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ABSTRACT

Millions of transcriptome samples were generated
by the Library of Integrated Network-based Cellu-
lar Signatures (LINCS) program. When these data
are processed into searchable signatures along with
signatures extracted from Genotype-Tissue Expres-
sion (GTEx) and Gene Expression Omnibus (GEO),
connections between drugs, genes, pathways and
diseases can be illuminated. SigCom LINCS is a
webserver that serves over a million gene expres-
sion signatures processed, analyzed, and visualized
from LINCS, GTEx, and GEO. SigCom LINCS is built
with Signature Commons, a cloud-agnostic skeleton
Data Commons with a focus on serving searchable
signatures. SigCom LINCS provides a rapid signa-
ture similarity search for mimickers and reversers
given sets of up and down genes, a gene set, a sin-
gle gene, or any search term. Additionally, users of
SigCom LINCS can perform a metadata search to
find and analyze subsets of signatures and find in-
formation about genes and drugs. SigCom LINCS
is findable, accessible, interoperable, and reusable
(FAIR) with metadata linked to standard ontologies
and vocabularies. In addition, all the data and sig-
natures within SigCom LINCS are available via a
well-documented API. In summary, SigCom LINCS,
available at https://maayanlab.cloud/sigcom-lincs, is
a rich webserver resource for accelerating drug and
target discovery in systems pharmacology.

GRAPHICAL ABSTRACT

INTRODUCTION

Following the publication of the human genome sequence
(1), genome-wide gene expression profiling with cDNA mi-
croarrays became a common tool for molecular and cell bi-
ologists. It was then proposed to develop a database of drug-
induced gene expression signatures as a reference resource
for finding matching signatures between user-submitted up
and down genes, and complete signatures, from hundreds of
drugs in the reference database. A signature in this context is
defined as the differential expression of genes between two
conditions, a control condition and a perturbation condi-
tion. The differential expression of the genes between the
two conditions is computed, and the signature is the ranked
list of genes based on their change between the two con-
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ditions. It is possible to expand this definition to the top
genes that are mostly upregulated, and the top genes down-
regulated, as two related sets of genes that define the signa-
ture. Importantly, differential expression computation can
be achieved by different methods that may result in differ-
ent ranks and sets. The idea of constructing a database of
gene expression signatures was first implemented for yeast
(2) and later for Mammalia (3–5). This Connectivity Map-
ping concept (6,7) was popularized by the application of
the gene set enrichment analysis method (GSEA) (8) and
later by the establishment of the original Connectivity Map
(CMAP) (6). The original CMAP database, developed by
researchers from the Broad Institute, hosts ∼7000 signa-
tures created by the treatment of four human cancer cell
lines with most FDA-approved drugs and a few preclin-
ical compounds. The four cancer cell lines for the origi-
nal CMAP were profiled with Affymetrix cDNA microar-
rays before and after drug treatment in different concentra-
tions and where gene expression was measured after 6 h.
This Connectivity Mapping approach facilitated early-stage
drug discovery by avoiding the need for knowing the exact
drug target. Many subsequent publications used the origi-
nal Connectivity Map (CMAP) resource to identify drugs
for repurposing and other applications.

The success and promise of the Connectivity Mapping
concept, and the CMAP resource, prompted the NIH to
establish the Library of Integrated Network-based Cellu-
lar Signatures (LINCS) Common Fund program (9). Dur-
ing the first phase of LINCS, which lasted four years, tech-
nology development and data analysis centers were funded.
In Phase II of the LINCS program, six data and signa-
ture generation centers (DSGCs) and one data coordina-
tion and integration center (DCIC) were established. Over-
all, the LINCS program has generated an extensive collec-
tion of perturbation-response signatures over the course of
its program, which lasted 10 years (2011–2021). Expanding
the original CMAP, the LINCS program employed > 20
assays to catalog the cellular responses of different model
cellular systems across a wide range of chemical, genetic,
microenvironment, disease, and other perturbations.

The most reused resource produced by the LINCS pro-
gram is the data generated by the L1000 assay. The L1000
assay is a low-cost, high-throughput, gene expression pro-
filing technology (10). While the L1000 assay directly mea-
sures a reduced representation of the transcriptome, the rest
of the transcriptome is computationally inferred with an ex-
trapolation algorithm. The advantage of the L1000 assay
is that it can be performed in high throughput compared
with RNA-seq or microarrays. Five levels of L1000 data are
available for download from the CLUE platform (clue.io).
Level 3 is the normalized gene expression profiles where the
rows are genes, and the columns are samples. Level 5 data
are gene expression signatures computed from the Level 3
data. So far, ∼3 million samples were generated (Level 3),
and these samples were used to compute ∼1 million signa-
tures (Level 5). Such a digital resource is highly valuable for
drug and target discovery and drug repurposing.

Aside from LINCS, publicly available transcriptomics
data has significantly expanded over the past decade. The
Genotype-Tissue Expression (GTEx) consortium provides
a comprehensive resource that serves gene expression data

