
1Π → 1Δ and 1Π → 1Σ+ transitions at 0.138 and 0.146 a.u.,
respectively. Although the instantaneous frequency is closer to
the 1Π → 1Σ+ transition than to the 1Π → 1Δ transition, the
latter level is considerably more populated. This is explained by
the difference in the oscillator strength for these transitions: f =
0.363 for the 1Π → 1Δ transition compared with f = 0.076 for
the 1Π → 1Σ+ transition.
The differences between the EOMCC and CCLR projectors

are, again, utterly insignificant, the typical rms population
deviation between them being approximately 10−5 regardless of
the chirp rate. As can be seen from Figure 5, the TDCCSD
simulations are in excellent agreement with TDFCI results.
This is not unexpected since all states participating in the
dynamics are single-excited states. The maximum absolute
deviation in the 30 excitation energies, including the excited
states with significant double-excited character (down to 11%
singles contribution in the EOMCC excitation amplitudes),
between CCSD linear response theory and FCI theory is just
0.0013 a.u.
4.3. Dynamics Involving Double-Excited States. In

general, CCSD linear response theory performs poorly for
states dominated by double-excited determinants relative to
the HF ground state. For such states, excitation-energy errors
are typically an order of magnitude greater than for single-
excited states,86,87 roughly 0.01 a.u. for double-excited states
compared with 0.001 a.u. for single-excited states of small
molecules where FCI results are available.87 In all examples
presented above, the states participating significantly in the
dynamics are all single-excitation dominated, explaining the
close agreement observed between TDFCI and TDCCSD
simulations.
With a ground-state wave function dominated by the HF

ground-state determinant, one-photon transitions to excited
states dominated by double-excited determinants are either
electric-dipole forbidden or only weakly allowed. Accordingly,
we expect double-excited states to influence laser-driven many-
electron dynamics mainly through nonlinear optical processes.
In order to test the influence on TDCCSD dynamics, we
consider the CH+ molecule, which is a classic example of the
relatively poor performance of CCSD linear response and
EOMCCSD theory for such states, see, for example, refs.88−90

The 1Σ+ ground state of CH+ is dominated by the 1σ22σ23σ2

electron configuration with some nondynamical correlation
contribution from the double-excited 1σ22σ21π2 configuration.

The two lowest-lying excited states form the 1Π energy level
and are dominated by the single-excited 1σ22σ23σ11π1

configuration. The three subsequent states form two energy
levels, 1Δ and 1Σ+, and are almost purely double-excited states
stemming from the 1σ22σ21π2 electron configuration. Tran-
sitions from the ground state to these levels are either electric-
dipole forbidden (1Δ) or very weak with oscillator strengths on
the order of 10−3. Significant population of these levels,
therefore, can only be achieved through nonlinear optical
processes, requiring rather intense laser pulses.
In order to make TDFCI simulations feasible for CH+, we

use a reduced aug-cc-pVDZ basis set where the diffuse p
functions on hydrogen and the diffuse d functions on carbon
have been removed. While removing these diffuse functions
has little effect on the 5 lowest CCSD linear response
excitation energies (rms deviation 0.001 a.u.), the effect is
significant on the following 25 excitation energies with an rms
deviation of 0.021 a.u. The 31 lowest-lying states, forming 21
energy levels, computed with CCSD linear response and FCI
theory are shown in the left panel of Figure 7.

The ionization energy of CH+ is estimated to be 0.878 a.u.
using ionization-potential EOMCCSD theory and 0.876 a.u.
using FCI theory with the 6-31G* basis set.91 Hence, all
computed states are below the estimated ionization energies.
We expose the CH+ ion to a sinusoidal laser pulse with

intensity 2654 TW/cm2 (ε0 = 0.275 a.u.) and carrier frequency
ω0 = 0.212 a.u., which is resonant with the 1Π→ 1Σ+ transition
between excited states at the CCSD level of theory. The pulse
is polarized along the y-axis, perpendicular to the bond axis,
with duration td = 66.7 a.u. = 1.61 fs, corresponding to 2.05
optical cycles. The TDCCSD and TDFCI equations of motion
were integrated with the sixth-order (s = 3) Gauss-Legendre
integrator with time step Δt = 0.05 a.u. and convergence
threshold 10−6. The resulting energy-level populations are
presented in the right panel of Figure 7. Populations of the 4
lowest-lying levels, including the ground state, are shown along
with the sum of the populations of the remaining 17 levels,
labelled “Rest.” The total population of all computed levels is
labelled “Sum.”
The effect of poorly described double-excited states at the

