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Abstract

During an ischemic event, bicarbonate and CO2 concentration increase as a consequence

of O2 consumption and lack of blood flow. This event is important as bicarbonate/CO2 is

determinant for several redox and enzymatic reactions, in addition to pH regulation. Until

now, most work done on the role of bicarbonate in ischemia-reperfusion injury focused on

pH changes; although reperfusion solutions have a fixed pH, cardiac resuscitation protocols

commonly employ bicarbonate to correct the profound acidosis associated with respiratory

arrest. However, we previously showed that bicarbonate can increase tissue damage and

protein oxidative damage independent of pH. Here we show the molecular basis of bicar-

bonate-induced reperfusion damage: the presence of bicarbonate selectively impairs

mitophagy, with no detectable effect on autophagy, proteasome activity, reactive oxygen

species production or protein oxidation. We also show that inhibition of autophagy repro-

duces the effects of bicarbonate in reperfusion injury, providing additional evidence in sup-

port of this mechanism. This phenomenon is especially important because bicarbonate is

widely used in resuscitation protocols after cardiac arrest, and while effective as a buffer,

may also contribute to myocardial injury.

Introduction

One of the most fundamental aspects of ischemia-reperfusion (IR) injury is the disruption of

blood flow in the tissue. Without circulation, oxygen content rapidly decreases while CO2/

bicarbonate accumulates. When the tissue is reperfused there is a burst in reactive oxygen spe-

cies (ROS) production which is responsible for most of the damage [1]. While there are studies

that have analyzed the effects of bicarbonate on IR injury [2–6], they do not differentiate

between acidosis and bicarbonate concentrations. This can be specially misleading as acidosis

can protect the heart against IR independently of bicarbonate [6]. We have shown that

increased bicarbonate concentrations can increase IR injury in a pH-independent environ-

ment [7], an effect that is important to consider when designing reperfusion strategies.

The role of the CO2/bicarbonate pair is not limited to pH regulation. Bicarbonate is neces-

sary for several redox reactions [8–10], for mitochondrial metabolism [11] and acts as a co-

transporter in membrane channels [11,12]. While CO2/bicarbonate is known to participate in
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redox metabolism [8,13], we were the first to show that the presence of bicarbonate increases

protein oxidation under pathophysiological conditions [7]. The accumulation of the oxidized

proteins could arise from increased oxidant production associated with mitochondrial dys-

function, or could be the result of impaired clearance via the proteasome [14], or a failure to

clear oxidant-generating mitochondria and oxidized proteins by autophagy, mitophagy or

mitochondria-derived vesicles [15,16].

Here we unveil the mechanism that promotes increased toxicity caused by the presence of

bicarbonate in ischemia-reperfusion. We show that mitophagy impairment is responsible for

the increase in oxidized proteins, while there are no changes in mitochondrial function, oxi-

dant production, proteasome activity or nonspecific autophagy.

Materials and Methods

Detailed information on methods used on this paper is contained on S1 File on the online sup-

port information.

Materials

All chemicals were of the highest purity available from Sigma (St. Louis, MO, USA), unless

otherwise specified. Bafilomycin A was purchased from EMD Millipore (Billerica, MA, USA)

and Amplex Red from Molecular Probes (Eugene, OR, USA).

Mitochondria isolation

Heart mitochondria were rapidly isolated as previously described [17,18]. After the heart was

removed it was minced and subsarcolemmal mitochondria were isolated by differential

centrifugation.

Mitochondrial hydrogen peroxide production

Isolated mitochondria were incubated in mitochondrial experimental buffer (in mM: 125

sucrose, 65 KCl, 10 HEPES, 2 inorganic phosphate, 2 MgCl2, and 0.01% bovine serum albu-

min, adjusted to pH 7.2) in the presence of 25 μM Amplex Red and 0.5 U/mL horseradish per-

oxidase. Hydrogen peroxide production was measured under previously described conditions

[18,19].

Mitochondrial respiration

Respiration of isolated mitochondria was measured in the mitochondrial experimental buffer

using a high resolution oxygen electrode (Oroboros), as described before [18].

