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Abstract: Skin injuries caused by accidents and acute or chronic diseases place a heavy burden on patients and health care systems. 
Current treatments mainly depend on preventing infection, debridement, and hemostasis and on supplementing growth factors, but 
patients will still have scar tissue proliferation or difficulty healing and other problems after treatment. Conventional treatment usually 
focuses on a single factor or process of wound repair and often ignores the influence of the wound pathological microenvironment on 
the final healing effect. Therefore, it is of substantial research value to develop multifunctional therapeutic methods that can actively 
regulate the wound microenvironment and reduce the oxidative stress level at the wound site to promote the repair of skin wounds. In 
recent years, various bioactive nanomaterials have shown great potential in tissue repair and regeneration due to their properties, 
including their unique surface interface effect, small size effect, enzyme activity and quantum effect. This review summarizes the 
mechanisms underlying skin wound repair and the defects in traditional treatment methods. We focus on analyzing the advantages of 
different types of nanomaterials and comment on their toxicity and side effects when used for skin wound repair. 
Keywords: nanomedicine, nanomaterials, nano-formulations, skin injury, wound repair

Introduction
As the body’s largest organ, skin constitutes the first barrier between the body and the environment. The main function of 
skin is to act as a protective barrier to protect the human body against harmful stimuli such as microorganisms, radiation, 
and chemical and physical stimuli in the external environment. Moreover, it has other important functions, such as 
maintaining body fluid balance and body temperature, synthesizing vitamin D, transmitting and detecting changes in the 
external environment and regulating immune responses.1–4 In summary, as skin is an indispensable tissue in the human 
body, the integrity of its structure is a prerequisite for the performance of the above normal physiological functions.

In daily life, due to the large area of the skin and its direct exposure to the external environment, burns, wounds, 
infections, accidents and skin trauma resulting from medical surgery cannot always be avoided. According to reported 
statistics, tens of millions of people around the world suffer skin injuries from accidents or surgeries every year. In 
addition, with the increasing number of patients with diabetes, the number of patients with chronic or acute skin injuries 
resulting from diabetes or other causes is also increasing significantly.5 According to the International Diabetes 
Federation (IDF), the number of people living with diabetes worldwide reached 537 million in 2021, and it is expected 
that the number will surpass 783 million by 2045, among whom approximately 10% suffer from foot ulcers, refractory 
wounds or other complications. Chronic diabetic skin wounds are one of the main diabetes-related causes of death or 
disability.6,7 Currently, acute and chronic skin wounds caused by various factors have become a public health problem of 
worldwide concern, bringing great economic and social burdens to patients’ families, medical and health systems and 
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society. Additionally, the hyperplasia of scar tissue caused by wounds will also cause a great psychological burden for 
patients. Therefore, skin wounds caused by various factors are a serious challenge in clinical practice.

Due to the number of accidental injuries and the increasing number of patients with chronic or refractory wounds 
caused by diabetes, paraplegia or local radiation exposure and the skin being prone to trauma, wound repair has always 
been a research focus in the medical field. With social progress, people’s desires for beauty have gradually increased, the 
current level and quality of wound repair cannot meet the requirements of patients, and the contradiction between them 
has become increasingly sharp. Hence, it is necessary for researchers to further elucidate the mechanism and various 
influencing factors of wound repair, improve existing treatment methods and discover new treatment methods.8–10

In recent years, with the joint efforts of medical workers and researchers, the basic research and clinical treatment of 
wound repair have made substantial progress. The development and implementation of a large number of drugs,11 

dressings,12 skin grafts,11,13 physiotherapy,14 other treatments have greatly enriched our options for repairing various 
acute and chronic injuries, and have achieved positive results.