CCSD level of theory is evident, although we do observe a
qualitative agreement with FCI theory. We first note that the
21 levels included in the analysis only account for about 80%
of the norm of the FCI wave function at the end of the pulse,
implying that a physically correct description must also take

Figure 6. Energy-level populations computed with the aug-cc-pVDZ
basis set through CCLR projectors plotted as functions of time for
LiH exposed to a down-chirped laser pulse with chirp rate b = −0.102
fs−2. The instantaneous frequency of the laser pulse is shown in the
top panel.

Figure 7. TDCCSD (full curves) energy-level populations computed
with the reduced aug-cc-pVDZ basis set through CCLR projectors
plotted as functions of time for CH+. The dotted curves are
populations computed with TDFCI theory. The total population of
the black levels in the left panel is labelled “Rest” in the right panel.
The curves labeled “Sum” are the total population of all 21 levels
computed at the CCSD and FCI levels of theory.
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ionization processes into account. This, of course, is not
surprising, considering the high intensity of the pulse. The
TDFCI and TDCCSD populations agree reasonably well
during the first 0.75 fs of the simulation, whereas the
TDCCSD errors increase as the simulation progresses.
Involving a large number of states, the dynamics is

considerably more complex than the dynamics of the cases
presented above. For simplicity, we use a classification of the
30 excited states based on their single- or double-excitation
character. Excited states with more than 90% contribution
from singles in the EOMCCSD amplitude norm are classified
as single-excited states, while states with less than 10% singles
contribution are classified as double-excited states. States with
10−90% singles contribution are mixed states, classified as
singles-dominated (>50% singles contribution) or doubles-
dominated (<50% singles contribution). Thus, the 30 excited
CCSD states can be grouped into 7 single-excited states, 4
singles-dominated states, 5 doubles-dominated states, and 14
double-excited states. The total population of each class of
states is presented in Figure 8.

After about 0.4 fs, the laser pulse induces transitions from
the ground state into singles-dominated states, followed by
transitions (from both the ground state and the singles-
dominated excited states) into single-excitation states. Double-
excited or doubles-dominated states are barely populated at
this stage, explaining the reasonable agreement with TDFCI
populations. Roughly half-way through the simulation, double-
excited states and, to a smaller extent, doubles-dominated
states become populated, mainly due to transitions from
singles-dominated states. As soon as these processes occur, the
agreement between TDCCSD and TDFCI deteriorates.
4.4. Population Conservation. As discussed in Section

2.6, stationary-state populations in the absence of external
forces are strictly conserved in the FCI limit but may vary
when the cluster operators are truncated. In order to
investigate the breaking of the population conservation law
within TDCCSD theory, we have conducted simple numerical
experiments with several of the systems presented above. We
apply the same sinusoidal laser pulses as above but continue
the propagation after the pulses have been turned off,
recording stationary-state population using the CCLR and
EOMCC projectors.
Figure 9 shows the conservation of TDCCSD populations

after the laser pulses have been turned off for the He atom with
the aug-cc-pVTZ basis set.
A maximum absolute deviation in the populations of 1.5 ×

10−3 is observed for the 11S and 21P levels, whereas the
deviations for the remaining levels are at least 1 order of
magnitude smaller. These deviations from exact conservation

are likely caused by the discretization of the numerical
integration.
Slightly larger deviations from strict conservation are

observed for the Be atom with the aug-cc-pVTZ basis set in
Figure 10.