Immunostaining and imaging

Immunostaining was done as previously described [20]. Cells were PFA fixed and stained for

CoxIV and DAPI. Imaging was done in a Keyence fluorescence microscope using a 100x oil

lens.

Mitochondrial network quantification

Keyence software was used to produce a macro to detect and quantify the mitochondrial parti-

cle sizes in an unbiased way. The aspect ratio (AR) and format factor (FF) were quantified

using the described formulas, AR = (major axis)/(minor axis) FF = Perimeter/4�Pi�Area2.
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Proteasome activity

Proteasome activity was measured by quantifying increasing fluorescence of Suc-Leu-Leu-Val-

Tyr-AMC, as described previously [21].

Isolated heart perfusion

Heart perfusion was conducted as described previously [7,22]. Briefly, hearts were rapidly

removed from male anesthetized (pentobarbital sodium 60 mg/kg i.p. and heparin 100 U i.p.)

and heparinized Sprague-Dawley rats (~300 g, 2–3 months), and Langendorff-perfused using

oxygenated Krebs-Henseleit buffer (described below). Hearts were eliminated from the study

if the time between rat death and the beginning of perfusion was longer than 2 min. All studies

were conducted in accordance with guidelines for animal care and use established by the Socie-
dade Brasileira de Ciência em Animais de Laboratório and approved by the Animal Care and

Use Committee at Cedars-Sinai Medical Center in conformance to the Guide for the Care and

Use of Laboratory Animals (National Institutes of Health publication no. 85–23, revised 1996).

After isolation, the hearts were stabilized for 30 min and then subjected to 30 min ischemia

followed by 15 min reperfusion. The perfusion used was a modified Krebs buffer containing

(in mmol/L) 118 NaCl, 1.2 KH2PO4, 4.7 KCl, 1.2 MgSO4, 1.25 CaCl2, 10 glucose, and 20 Na+-

Hepes, pH 7.4 which was then gassed with pure O2, for 0% CO2 or gassed with 90% O2 + 10%

CO2 for 10% CO2 at 37˚C. We confirmed that the pH remained at 7.4 after gassing.

Creatine kinase quantification

Creatine kinase was quantified in heart perfusate, cell supernatant and total cellular protein

using CREATINE KINASE (CK)-SL kit by Sekisui.

Cardiac HL-1 cell cultures and simulated ischemia/reperfusion (sI/R)

Cardiac HL-1 cells were kindly donated by Professor William C. Claycomb. For routine

growth, HL-1 cells were maintained in T-75 flasks at 37˚C in an atmosphere of 5% CO2 in

Claycomb medium (Sigma) supplemented with 0.1 mM norepinephrine, 100 U/mL and 100

U/mL penicillin/streptomycin, 2 mM glutamine, and 10% fetal bovine serum. Experiments

were done in 100 mm plates with cells grown to 100% confluence.

sI/R was conducted as previously described [22]. Cells were subjected to 150 min of simu-

lated ischemia in Krebs buffer lacking glucose and supplemented with 5 mM sodium lactate

and 20 mM 2-deoxyglucose in a GasPak™ EZ Anaerobe Pouch System (Franklin Lakes, NJ,

USA) gassed with 100% N2 (0% CO2) or 90% O2 + 10% CO2 (10% CO2). Simulated ischemia

was followed by 5 min of reperfusion with the modified Krebs buffer described above and

gassed with pure O2 for 0% CO2 or gassed with 90% O2 + 10% CO2 for 10% CO2. All cell treat-

ments were performed at 37˚C.

Western blots

Western blots (WB) were done as previously described [7,20]. The samples from hearts and

cells were prepared by homogenizing the tissue or the cells in the presence of an extraction

buffer (mmol/L, 250 sucrose, 20 Tris-HCl, 2 EDTA, 10 EGTA, pH = 7,5 freshly added protease

and phosphatase cocktail), aliquoted in sample buffer and frozen at -80˚C until use.

The blots were analyzed using Image J or Image Lab (BioRad) software. Blots were com-

pared to the 0% CO2 control or to the 0% CO2 ischemic group and normalized by Ponceau

staining.
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Statistics

All experiments presented were replicated at least three times, and statistical analysis was con-

ducted using GraphPad Prism 5. For studies with more than 2 groups, 2-way ANOVA was

used; when just 2 conditions were compared, Student’s t-test was used. Differences were con-

sidered significant if p< 0.05.