collected from 54 tissue sites of post-mortem donors (11).
The latest GTEx release contains RNA-seq samples with
limited publicly available metadata that includes tissue of
origin, age range, sex, and cause of death. Creating sig-
natures from the GTEx where the younger age group is
compared with older ones can provide insights into tissue-
specific age-related genes and the biological processes of
aging. The most comprehensive and diverse resource for
publicly available gene expression data is the Gene Ex-
pression Omnibus (GEO) (12). This rapidly growing re-
source provides transcriptomics data at the sample level,
and there is an opportunity to process these data into gene
expression signatures to better enable data integration and
reuse (13,14). Generating signatures from GEO is challeng-
ing because of the diversity of platforms, poor labeling of
samples as control and perturbation, diverse options for
processing pipelines, non-uniform parameter settings, non-
standardized thresholds, and inconsistent data normaliza-
tion. Several efforts attempted to develop gene expression
signatures from GEO. For example, a previous manual ef-
fort utilized the participants from a massive open online
course (MOOC) on Coursera to crowdsource the labeling
of samples for processing microarray data into signatures
(13). Other efforts such as MARQ (15), GESgnExt (16),
DrugSig (17), iLINCS (18), GREIN (19), ARCHS4 (14),
GENEVA (20), GEN3VA (21), GEMMA (22), Expression-
Blast (23), SEEK (24), ExpressionAtlas (25) and NFFinder
(26) attempted to automatically mine signatures from GEO
and serve these for search through Python and R libraries or
web-based search engines. However, most of these resources
have limitations that include low coverage of available sig-
natures, slow search algorithms, lack of current availability
and continual updating, and poor user interface design.

This article outlines the development of SigCom LINCS,
a webserver search engine for gene expression signatures
that processes, analyses, and visualizes over one million sig-
natures extracted from LINCS, GEO and GTEx. SigCom
LINCS is constructed on the backbone of Signature Com-
mons, an original open-source generic Data Commons tem-
plate that can be used to host metadata and signatures for
other projects. Signature Commons is FAIR compliant; this
means that it has facilities for machine readable metadata
that is linked to community standard ontologies and dic-
tionaries, well documented open API, and assessment of
FAIRness of datasets with FAIRshake (27). Other skele-
ton data portals options exist, for example, GEN3 (28),
CAVATICA (29), cBioPortal (30), DERIVA (31), iRODS
(32) and Globus (33). These other Data Commons are
geared towards hosting patient protected data and are more
elaborate than Signature Commons. Signature Commons
can be considered a light-weight Data Commons template
that brings together raw and processed data with an intu-
itive interactive interface that enables users to conduct data
discovery tasks without any prior experience, training, or
computer programming skills.

RESULTS

The user interface of SigCom LINCS

The user interface of SigCom LINCS is divided into sev-
eral sections: Search, Concierge, UMAPs, Download, API,
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Help and About. The Search tab enables users to search for
mimickers and reversers across over one million LINCS,
GTEx, and GEO gene expression signatures collected by
L1000, cDNA microarrays, and RNA-seq assays (Supple-
mentary Table S1). SigCom LINCS entry points for signa-
ture search include inputting sets of up- and down-genes, a
single gene-set, single genes, and any search term(s) (Figure
1). The up/down sets and the single gene set inputs return
mimicking and reversing signatures from the various collec-
tions of available signatures. The single gene inputs can be
converted into up/down sets based on RNA-seq gene–gene
co-expression data matrix retrieved from ARCHS4 (14). Al-
ternatively, single gene inputs can be queried with two Ap-
pyters (34) that identify signatures where the gene is maxi-
mally up- or down-regulated using the same data served by
SigCom LINCS. The term search is converted into a gene
set using Geneshot’s (35) or Enrichr’s (36) APIs. A search
term can also be used to identify signatures within the Sig-
Com LINCS database.

SigCom LINCS supports the entry of gene IDs in dif-
ferent formats including Entrez, HNGC, dbSNP, and EN-
SEMBL. Variants and ENSEMBL IDs are resolved us-
ing the services myvariant.info (37), mygene.info (38) and
BioMart (39). Once genes are entered into the input text
boxes for single gene sets or up/down sets, there is an op-
tion to validate the gene names against all human genes reg-
istered in SigCom LINCS (Supplementary Figure S1). The
validation function colors the input genes based on their
validation status with suggestions for synonyms and correc-
tions, as well as resolution of variant IDs to their respective
closest genes using the myvariant.info API (37). Alterna-
tively, users can enter a single gene name or a variant ID in
an adjacent text box (Supplementary Figure S2A). Once a
valid human gene name, or a valid variant ID, is entered,
the gene will be converted into a signature that will popu-
late the up/down text boxes. This signature is created based
on the co-expression correlation of the gene with other hu-
man genes. This functionality is achieved using the RNA-
seq co-expression gene-gene similarity matrix taken from
ARCHS4 (14). Using a checkbox, the user can toggle be-
tween the up/down gene set input form to the single gene
set input form. The single gene set input form provides the
ability to identify signatures that maximally up- or down-
regulate the expression of a gene set. A search bar is located
below the single gene set input form to enable users to access
annotated gene sets retrieved from Enrichr (36) or create a
gene set from any search term using Geneshot (35). After
the user enters a search term in this search bar and presses
submit, a PubMed search is invoked. The returned PubMed
IDs are converted into a gene set based on co-mentions us-
ing the Geneshot API (35). The resultant gene set is then
loaded into the SigCom LINCS single gene set input form
(Supplementary Figure S2B).

Once the user presses the Search button, SigCom LINCS
initially displays the results as columns of bar charts of
the top mimickers and reversers for several categories of
signatures (Supplementary Figure S3). Expanding the re-
sults for each category invokes an alternative, more fo-
cused, view with the top matching signatures as bar charts
and more detailed results listed in two tables. Users can
search for signatures within those tables with a dedicated

search input form element on top of each table. The
complete contents of the search results for each category
are made available for download as tab-separated value
(TSV) files (Supplementary Figure S4). The top match-
ing signatures can also be viewed as heatmaps. In these
plots, the rows are highly ranked input genes, and the
columns are the top 10 matching signatures. The plots
are visualized with Clustergrammer (40), which provides
interactivity such as zooming, panning, sorting, cluster-
ing and filtering (Supplementary Figure S5). This fea-
ture assists the user with finding information about the
top-ranked genes that are specific to the perturbagen
effects.