The maximum absolute deviation of 0.005 is observed for
the 11P level. Caused by the truncation of the cluster operators
in conjunction with discretization, this deviation is thrice
greater than that observed for He above. Only weak oscillatory
behavior is observed, indicating that the states involved in the
dynamics are very well approximated at the CCSD level of
theory.
Energy-level populations for LiH during and after interaction

with a chirped laser pulse are plotted in Figure 11.
The chirp rate b = 0.03078 fs−2 yields a final state dominated

by the 1Π level, and the populations remain constant to an
excellent approximation after the interaction ceases. The

Figure 8. Population of different classes of CCSD states for CH+ with
the reduced aug-cc-pVDZ basis set.

Figure 9. Conservation of TDCCSD energy-level populations after
the laser pulses have been turned off for the He atom with the aug-cc-
pVTZ basis set. The populations were computed using the CCLR
projector.

Figure 10. Conservation of TDCCSD energy-level populations after
the laser pulses have been turned off for the Be atom with the aug-cc-
pVTZ basis set. The populations were computed using the CCLR
projector.

Figure 11. Conservation of TDCCSD energy-level populations of
LiH after interaction with a chirped laser pulse with chirp rate b =
0.03078 fs−2. The populations were computed using the CCLR
projector and the aug-cc-pVDZ basis set.
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maximum absolute deviation is observed for the 1Π level and is
on par with that observed for the He atom: 1.7 × 10−3.
As we saw above, the TDCCSD method is a much poorer

approximation to TDFCI theory in the case of CH+, where
double-excited states participate significantly in the dynamics.
On these grounds, we expect a much poorer conservation of
energy-level populations after interaction with the laser pulse
and, indeed, large deviations can be seen in Figure 12.

The depletion of the ground state appears to continue after
the pulse, and irregular weakly oscillatory behavior is observed
for the 1Π level with a maximum absolute deviation of 0.072,
which is an order magnitude greater than the deviations found
for He, Be, and LiH above. The double-excited 1Δ and 1Σ
levels show maximum absolute deviations of 0.009 and 0.019,
respectively.
4.5. Pump Spectrum of LiF. Skeidsvoll et al. recently

reported a theoretical TDCCSD study of transient X-ray
spectroscopy of the LiF molecule.38 They applied a pump−
probe laser setup with an optical pump pulse resonant with the
lowest-lying dipole-allowed transition from the ground state,
followed, at various delays, by an X-ray probe pulse resonant
with the first dipole-allowed core excitation. The resulting
time-resolved spectra were interpreted by means of excitation
energies from EOMCC theory and core−valence separated
EOMCC theory.92 The pump absorption spectrum reported in
Figure 7 of ref 38 contains weak unassigned features, one weak
absorption above the two low-lying valence excitations and two
very weak features below, which the authors speculated were
due to two-photon absorptions. We will now use the EOMCC
and CCLR projectors to investigate what might cause these
weak features of the pump absorption spectrum. We use the
same basis set, denoted aug-cc-p(C)VDZ, as in ref 38: the aug-
cc-pVDZ basis set for Li and the aug-cc-pCVDZ basis set for F.
The closed-shell TDCCSD equations of motion were
integrated using the sixth-order (s = 3) Gauss−Legendre
integrator with time step Δt = 0.025 a.u. = 0.60 as and
convergence threshold 10−6 for the fix-point iterations.
Initially in the ground state, we expose the LiF molecule to a

shortened but otherwise identical z-polarized Gaussian laser
pulse to that in ref 38, with field strength ε0 = 0.01 a.u. (peak
intensity I = 3.51 TW/cm2), carrier frequency ω0 = 0.2536 a.u.,
and Gaussian rms width σ = 20 a.u. The shortening consists in
choosing the central time t0 = 80 a.u (compared with t0 = 160
a.u. in ref 38) and N = 4 (compared with N = 8 in ref 38). This
implies that the electric-field amplitude jumps from zero to 3.3
× 10−6 a.u. at t = 0 a.u. and from 3.3 × 10−6 a.u. to zero at t =
160 a.u., whereas virtually no discontinuities can be observed

with the pulse parameters used in ref 38 (they are on the order
of 10−16 a.u.). Since the pump pulse is quite weak, the effects of
these discontinuities on the populations are negligible, as can
readily be verified using a simple eigenstate expansion
analogous to the one used for He and Be in Section 4.1.
Our TDCCSD results are presented in Figure 13. The first