Results

Bicarbonate increases I/R injury

We previously reported that bicarbonate increases ischemia-reperfusion (I/R) injury [7]. To

understand the molecular events that lead to the damage increase we used two models of I/R

injury: isolated rat hearts subjected to global no-flow ischemia followed by reperfusion, and

HL-1 cells subjected to glucose deprivation and hypoxia. In both settings pH was held constant

at 7.4. In the cardiac-derived cell line (HL-1 cells), cells were exposed to simulated ischemia-

reperfusion injury (sI/R), with an ischemia of 150 min and a reperfusion of 5 min (Fig 1A) to

promote damage similar to that found in the isolated heart. Cell death was measured by follow-

ing creatine kinase (CK) release at the end of the ischemia and after the reperfusion (Fig 1B).

The presence of bicarbonate promoted a significant increase in cell death after reperfusion

when compared to control conditions. Additionally, the presence of bicarbonate promoted a

significant increase in protein carbonylation after 5 min reperfusion when compared to no

bicarbonate sI/R (Fig 1C).

We confirmed these results in isolated rat hearts subjected to I/R in the presence (10% of

CO2) or absence (0% CO2) of bicarbonate (Fig 1D). After 30 min stabilization, the hearts were

exposed to 30 min of global no-flow ischemia and 15 min of reperfusion, when CK release was

measured (Fig 1E). After 15 min reperfusion, the hearts were frozen in liquid nitrogen and

protein carbonylation was measured in the protein extract (Fig 1F). There was a significant

increase in CK release in the group exposed to bicarbonate, indicating greater injury (Fig 1E).

This was paralleled by a trend for increased carbonylation damage (p = 0.0525) in the heart

protein extract (Fig 1F). We then proceeded to investigate the molecular mechanism(s)

responsible for increased ischemia/reperfusion injury in the presence of bicarbonate.

Effect of bicarbonate on autophagy

Autophagy is one of the main systems responsible for cellular homeostasis and organelle qual-

ity control. Therefore, autophagy is in the center of the possible causes for the accumulation of

oxidized proteins. We started by measuring LC3 content, an autophagy marker, in rat hearts

and HL-1 cells under IR injury in the presence or absence of bicarbonate (Fig 2A–2C and 2E–

2G). In the heart, we saw a trend toward an increase in LC3-I and -II, but this did not reach

statistical significance; however, there was a significant increase in the concentration of LC3

mRNA (Fig 2D), which could signify a transcriptional response to an unmet need for autop-

hagy [23]. In the HL-1 model, the presence of bicarbonate promoted an increase in the amount

of LC3-II (the activated form of LC3) during reperfusion (Fig 2G), which could reflect

increased autophagy initiation or impaired flux.

We looked further into the autophagy machinery by analyzing p62, Beclin 1 and Drp1,

three proteins that are part of the autophagy and mitophagy pathway (Fig 3). We initially

probed for the amount of p62; the presence of bicarbonate decreased the total and cytosolic

(Fig 3A and 3B) concentration of p62 indicating either increased autophagy, which would help

to clear oxidized proteins and would therefore be expected to be protective [24,25], or autop-

hagy inhibition, that would lead to increased death [26,27].
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Fig 1. Bicarbonate exacerbates ischemia/reperfusion injury. HL-1 cells were subjected to 150 min

ischemia followed by 5 min of reperfusion (A); CK release to the supernatant was measured at the indicated

times (B); protein carbonylation content was measured by western blot in the cell lysate before and after the 5

min reperfusion (C). Isolated rat hearts were subjected to ischemia for 30 min and 15 min reperfusion (D); CK

release into the perfusate was measured during reperfusion (E); protein carbonylation content was measured

by western blot at the end of reperfusion (15 min) (F).

doi:10.1371/journal.pone.0167678.g001
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Effect of bicarbonate on mitochondrial autophagy