The Metadata Search interface of SigCom LINCS en-
ables users to search for signatures using any search term,
or a combination of search terms. Such terms can be an as-
say, a cell line, or a drug such as dexamethasone shown in
the example (Supplementary Figure S6). The search can be
further refined with filters provided on the right side of the
search results. Consensus analysis is provided for metadata
search results that return fewer than 50 signatures (Supple-
mentary Figure S7). This consensus analysis is performed
by piping the selected signature into an Appyter (34). The
Appyter produces a report that provides insights on the
most common mimickers and reversers among the collec-
tion of input signatures. Returned matching signatures are
available for download as either a full rank file, or as a gene
matrix transpose (GMT) file with the top up- and down-
regulated genes. These top up- or down-regulated genes
can also be used as input for Signature Search with Sig-
Com LINCS, as well as submitted for enrichment analy-
sis with Enrichr (36) (Supplementary Figure S8). The meta-
data search results are decorated with the FAIRshake (27)
insignia. This insignia represents the FAIR assessment re-
sults of each dataset. More details about these FAIR assess-
ments are discussed below. Clicking on the metadata search
results redirects users to the metadata dedicated landing
pages created for each signature (Supplementary Figure
S9).

The Gene Search interface of SigCom LINCS enables
users to search for signatures that maximally up- or down-
regulate the expression of the queried gene. These searches
are performed via two Appyters: the GEO Reverse Search
Appyter, and the RNA-seq-like Reverse Search Appyter.
These two Appyters visualize the results of the signature
search as volcano plots where each point in the plot repre-
sents a signature (Supplementary Figure S10). The results
from the SigCom LINCS Gene Search Appyters are also
provided in tables with ranked signatures. Details about the
processing of the GEO and L1000 signature data under-
lying the Gene Search are provided below under the sec-
tions ‘Shaping the L1000 data into RNA-seq-like with Deep
Learning’ and ‘RNA-seq gene expression signatures auto-
matically extracted from GEO’. The Fetch Gene Set inter-
face of SigCom LINCS enables users to fetch annotated
gene sets from Enrichr (36) or from co-mentions of genes
in the literature with any search term using the Geneshot
API (35). The results from the search are displayed as bar
graphs as well as downloadable tables (Supplementary Fig-
ures S3 and S4). Users are also able to view the input gene
set by clicking on a button.
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Figure 1. SigCom LINCS user interface workflow map. SigCom LINCS has several entry points to query the database for mimicking and reversing
signatures. Users can submit any search term. The search term can be converted to a gene set using the Geneshot API, or the Enrichr API, or used to
retrieve SigCom LINCS signatures. Users of SigCom LINCS can also start with a single human gene. The single human gene can be converted into up
and down gene sets using co-expression data from ARCHS4 or submitted for reverse search using two Appyters. Users of SigCom LINCS can also submit
a gene set or up and down gene sets for signature search.

Uniquely computing signatures from the LINCS L1000 data

The processed L1000 data in SigCom LINCS consists of
uniquely processed Level 3 and Level 5 data not available
from the CLUE platform. To process signatures for SigCom
LINCS, the Level 3 L1000 data was first downloaded from
CLUE on 2 June 2021. Sets of replicate perturbation profiles
were identified based on matching metadata for timepoint,
dosage, perturbagen, detection plate, and well IDs from the
Level 3 metadata. Replicate profiles were then used to com-
pute Level 5 gene expression signatures for each perturba-
tion using the Characteristic Direction (CD) method (41).

To provide a global view of the computed L1000 signa-
tures, we visualized all normalized CD signatures with Uni-
form Manifold Approximation and Projection (UMAP)
(42) (Figure 2A). Signatures are colored by their pertur-
bation type. Besides a UMAP for all L1000 perturbations,
UMAP plots that visualize only the chemical perturbations
(Figure 2B) and the CRISPR perturbations (Figure 2C) are
available. These plots show that some perturbations are cell
type-specific and some cell type agnostic. The chemical per-
turbation plot shows that signatures are clusters by known
MOAs, suggesting that for some MOAs the signatures can
be predictive about the MOAs of small molecules without

previously annotated MOAs. Under the UMAPs tab, Sig-
Com LINCS contains both static and interactive UMAP
visualizations for each cell line. These UMAP visualizations
are separated into chemical and CRISPR perturbations.

Benchmarking the LINCS L1000 signatures computed with
the CD method

Although the CD method was previously shown to pro-
duce high-quality gene expression signatures from L1000
data in past publications (43,44), since then, the L1000 data
has undergone a substantial update. Accordingly, we re-
benchmarked the CD method against three other differen-
tial gene expression analysis methods: fold change, limma
(45), and the moderated z-score (MODZ) method used to
compute the Level 5 L1000 signatures by the producers of
the L1000 data (10). A total of 1218 L1000 signatures for 44
different transcription factors (TFs) targeted by CRISPR
knockout perturbations were computed using each of the
above differential gene expression methods. For each signa-
ture, differentially expressed genes were ranked by the ab-
solute value that quantified the level of differential expres-
sion. We then compared these weighted and unweighted
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Figure 2. Global View of L1000 Signatures (A) L1000 signatures are visualized on a 2D space using UMAP with each signature colored by its perturbation
type. (B) UMAP plot of the chemical perturbagen signatures colored by the mode of action of the small molecules. (C) UMAP of CRISPR KO signatures
colored by cell line.