30 excited states (20 energy levels, left panel of Figure 13) are

all single-excitation dominated states, with 94.9−95.4% singles
contribution to the norm of the EOMCCSD amplitudes. The
highest-lying states are somewhat above the first ionization
energy of LiF, which we estimate to be about 0.4 a.u. (11 eV)
based on data available in ref 83.
The modest intensity of the pump pulse results in fairly little

excitation from the ground state, well within reach of a
perturbation-theoretical (Fermi’s golden rule) treatment. In
agreement with ref 38, the projectors predict the absorption to
be dominated by the B1Σ+ and E1Σ+ states. The final
population of the latter is roughly 53% of the former, in
good agreement with the relative intensities of the pump
spectrum reported in Figure 7 of ref 38. The population of the
E1Σ+ state reaches its maximum value 0.0025 at t = 2.26 fs; at
the same time, the ground-state population reaches its
minimum value 0.9945, indicating that the ensuing decay of
the E1Σ+ population is caused by transition back to the ground
state.
The weak feature at higher frequency (at about 9.1 eV) in

the pump spectrum of ref 38 is seen to be consistent with one-
photon transition from the ground state to the H1Σ+ state,
whose final population is about 5% of that of the B1Σ+ state. As
speculated by Skeidsvoll et al.,38 the two very weak features
below the B1Σ+ line in ref 38 are indeed seen to arise from
direct two-photon absorptions from the ground state to the
L1Σ+ and R1Σ+ states. The only alternative explanation would
be excitations between excited states, but this mechanism can
almost certainly be ruled out since the population of these
states starts before other excited levels are significantly
populated and since no other excited states are depleted as
the populations of these states increase.
Although the CCLR and EOMCC populations largely agree

with an overall rms deviation of 7 × 10−6, the CCLR
populations show spurious high-frequency oscillations in
Figure 13. The oscillations are caused by the off-diagonal
contributions from ⟨Ψ̑n| (eq 49) to the CCLR projector (eq
47). While these contributions are required to ensure proper

Figure 12. Conservation of TDCCSD energy-level populations of
CH+ after interaction with a laser pulse. The populations were
computed using the CCLR projector and the reduced aug-cc-pVDZ
basis set.

Figure 13. TDCCSD energy-level populations computed with the
aug-cc-p(C)VDZ basis set through CCLR (colored full curves) and
EOMCC (black dotted curves) projectors plotted as functions of time
for LiF. The 20 lowest-lying CCSD energy levels (corresponding to
30 states) are shown in the left panel with participating levels counted
alphabetically as in ref 38.
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size-intensivity of one-photon transition moments, they also
cause nonorthogonality of the CCLR excited-state representa-
tion as expressed by eq 57. Since the CCLR and EOMCC
projectors provided virtually identical results in the cases
above, this observation serves as a recommendation of the
EOMCC projector for the calculation of stationary-state
populations.
Figure 14 depicts a normalized pump spectrum of LiF

generated from the final EOMCC populations using
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where γ = 0.01 eV is an artifical Lorentzian broadening of the
excited levels.
This approach implicitly assumes that the excited states only

become populated through one-photon absorption from the
ground state, thus excluding all nonlinear optical processes.
The population-based pump spectrum agrees remarkably well
with that reported by Skeidsvoll et al.,38 which was properly
generated from Fourier transformation of the induced dipole
moment. This supports the conclusion that the low-frequency
features are two-photon absorptions and further strengthens
the confidence in the proposed EOMCC projector for the
calculation of stationary-state populations in TDCC simu-
lations.