As mitochondria are an important source of oxidants, their proteins are necessarily a major

target of oxidative damage. For that reason, we followed by investigating mitochondrial autop-

hagy, which revealed a different picture from our findings in the cytosolic compartment. In

the rat hearts challenged with I/R, we found that the presence of bicarbonate resulted in a

greater accumulation of p62 in the mitochondrial fraction (Fig 3C), suggesting that impaired

mitophagy might explain the increased damage [28,29]. Bicarbonate also affected the distribu-

tion of Beclin 1 and Drp1 (Fig 3D–3G). Whereas Beclin 1 was significantly increased in the

cytosol in the presence of bicarbonate, it was decreased in the heavy membrane/mitochondrial

fraction. In contrast, Drp1 showed increased accumulation in mitochondria in the presence

of bicarbonate. These findings are consistent with intact autophagy induction, but impaired

autophagic clearance of mitochondria.

Proteasome activity

As the proteasome can also degrade oxidized and damaged proteins [14,30,31] we checked

proteasomal activity. We measured the activity of the 20S subunit using a fluorescence

Fig 2. Bicarbonate does not change LC3 expression, but changes LC3 transcription. LC3 was measured by western blot or RT-PCR

as described in the Material and Methods. Hearts were subjected to 30 min ischemia followed by 15 min reperfusion, after which protein was

extracted to quantify LC3 expression (A-C). In the same treatment, mRNA was isolated and LC3 mRNA was quantified by RT-PCR (D). HL-

1 cells were subjected to 150 min ischemia followed by 5 min reperfusion. Cell extracts prepared at the indicated times were probed for LC3

expression (E-G).

doi:10.1371/journal.pone.0167678.g002
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Fig 3. Autophagy markers accumulate in the mitochondrial fraction. HL-1 cells were subjected to 150

min ischemia followed by 5 min reperfusion, and cell extracts were obtained at the indicated times and probed

for p62 by western blot (A). Isolated rat hearts were subjected to 30 min ischemia followed by 15 min

reperfusion, and the heart homogenates were fractionated by differential centrifugation to yield cytosol (B, D,

F) and mitochondria (C, E, G). The resulting fractions were probed for p62 (B and C), Beclin 1 (D and E) and

Drp1 (F and G) by western blot.

doi:10.1371/journal.pone.0167678.g003
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substrate. Proteasome activity was measured in rat heart lysates (Fig 4A) and in HL-1 lysates

(Fig 4B) in the presence or absence or bicarbonate. We did not detect any significant difference

in proteasome activity. Nonspecific protease activity detected by MG-123 also showed no dif-

ference (data not shown).

Effect of bicarbonate on mitochondrial phenotype

The inhibition of mitophagy observed could be secondary to modifications of the mitochon-

drial population. To test this possibility, we measured several mitochondrial parameters in the

presence or absence of bicarbonate. We started by measuring respiration, membrane poten-

tials, coupling and H2O2 production from isolated mitochondria from rat hearts incubated

with different concentrations of bicarbonate. The presence of bicarbonate had no effect on

mitochondrial respiration (S1 Fig) or mitochondrial coupling (Respiratory control—Fig 5A).

We next measured H2O2 production and compared absolute levels (S2 Fig) or levels relative to

oxygen consumption under the same conditions (Fig 5B–5D). One important point to be

raised is that the method we used is selective for H2O2; however, the presence of bicarbonate

might lead to formation of other oxidants. To verify if other types of oxidants were being gen-

erated, we analyzed oxidant-related protein modifications. To create several different oxidant

production situations, we incubated isolated mitochondria under different conditions: low (in

the presence of succinate) (Fig 5E and 5G) or high (succinate + antimycin) (Fig 5F and 5H).

Fig 4. Proteaso me activity is not affected by bicarbonate. Proteasome activity was measured as described in Materials and Methods.

Rat hearts were subjected to 30 min ischemia followed by 15 min reperfusion and the proteins were collected and proteasome activity was

measured (A). HL-1 cells were subjected to 150 min ischemia followed by 5 min reperfusion; cellular extracts were obtained at the indicated

times and proteasome activity was measured (B).

doi:10.1371/journal.pone.0167678.g004
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After 15 min incubation, we measured the amount of protein carbonylation (Fig 5E and 5F)

and methionine sulfoxide (Fig 5G and 5H). The presence of bicarbonate didn’t affect the

amount of protein oxidation, indicating that oxidant levels and modifications caused by them

are indeed unaltered.