ranks to known target genes of the respective TFs based
on published ChIP-seq data (Figure 3). Each TF that was
knocked out for generating the LINCS L1000 expression
samples was matched with the same TF that was also pro-
filed for its targets by ChIP-seq experiments performed by
the ENCODE project (46) or by small-scale studies pub-
lished in the literature and stored in the ChEA database
(47). Both weighted and unweighted random walks were
computed for each of the signatures and averaged across
all TFs and their respective L1000 signatures. In general,
the CD method produces the highest peaks in both the un-
weighted and weighted random walks, suggesting that the
CD method best extracts and ranks the most relevant dif-
ferentially expressed genes. In the unweighted walks, the
peak for the CD signatures shows that the CD method re-
covers more target genes than the other methods without
taking expression values into account (Figure 3A, B). The
weighted random walks show higher peaks for all meth-
ods, possibly because the weighted expression values of the
target genes provide additional information than only us-
ing the rank (Figure 3C, D). The higher, rounder peaks in
the weighted walks also suggest that the MODZ, limma,
and CD methods can all sufficiently detect differential ex-
pression of the ‘correct’ genes. In contrast, the fold change
method performs close to what is expected for a random
function. In summary, we decided to provide the L1000 sig-

natures that were uniquely computed with the CD method
in SigCom LINCS for use by the community.

Shaping the L1000 data into RNA-seq-like with Deep Learn-
ing

The L1000 assay measures the expression of only 978 genes,
and the inferred genes in the Level 3 data provided by CLUE
is only a subset of all human coding and non-coding genes
(n = 12 327). The lack of full coverage of the genome from
those expression profiles prohibits many applications, for
example, finding the most potent drugs to up- or down-
regulate the expression of genes not reported by the L1000
profiles. To address this limitation, we developed a Deep
Learning model that converts L1000 data to RNA-seq-like
data. The pipeline takes as input the measured expression
levels of the 978 landmark genes from the Level 3 L1000
profiles and outputs 23 614-dimensional RNA-seq-like pro-
files. The pipeline consists of two steps: the first step is con-
verting L1000 profiles to RNA-seq-like profiles for the land-
mark genes using a modified version of a CycleGAN (48).
The second step extrapolates the inferred 978 genes into
full RNA-seq profiles covering the entire genome using a
fully connected neural network model trained with RNA-
seq data. To benchmark the performance of the 2-step
model, data from a collaborative project between LINCS
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Figure 3. L1000 benchmarking. Random walk visualizations of the recovery of transcription factor (TF) target genes for L1000 CRISPR knockdown
signatures targeting 44 TFs. The signatures are computed with four different differential expression analysis methods: fold change (FC), moderated Z-
score (MODZ), limma, and the characteristic direction (CD). (A) Unweighted random walk comparing ranked genes from L1000 differential expression
signatures with ChEA3 TF target gene sets. (B) Unweighted random walk comparing differentially expressed genes to ENCODE TF target gene sets. (C)
Weighted walk comparing differentially expressed genes to ChEA3 target gene sets. Weighted increments were determined by the absolute value of the
expression value for each gene, normalized to a scale of (0,1). (D) Weighted walk comparing differentially expressed genes to ENCODE target gene sets.

and GTEx was utilized. LINCS and GTEx made pub-
licly available 2929 paired RNA-seq and L1000 profiles col-
lected from the same GTEx tissue samples (GEO acces-
sion GSE92743). These paired samples are used to evalu-
ate the performance of the trained model. Pearson’s cor-
relation coefficient (PCC) and Root Mean Squared Er-
ror (RMSE) were used as the evaluation measures. We
proceeded with computing signatures for the RNA-seq-
like data using the CD method and made these Level
3 profiles and Level 5 signatures available for download
from the SigCom LINCS download page (Supplementary
Figure S11).

RNA-seq gene expression signatures automatically extracted
from GEO

The Gene Expression Omnibus (GEO) contains the largest
and most diverse collection of gene expression data from
a wide array of studies and platforms (12). Efforts to uni-
formly align and curate these publicly available gene expres-

sion studies include ARCHS4 (14), Recount (49), Expres-
sion Atlas (25) and GEMMA (22). These resources have
made publicly available transcriptomics datasets more ac-
cessible and reusable. Furthermore, tools such as GEO2R
(50), GEO2Enrichr (51), and BioJupies (52) have been de-
veloped to assist users to extract signatures from GEO, with
the latter utilizing the ARCHS4 resource for access to pro-
cessed RNA-seq expression data. These tools rely on users
to manually annotate the perturbation and control samples
that will be used for differential gene expression analysis.
This annotation step takes skill, time, and effort. Fully au-
tomating signature extraction from GEO studies is desired
and was recently attempted to be done at the data level (53).
Although samples are labeled during the submission pro-
cess, labels are not standardized and are often study depen-
dent. To automate the sample annotation process, we first
performed term frequency on the tokenized sample terms.
Frequent tokenized terms include keywords such as ‘null’,
‘control’, ‘wildtype’ and ‘ctrl’, which were labeled as the
control samples, while those samples with frequent terms
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such as ‘treatment’ or ‘perturbation’ were marked as per-
turbation samples. A list of frequent terms is provided in
Supplementary Table S2. Utilizing only RNA-seq studies
that were previously uniformly processed by ARCHS4, we
collected and processed signatures from studies that have at
least two samples labeled as ‘control’ and two samples la-
beled as ‘perturbation’. Differential expression analysis was
then performed between the two groups using limma (45).
Overall, this approach produced 4269 human and 4,216
mouse signatures from 6255 unique GEO series, consisting
of 2953 studies with human data, 3275 studies with mouse
data and 27 studies with both human and mouse samples.
These signatures are made available for search and down-
load from SigCom LINCS.

Microarray gene expression signature from CREEDS

Crowd Extracted Expression of Differential Signatures
(CREEDS) was our prior effort to extract gene expression
signatures from GEO with the help of participants from a
massive open online course (MOOC) we delivered on the
Coursera platform (13). Participants of the course extracted
gene expression signatures from GEO studies by annotating
signatures with the GEO2Enrichr Chrome extension (51).
GEO2Enrichr utilizes the Characteristic Direction method
(41) to generate up and down gene sets from the annotated
studies. This project resulted in 828, 875 and 2176 unique
signatures for disease, drug, and single-gene perturbations,
respectively. These are made available for download from
SigCom LINCS.