5. CONCLUDING REMARKS
We have proposed projectors for the interpretation of many-
electron dynamics within TDCC theory in terms of the
population of stationary states. Two conditions are used to
define suitable projectors from CCLR theory and from
EOMCC theory: (i) the projector must reproduce the correct
form of one-photon transition strengths and (ii) the projectors
must yield populations that converge to the FCI results in the
limit of untruncated cluster operators.
The CCLR and EOMCC projectors are tested numerically

at the TDCCSD level of theory for the laser-driven dynamics
in the He and Be atoms and in the molecules LiH, CH+, and
LiF. It is demonstrated that the populations provide valuable
insight into the linear and nonlinear optical processes
occurring during the interaction of the electrons with laser
pulses. For the He atom, it is verified numerically that the
populations computed from both CCLR and EOMCC
projectors agree with those computed from TDFCI
simulations. For Be and LiH, the CCLR and EOMCC
populations show excellent agreement with TDFCI popula-

tions since the excited stationary states involved in the
dynamics are dominated by single-excited Slater determinants.
Such states are generally well described by CCSD theory. For
CH+, we deliberately design the laser pulse such that double-
excitation dominated states become populated, which reduces
the agreement between TDFCI and TDCCSD populations.
This is also reflected in the studies of the conservation of
populations after the laser pulses are turned off. Theoretically,
the TDCC populations will only be strictly conserved in the
FCI limit. Numerically, we find that they are nearly conserved
as long as the participating stationary states are well
approximated at the CCSD level of theory. Finally, for LiF,
we use the CCLR and EOMCC projectors to explain
unassigned weak features in a theoretical TDCCSD pump
spectrum reported recently.38

Overall, the CCLR and EOMCC projectors yield very
similar excited-state populations with typical rms deviations on
the order of 10−5. For LiF, however, we observe small-
amplitude high-frequency oscillations of the excited-state
populations computed with the CCLR projector. Originating
from a contribution that vanishes in the FCI limit, we speculate
that such oscillations may increase for larger and more complex
systems where TDCCSD theory may be further from TDFCI
theory. Not showing signs of such spurious behavior, the
EOMCC projector appears more attractive than the CCLR
projector. This has the added benefit that the additional
response eq 51 need not be solved, thus making the EOMCC
projectors less computationally demanding than the CCLR
projectors.
These findings call for further research aimed at a fully

consistent definition of excited states in CC theory, and work
in this direction is in progress in our labs.

■ APPENDIX

FCI Limit
The CCLR projector, eq 47, becomes identical to the EOMCC
projector, eq 33, in the FCI limit. To show this, we will now
demonstrate that

0n n
n
0 0⟨Ψ̆ | = ⟨Ψ̅ | − ⟨Ψ∼ | = (80)

in the FCI limit.
In the FCI limit, the EOMCC wave functions satisfy the

time-independent Schrödinger equation and its Hermitian
conjugate

H E H E, n n n0 0 0 0 0|Ψ ⟩ = |Ψ ⟩ |Ψ ⟩ = |Ψ ⟩ (81)

H E H E, n n n0 0 0 0 0⟨Ψ∼ | = ⟨Ψ∼ | ⟨Ψ∼ | = ⟨Ψ∼ | (82)

where the ground- and excited-state wave functions constitute
a biorthonormal set according to eqs 39 and 40. The
resolution-of-the-identity reads

1
n

n n0 0 ∑|Ψ ⟩⟨Ψ∼ | + |Ψ ⟩⟨Ψ∼ | =
(83)

where 1 is to be understood as the identity operator. To verify
the resolution-of-the-identity, one simply inserts the definitions
of the wave functions and exploits the biorthonormality of the
Jacobian eigenvectors, eq 37, along with the completeness of
the underlying determinant basis.
According to eq 51, the amplitudes

n̅ μ can be recast as

Figure 14. Pump spectrum of LiF generated from EOMCC
populations assuming one-photon transitions from the ground state.
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where we have used eq 37. Expanding the nested commutator
and using81−83 and,39 we find
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which shows that ⟨Ψ̑i| = 0 in the FCI limit.
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(55) Izsaḱ, R. Single-reference coupled cluster methods for
computing excitation energies in large molecules: The efficiency
and accuracy of approximations. Wiley Interdiscip. Rev.: Comput. Mol.
Sci. 2019, 10, No. e1445.
(56) Peng, W.-T.; Fales, B. S.; Levine, B. G. Simulating Electron
Dynamics of Complex Molecules with Time-Dependent Complete
Active Space Configuration Interaction. J. Chem. Theory Comput.
2018, 14, 4129−4138.
(57) Pedersen, T. B.; Koch, H.; Haẗtig, C. Gauge invariant coupled
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