Effect of bicarbonate on mitochondrial morphology

Alterations in mitochondrial morphology can also contribute to impaired mitophagy and

might contribute to altered oxidant production in intact cells [32–35]. To address this, we per-

formed immunofluorescence imaging of HL-1 cells incubated in the presence or absence of

bicarbonate under control (Fig 6A and 6B and S3 Fig) or ischemic conditions (Fig 6C–6H).

Ischemia promoted fragmentation of mitochondria, as described before [36], but the presence

or absence of bicarbonate did not affect mitochondrial morphology.

Autophagy inhibition mimics the increase in damage caused by

bicarbonate

To obtain more solid proof that bicarbonate-mediated inhibition of mitophagy was responsi-

ble for the damage observed, we examined mitochondrial proteins that have been described to

Fig 5. H2O2 production from isolated mitochondria is not increased by bicarbonate. Mitochondria isolated from rat hearts were

subjected to 0 or 10% bicarbonate; hydrogen peroxide production as a function of oxygen consumption was measured in the presence of

ADP (A), ADP + Oligomycin (B) or ADP + Oligomycin + CCCP (C). Respiratory control (RC) (D) was measured as described in Materials

and Methods. To examine protein oxidative modifications, mitochondria were incubated in media with Succinate (E and G), or Succinate

+ Antimycin (F and H) for 15 min at 37˚C; the mitochondria were then pelleted and protein carbonyl (E and F) and methionine sulfoxide (G

and H) content was measured by western blot.

doi:10.1371/journal.pone.0167678.g005
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Fig 6. Mitochondrial morphology is not affected by bicarbonate. Mitochondrial morphology under control

(A and B) or sI/R conditions (C and D) was measured by calculating their aspect ratio (A and C) (Major axis/

Minor Axis) and format factor (B and D) (Perimeter2/(Pi*4*Area)). Representative images of mitochondrial

morphology analyses using Keyence software; CoxIV is red, DAPI is blue and selected mitochondria are

purple (E-H).

doi:10.1371/journal.pone.0167678.g006
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be degraded by the proteasome (Tom70) or by autophagy (CoxIV) [37,38] (Fig 7A and 7B).

Bicarbonate presence resulted in higher levels of CoxIV, whereas changes in Tom70 did not

reach statistical significance. These findings are consistent with impaired mitophagy and intact

proteasomal function.

Given the evidence for mitophagy inhibition, we next investigated whether global inhibi-

tion of autophagic flux could mimic the increase in damage seen by the presence of bicarbon-

ate. We incubated HL-1 cells with or without bafilomycin A (BAF: an autophagic flux

inhibitor), while subjecting them to sI/R in the presence or absence of bicarbonate (Fig 7C).

The presence of BAF increased I/R injury in the no-bicarbonate group to the same level as the

presence of bicarbonate, but BAF did not cause additional injury in the bicarbonate-exposed

group. Taken together, these results suggest that in the setting of ischemia/reperfusion, bicar-

bonate exacerbates injury by interfering with mitophagy, resulting in impaired clearance of

oxidatively damaged proteins and mitochondria.

Discussion

Bicarbonate is the main intracellular buffer, and as such is often viewed as being innocuous,

being added to experimental buffers without any consideration regarding possible biological

effects [9,11,39]. Indeed, the use of bicarbonate to adjust the pH and its presence in crystalloids

used in reperfusion treatment is common norm in clinical settings and accepted as inoffensive.

There are several types of reperfusion solutions, with specific pH, varying salts, bicarbonate

and other additions, but only a few studies comparing them [40,41]. Particularly in ischemia/

reperfusion injury, where bicarbonate content is known to vary considerably [42] and the

main component of the damage occurs during reperfusion time [1,43], the solution chosen for

reperfusion may greatly affect treatment and results.