Gene expression signatures of aging from GTEx

The GTEx project v8 data release contains gene expres-
sion data spanning 49 tissues from 838 individual donors
(11). Available metadata for each sample includes the donor
age group, the tissue site from which the sample was ob-
tained, and the gender of the subject. To create gene ex-
pression signatures from GTEx, comparisons were made at
a tissue-specific level, with samples of that tissue obtained
from donors in the age of 20–29 group serving as controls,
and each of the other age groups serving as cases. Sam-
ples were first divided by primary tissue site. For each tis-
sue, genes were filtered using the edgeR (54) package fil-
terByExpr function, using the default minimum count-per-
million (CPM) cutoff of 10. Since the number of samples
per tissue per age group varies widely, we randomly sam-
pled cases and controls to generate each signature. For each
comparison, n samples were chosen from the cases and from
the controls, with n being the maximum number of sam-
ples from either group such that there is an equal number of
cases and controls. Cervix, uterus, and fallopian tube tissues
were excluded from the final signature collection because
they each were associated with fewer than three total sam-
ples in the age of 20–29 control group. 135 total signatures,
each of which represents a unique tissue and age group pair-
ing, were computed using the limma-voom R package (55).
These signatures are available for download from SigCom
LINCS and can be queried using the Signature Search func-
tion.

Data access

SigCom LINCS provides access to all the transcriptomics
data and signatures via a download page and API. All
signatures and other datasets are stored in an S3 bucket
using an NIH Science and Technology Research Infras-
tructure for Discovery, Experimentation and Sustainabil-
ity (STRIDES) account. Download buttons are also made
available from the metadata search result pages. The dedi-
cated download page provides links to the Level 5 full signa-
tures, up and down gene sets stored in GMT files, as well as
the predicted L1000 RNA-seq-like profiles all in one place
(Supplementary Figure S11). Users of SigCom LINCS can
additionally download all other LINCS data sets that are
also available from the first published LINCS Data Portal
(LDP1) (56). LDP1 contains data packages organized as
zipped files with text-based metadata descriptions and ta-
bles of data in different formats such as Excel, GCT and
text. A dedicated search bar is available for users to find
datasets based on key terms such as assay, disease, biolog-
ical process, cell and organ type, cell line, gene, and drug.
The results from such searches can be sorted by size, data
level, date, assay, or the resource that generated the data.
The web interface of SigCom LINCS is powered by both
the metadata API and the data API. These APIs are mi-
croservices documented with OpenAPI (57) and are made
publicly available for programmatic access. The OpenAPI
documentation can be accessed from the API page of Sig-
Com LINCS, and examples are provided in the Help sec-
tion.

The Signature Commons architecture

SigCom LINCS is deployed on the backbone of Signa-
ture Commons, which is a generic skeleton framework de-
veloped for quickly deploying light-weight data commons
in the cloud (Supplementary Figure S12). The Signature
Commons platform is a set of cloud-agnostic REST mi-
croservice applications documented with SmartAPI (58)
and containerized with Docker (59). Two independent mi-
croservices are deployed together to serve a catalog of items
accessible via full text search. The items within the Sig-
nature Commons database are described as JSON meta-
data objects. The Signature Commons system automati-
cally provides data repository statistics. In addition to a
metadata search engine, Signature Commons also provides
a signature search engine. This functionality has real-time
querying of gene sets, including enrichment analysis and
directional queries applied to full ranked gene signatures.
A stateless web interface directly serves the catalog solely
through the APIs. Adopting a SmartAPI-microservice-first
approach, the APIs provide the same functionality as the
web interface, while separation into microservices ensures
that the platform can evolve into other kinds of optimized
queries.

SigCom LINCS fast search engine and comparing the Mann–
Whitney U test to GSEA

SigCom LINCS computes enrichment scores and P-values
given full ranked signatures and gene set libraries using the
Mann–Whitney U test (MWU) (60). The test measures the
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inequality of means for two independent samples. In this
case, the average rank of a gene set in a signature is com-
pared to the average rank of a randomly selected gene set.
MWU is similar to the Kolmogorov Smirnov test, which is
the basis for the more commonly applies signature search al-
gorithm: Gene Set Enrichment Analysis (GSEA) (8). Since
the GSEA algorithm is too slow to be applied to hundreds
of thousands of signatures, we opted to optimize a fast im-
plementation of the MWU. With such implementation, we
can calculate the enrichment of a gene set library against
all LINCS signatures in less than one second. The fastest
implementations of GSEA, blitzGSEA (61) takes several
seconds to compute enrichment scores for a single signa-
ture and a gene set library such as Gene Ontology Biologi-
cal Processes (62). To test whether the MWU test produces
comparable results with GSEA as the signature search al-
gorithm of choice, we compared the p-value output pro-
duced with MWU to the p-value computed by blitzGSEA
for 100 gene sets with varying degrees of significance to a
signature. To generate the random gene set ranks, we uni-
formly sample random rank positions in ranges of the full
rank for different sizes of gene sets. MWU and GSEA are
producing similar P-value ranks when applied on the same
data (R = 0.9869, P-value = 1.896e–79, Supplementary Fig-
ure S13). These results strongly suggest that the MWU test,
while slightly different from GSEA produces similar rank-
ing of signatures, when used for enrichment analysis in this
context.

FAIR assessments

An independent script was devised to process all individ-
ual SigCom LINCS signatures and assert several metrics
pertinent to the FAIR guiding principles (63). In particu-
lar, the following metrics were measured: whether a meta-
data JSON-schema was present, and whether it was satis-
fied. The FAIR assessment script also checks for the avail-
ability of an associated data generation institution, the pres-
ence of an access protocol for accessing the data, the avail-
ability of a signature landing page, and the presence and
up-to-date validity of several associated ontological iden-
tifiers including OBI assay (64), UBERON anatomy (65),
MONDO (66), EDAM file type (67), NCBI Taxonomy (68),
Cellosaurus Cell Line (69), NCBI Gene Symbol (70) and
PubChem (71) to resolve drug names. These per-signature
assessment results were assigned scores representing per-
centage satisfaction. The mean score for each library was
computed resulting in a per-library score for each FAIR
metric. The scores were registered with FAIRshake (27) and
correspond to the individual grid squares in the FAIRshake
Insignia that appears on the portal next to each library and
dataset (Supplementary Figure S14).

SigCom LINCS signature consensus appyter

The SigCom LINCS metadata signature search returns lists
of matching signatures for a text query. For example, a
search for a gene name will return all signatures where
the gene was knocked down, over-expressed, mutated, or
knocked out. Each signature is provided with download
links and the ability to submit the signature for analysis

with Enrichr (36) as well as to the SigCom LINCS Signa-
ture Search as described above. However, it is also desired
to perform analyses on a collection of signatures together
to compare and combine signatures that share related per-
turbations and other experimental conditions. To address
this type of search, the SigCom LINCS Consensus Appyter
was developed. The Appyter accepts collections of up- and
down- gene sets and performs signature search on all of
them together with the SigCom LINCS signature search
API. The matching signatures are ranked using the sum of
the z-scores of the up and down gene-sets (z-sum). Signa-
tures with positive scores are labeled as mimickers while sig-
natures with negative scores are considered reversers. The
Appyter then constructs a matrix with the top mimickers
or reversers as the rows, the input gene-set names as the
columns, and the z-sum scores as the data elements within
the matrix cells. By default, the consensus signatures are
ranked by the sum of z-sum across all the input gene-sets. To
ensure that the resulting signatures consistently appear as a
hit across several input gene sets, users can define a parame-
ter, min sigs, to filter out signatures that do not appear in
at least a certain number of the input signatures. The default
setting for this parameter is set to 2. The top 100 match-
ing signatures are returned as the consensus signatures. A
heatmap and an interactive clustergrammer (40) are used to
visualize the consensus matrix. Furthermore, the top genes
and drugs from the consensus signatures are sent to Enrichr
(36) and Drugmonizome (72) for enrichment analysis, re-
spectively. For metadata queries with at most 50 signatures,
the web interface of Sigcom LINCS also integrates the Sig-
com LINCS Consensus Appyter by providing a button to
send the filtered signatures to the consensus Appyter as in-
put.

SUMMARY AND CONCLUSIONS

Here we present SigCom LINCS, a next-generation Data
Commons for serving LINCS, GEO and GTEx signatures.
While SigCom LINCS improves upon many of the fea-
tures previously developed to host gene expression signa-
tures created by the LINCS program (Supplementary Ta-
ble S3), there are many features that are missing. For exam-
ple, the visualizations of the signatures as scatter plots by
SigCom LINCS has less features compared with the scat-
ter plot maps provided by L1000FWD (73) and LINCS
Joint Project-Breast Cancer Network Browser (LJP-BCNB)
(44). Since SigCom LINCS contains over 1 million signa-
tures, visualizing all signatures as points within an interac-
tive scatter plot is more challenging. In addition, SigCom
LINCS does not have yet some of the features provided
by other LINCS Data Portals (LDPs), namely LDP1 and
LDP2 (74). LDP2 contains more extensive external knowl-
edge about drugs, while LDP1 provides forms for data up-
load. We opted to exclude these features since they are ei-
ther no longer needed by the LINCS program (data up-
load), or difficult to keep current (drug knowledge). Simi-
larly, to SigCom LINCS, the platforms CLUE, L1000FWD,
L1000CDS2 and LDP2 host gene expression signatures for
search. These applications also have a metadata search en-
gine with filtering options. However, compared with Sig-
Com LINCS, most other websites only host parts of the
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LINCS data, and have fewer signatures that in SigCom
LINCS. SigCom LINCS also has unique features such as
starting the analysis with single genes, variants, or anno-
tated gene sets. SigCom LINCS is also easier to navigate,
and the search engine is faster.

Besides querying a massive collection of transcriptomics
signatures, LINCS data provides the opportunity to study
how different layers of biological regulation interact. For
example, for the LINCS Joint Project (LJP) (44), transcrip-
tomics data was collected together with cell viability data
applied to the same perturbed samples. Another dataset
provides matching L1000 samples with matching P100 data
(75). In addition, a recent LINCS collaborative project that
profiled MCF10A cells, provides multiple layers of omics
data collected under the same conditions (76). SigCom
LINCS provides the data from the MCF10A project for
download. SigCom LINCS also contains signatures created
from GTEx and GEO, combining these signatures with the
L1000 signatures can lead to many insights and discoveries.
The CD method was used for computing signatures from
the L1000 datasets because for work described in previous
publications, we have found that the CD method better re-
covers differentially expressed genes in L1000 data more ef-
fectively than methods such as limma, which was designed
for microarrays (45) and later adapted for RNA-seq. The
GEO and GTEx datasets consist of bulk RNA-seq data,
and that is why we decided to process them using limma. We
could use the CD method to compute signatures for GEO
and GTEx but benchmarking such methods for the GEO
and GTEx datasets is challenging because there is no easily
interpretable global ground truth like we have for the L1000
data.