We focused here on understanding what molecular events were linked to damage pro-

moted by bicarbonate (Fig 1). Our data describing an increase in damage show the snapshot

of the time point most sensitive to damage, the initial reperfusion phase. In this phase,

autophagy is necessary to degrade mitochondria so there is no release of cell death-inducing

cytochrome c and mitochondrial DNA, that can trigger inflammation and apoptosis [44].

We show that the accumulation of oxidized proteins in the presence of bicarbonate is due

the inhibition of mitochondrial autophagy, and not related to increased oxidant production

(Fig 5) nor changes in proteasome activity (Fig 4). In fact, mitochondrial autophagy is

highly important in cardiac metabolism, helping shape the adult cardiomyocyte [45,46], act-

ing as an essential step in protective ischemic pre-conditioning [47] and heart remodeling

[35,48].

Our findings give support to the idea that, despite intact autophagic flux, mitophagy is

impaired by the presence of pathologically-relevant levels of bicarbonate. Indeed, when we

used Bafilomycin A to block all lysosome-dependent protein degradation, the damage in the

absence of bicarbonate was raised to the same level as the one with bicarbonate, while dam-

age with bicarbonate remained unchanged. This suggests that lysosomal inhibition was the

cause of the damage promoted by bicarbonate, and clearly indicates that it interferes with

mitophagy flux, promoting tissue damage (Fig 8). Overall, our data add to prior findings

demonstrating the importance of mitophagy in cardiac protection [28,29,47] by demonstrat-

ing that the presence of bicarbonate inhibits mitophagy specifically, causing an increase in

the damage triggered by ischemia/reperfusion. Our results uncover a need to reevaluate the

use of bicarbonate-containing buffers in clinical resuscitation and myocardial reperfusion

protocols.
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Fig 7. Bicarbonate promotes accumulation of mitophagy cargo and exacerbation of sI/R injury comparable to

lysosomal blockade. TOM70 (A) (proteasome degraded) and COXIV (B) (autophagy degraded) were probed by

western blot in total extracts from hearts subjected to 30 min ischemia followed by 5 min of reperfusion. HL-1 cells were

subjected to 150 min ischemia followed by 5 min reperfusion in the presence or absence of bicarbonate and/or

Bafilomycin A (autophagy inhibitor, Baf, red symbols); creatine kinase release was measured at the indicated times (C).

doi:10.1371/journal.pone.0167678.g007
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Supporting Information

S1 File. More detailed Material and methods description is contained on Autophagy-Bicar-

bonate—Online MM.doc.

(DOC)

S1 Fig. Mitochondrial respiration is not affected by bicarbonate. Mitochondria isolated

from rat hearts were incubated in the presence of the indicated concentration of bicarbonate,

Fig 8. Scheme representing the events that lead to increased damage in I/R and sI/R in the presence of bicarbonate. I/R causes

mitochondrial oxidant production with resulting oxidative damage to macromolecules (orange glow). Outer mitochondrial membrane

proteins such as TOM70 are degraded by the proteasome, and the damaged mitochondrion is separated from the network by Drp1 and

marked for autophagic removal by p62. Bicarbonate interferes with mitophagy, resulting in the accumulation of oxidized proteins, functional

impairment, and cell death. Bicarbonate does not affect mitochondrial oxidant production, morphology, proteasome activity, or general

autophagy.

doi:10.1371/journal.pone.0167678.g008
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and oxygen consumption was measured in the presence of ADP (200 mM).

(TIF)

S2 Fig. Absolute mitochondrial ROS production is not affected by bicarbonate. Mitochon-

dria isolated from rat hearts were incubated in different concentration of bicarbonate while

hydrogen peroxide production was measured in the presence of Rotenone (A), Antimycin (B),

Succinate (C), Succinate+ADP (D), Succinate+ADP+Oligomycin (E) or Succinate+ADP+Oli-

gomycin+CCCP (F).

(TIF)

S3 Fig. Mitochondrial morphology is not affected by bicarbonate. A-D—Representative

images of the cells with mitochondrial and nuclear staining under control conditions. Cells

were fixed and stained with CoxIV antibody (red) and DAPI (Blue). Contours show automatic

selection by Keyence software and analyzed mitochondrial area.

(TIF)
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