Other external datasets of high-throughput drug screen-
ing, for example, DepMap (77) and CTD2 (78), could be in-
tegrated with the expression signatures hosted by SigCom
LINCS. The annotated metadata about genes, drugs and
cell lines can facilitate such data integration. The gene ex-
pression signatures hosted by SigCom LINCS are provided
in various forms, and this may facilitate other studies that
involve data integration efforts. One area where such data
can lead to promising applications is machine learning. Cre-
ative methods that used the LINCS L1000 include side-
effect predictions (79) and the design of novel compounds
for desired effects (80). It is expected that LINCS data will
continue to serve as a resource for many other creative ap-
plications in the future. One area where the newly published
L1000 data can be directly useful is for the identification
of drug targets. By combining the L1000 chemical pertur-
bation data together with the L1000 single-gene perturba-
tion CRISPR data, we can identify and prioritize drug tar-
gets because small molecules that induce similar but unique
effects observed for single gene perturbations directly im-
plicate that the gene product as the target of the matching
small molecule. While the future of the L1000 assay is uncer-
tain, the Connectivity Mapping concept is expected to ex-
pand. It is expected that new assays will produce Connectiv-
ity Maps that will complement the LINCS data, for exam-
ple, DRUG-seq (81) and RASL-seq (82) developed at No-
vartis are two new technologies and data collection efforts in
this direction. SigCom LINCS and the Signature Commons
platform can be repurposed to host and serve data from

such future Connectivity Mapping projects. The Signature
Commons platform was already used for other projects; for
example, as a metadata lake for stem cell related data (83),
as a portal for drug-set enrichment analysis (72), as a repos-
itory for bioinformatics tools, as well as for mining data and
metadata for Lyme disease related projects (84). By utiliz-
ing the Signature Commons wireframe, rapid development
of future data commons can be facilitated.

METHODS

Computing the L1000 signatures

The L1000 signatures were computed from the Level
3 L1000 profiles using the characteristic direction (CD)
method (41). For each signature, the replicate perturbation
profiles were identified based on matching metadata fields
for time-point, dosage, perturbagen, detection plate, and
well IDs from the Level 3 profile metadata. Each set of per-
turbation profiles was then compared with all other pro-
files in the same batch. Batches were identified by the first
three terms in the signature ID, consisting of the perturba-
tion group, time-point, and cell line. All computed signa-
tures were divided by perturbation type and compiled into
expression tables and rank matrices. The expression tables
provide the computed CD differential gene expression co-
efficients for each signature, while the rank matrices pro-
vide the integer gene ranks for each signature as determined
by the coefficients. These matrices are stored in GCTx for-
mat in S3 and are available for download from the SigCom
LINCS download page.

Benchmarking the L1000 data

The CD method was benchmarked against three other dif-
ferential gene expression analysis methods: fold change,
limma (45), and the moderated z-score (MODZ) method
(10). For the benchmarks, we examined the recovery of
known target genes for 44 different transcription factors
(TFs) targeted by a CRISPR knockdown in the L1000
data. These TFs were chosen because they each have corre-
sponding target gene sets in both ENCODE (46) and ChEA
(47). All L1000 CRISPR knockdown signatures for a given
TF were computed using the CD method, and then each
of the three other methods, using the same perturbation
and control profiles. All 12 328 genes, including landmark
and inferred, were then ranked by the absolute value of
the respective expression coefficients: the CD coefficient,
the limma logFC value, the MODZ score, and the stan-
dard fold change calculation. Comparison gene sets were
obtained from both ENCODE and ChEA TF gene set li-
braries downloaded from Harmonizome (85). The ranked
genes for each signature were compared with the corre-
sponding TF target gene sets from each library using both
weighted and unweighted random walks to show the devia-
tion from the uniform cumulative distribution function. For
the unweighted random walks, the total score increments by
1 when a gene is present in the comparison target gene set.
For the weighted random walks, the expression coefficients
for all genes in a signature are normalized to a number be-
tween (0, 1), and the total score increments by the normal-
ized expression value for a gene present in the comparison
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gene set. The weighted and unweighted random walks for
each method were averaged and plotted for both TF target
gene set libraries. The y-axis in each plot measures the de-
viation from the uniform cumulative distribution, while the
x-axis in each plot indicates the rank of each gene, scaled
between 0 and 1.

L1000 to RNA-seq transformation pipeline

First, we randomly selected 50 000 L1000 profiles from
the LINCS data deposited into the GEO repository
(GSE92742). At the same time, we randomly selected 50,000
human RNA-seq samples from ARCHS4 (14). Next, we
only retained genes with read counts of at least 10 in at
least 2% of the samples. The gene counts were then log2-
transformed, and quantile normalized. This left us with
RNA-seq profiles with 23,614 genes for each sample. For
generating RNA-seq-like profiles from L1000 profiles for
the landmark genes, we used the CycleGAN (48) model to
convert gene expression values in L1000 space to those in
RNA-seq space with unpaired data. Starting with the orig-
inal architecture of CycleGAN, which uses convolutional
neural networks, we modified the model to predict RNA-
seq-like profiles as vectors for given L1000 profiles. In the
model, there are two generators. One generates RNA-seq
profiles from L1000 profiles, and the other generates L1000
profiles from RNA-seq profiles. The first generator takes
L1000 profiles as input and outputs RNA-seq profiles. The
RNA-seq output by the first generator is used as input to
the second generator and the output of the second gener-
ator should match the original L1000 profiles. The model
also has two discriminators that assess whether a gener-
ated sample looks more like it was produced by RNA-seq
or L1000. For the model architecture, we use a two-layered
fully connected neural network for the generators and dis-
criminators. A learning rate of 0.0002 and the ADAM opti-
mizer are used to train the model. The model is trained over
100 epochs. After training the CycleGAN model, a fully
connected neural network model is trained for predicting
the expression profile as the full genome RNA-seq space
(n = 23 614) given RNA-seq-like profiles in the landmark
gene space (n = 978). The model takes the output profiles
from the CycleGAN model and predicts the expression of
23 614 genes. This model was trained with another set of
50 000 randomly selected RNA-seq profiles from ARCHS4.
Among the 23 614 genes, profiles of the landmark genes
were used as input and the full genome profiles were used
as target values. The model architecture has four layers, and
the activation function is ReLU. The ADAM optimizer (86)
was used with a learning rate equal of 0.0002 and batch size
of 100. A validation set was used for early stopping with
patience set to three epochs. To avoid outputting negative
values, ReLU is applied to the output of the model.

Signature Commons architecture

Signature Commons (SigCom) is a cloud-agnostic platform
designed to host semi-structured JSON serialized metadata
that can be linked with a set or ranked set membership re-
lationships with genes, proteins, drugs, or any other kind
of entity. This allows us to deploy instances of SigCom for
a variety of purposes, the most recent of which is a drug

repurposing hub called Drugmonizome (72) and ReMeDy
(83). SigCom is composed of REST microservice APIs doc-
umented with SmartAPI. The metadata API provides fast
full-text search and field comparison filtering of the meta-
data, as well as aggregations for statistical summaries. It
also performs JSON Schema validation on the JSON seri-
alized entries before ingestion. The data API handles real-
time set- and two-sided ranked set-enrichment analysis. A
companion web application communicates with these APIs
to provide a data portal for querying, browsing, and visu-
alizing data. UI-schemas are JSON serialized entries that
define the UI elements of the user interface. This allows for
the customization of the Signature Commons interface for
a variety of projects. Schemas define the overall look of the
SigCom instance. This schema can be extended by adding
modular components to the platform, thus extending the
functionalities of the interface beyond the original design.
All microservices are containerized using Docker, thus en-
suring the ease of deployment on any cloud provider. Sig-
Com LINCS is built with the Signature Commons (Sig-
Com) wireframe. The metadata API microservice utilizes
TypeORM to communicate with a PostgreSQL database.
The database structure is organized in a hierarchy where re-
sources contain libraries, libraries contain signatures, and
signatures and entities have a many-to-many relationship.
This enables modeling the LINCS datasets as libraries, sig-
natures as signatures, and genes as entities. The data API
is written in Java and provides a fast signature similar-
ity search. This is made possible by loading the data ma-
trices from a dedicated S3 bucket and storing them in-
memory as hash maps. This improves retrieval time for
the signature similarity search. The UI is built using Re-
act and Next.js with Material UI as its UI framework. The
UI customization can be done by ingesting UI-schemas to
the schema table of the database. All the UI-schemas for
SigCom LINCS can be accessed from GitHub at https:
//github.com/MaayanLab/sigcom-lincs/. SigCom LINCS is
deployed in AWS and uses Amazon’s Relational Database
Services (RDS) for its PostgreSQL database and S3 to store
the data matrices for signature search.

Signature Commons microservices

The web interface along with each standalone microser-
vice is developed, versioned, and packaged in indepen-
dent GitHub repositories. A mono-repository using git sub-
modules brings all the components together along with a
docker-compose file for complete system deployment and
helm chart for deployment to kubernetes directly from
the GitHub repository. All relevant components are con-
figurable with operational defaults. After starting the mi-
croservices and web interface, the Signature Commons con-
troller can be used to prepare, validate, and ingest data and
metadata from several commonly used data formats. Af-
ter data ingestion, the customizable Signature Commons
user interface enables real-time browsing, searching, filter-
ing, and enriching of the data.

Preparing the signatures for UMAP visualization

The landmark genes of the computed CD signatures were
z-score normalized on the sample axis such that each gene’s

https://github.com/MaayanLab/sigcom-lincs/


Nucleic Acids Research, 2022, Vol. 50, Web Server issue W707

coefficient is normally distributed across all signatures.
UMAP (42) was then applied to the complete signature
matrix. The 50 nearest neighbors and a minimum distance
of 0.05 were chosen after several trials of UMAP hyper-
parameter combinations. Embeddings are generally stable
across runs, and the structures observed are largely pre-
served.

Signature search

SigCom LINCS utilizes Signature Commons’ signature
search functionality to query signatures that reverse or
mimic the input of up and down gene sets. Matrices that
represent the gene rankings of the L1000 signatures are
stored as HashMaps by the data API in random access
memory (RAM). HashMaps are data structures designed
to efficiently search for key-value pairs, and this implemen-
tation drastically cuts the fetch times of the gene rankings by
UUIDs, thus improving the speed of the search. The Mann–
Whitney U test (60) is performed separately for the up and
down gene sets to obtain z-scores. The z-score determines if
the genes of an input gene set are mostly positioned on the
top or bottom ranks of a signature. Reversers are signatures
where the input up genes are more enriched in the bottom
of the ranks of a database signature, while the down genes
are ranked on top. Mimickers, on the other hand, have the
up genes ranked on top and the down genes ranked at the
bottom. The matching signatures are then ranked based on
the sum of the z-scores of the up and down gene sets (z-
sum), with positive scoring z-sum labeled as mimickers and
negative ones as reversers.

DATA AVAILABILITY

The SigCom LINCS webserver is available at: https://
maayanlab.cloud/sigcom-lincs

The SigCom LINCS source code is available at: https://
github.com/MaayanLab/sigcom-lincs

The Signature Commons Data Commons template
source code is available at: https://github.com/MaayanLab/
signature-commons/

The source code for automatically extracting signa-
tures from GEO is available from: https://github.com/
MaayanLab/AutoSigGen

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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