At present, the clinical treatment methods for skin wound repair mainly include medical surgical sutures, medical limb 
adhesives, drug-carrying dressings, tissue-engineered skin, physical therapy and miRNA treatments promoting skin wound 
repair. However, each treatment method has a certain application scope and side effects that cannot be ignored. For instance, 
(1) surgical suture is the most commonly used clinical treatment for acute skin wounds, but it may cause secondary damage to 
the skin and other soft tissues. In addition, it shows low efficiency; it is difficult to control the absorption period and ensure that 
the sutures begin to degrade after wound healing.15–17 (2) Medical adhesives, widely used in clinical practice, are prone to 
promoting rash or skin abnormalities after use, and some of them exhibit defects, such as a brittle adhesive layer, formaldehyde 
production during decomposition and poor air permeability.18,19 (3) Although wound dressings can temporarily protect the 
wound, prevent contamination, promote healing and provide a suitable environment for the process of wound healing and 
treatment, they have the defects of a short efficacy duration and uneven sustained release.20 (4) Tissue-engineered skin has 
good application prospects in the study of treatment of skin wounds caused by acute or chronic skin trauma, but it also displays 
some disadvantages, such as immature multicell coculture technology and a simpler structure than that of real skin.21–23 (5) 
Physical therapy is noninvasive and has the advantages of noninvasiveness, simple operation, no complications, wide 
indications and others but is usually only an auxiliary means to other therapies to promote wound repair.24–26 (6) Recently, 
miRNA technology that promotes skin wound repair has attracted the attention of researchers, and some progress has been 
made in research on the role of miRNA in the repair of acute skin wounds, chronic diabetic injury, scar hyperplasia and other 
pathophysiological processes, but there is still a long way to go before clinical application will be possible.27–29 In view of the 
above problems and challenges that have not been completely solved clinically, the design and development of new multi-
functional wound treatment methods to accelerate and improve wound repair has important clinical application value.

Nanomaterials have attracted increasing attention from researchers and have been widely studied in tissue engineering 
and biomedicine due to their good biocompatibility, controllable preparation methods, and unique physical, chemical, and 
biological properties.30–32 In the past few years, the research and development of nanomaterials and nanotechnology have 
provided many novel solutions and strategies for the treatment of acute or chronic skin wounds, which not only effectively 
overcome the defects of traditional treatments but also utilize the unique functions and properties of many 
nanomaterials.33,34 Compared with traditional materials, nano materials can effectively enter the human body by changing 
the drug dosage form, improving the drug concentration in blood, controlling the drug release rate or delivering the drug to 
the wound site, and the special physical and chemical properties of nanomaterials show more advantages in the field of 
wound repair.35,36 For example, modified nanomaterials with pH, charge and microenvironmental effect and other 
characteristics are conducive to eliminating the obstacles of physiological barriers to drug transport, enhancing the targeting 
of drug delivery system and reducing drug dosage, thus improving drug absorption, regulating drug release rate, enhancing 
drug targeting, improving bioavailability and reducing drug toxicity and side effects.37–39 With research efforts deepening 
and improvements in the understanding of the mechanism of action and biological safety, the use of nanomaterials will 
likely continue to be developed, and there is hope that nanomaterials may be the next generation of medical materials for 
acute or chronic skin wound therapy. This review summarizes the mechanisms underlying and key factors influencing skin 
wound repair, and we focus on the promotion and development of skin wound repair by nanomaterials.
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Mechanisms Underlying and Factors Influencing Skin Wound Repair
Wound repair is a complex dynamic form of skin repair after an injury and is important for maintaining the integrity of 
the skin structure and its normal function; both the speed and quality of repair are affected by various factors.

Mechanisms Underlying Skin Wound Repair
The skin is the largest organ and covers the outermost layer of the human body, and it is mainly composed of three parts: 
epidermis, dermis and hypodermis.40,41 Keratinocytes are the main components of the epidermis, accounting for more 
than 80% of epidermal cells, and keratin can be produced in the process of differentiation. Keratinocytes and their 
substructures are connected by desmosomes and hemidesmosomes. According to the differentiation stage and character-
istics, the epidermis can be divided into five layers, which from inside to outside are the basal layer, spinous layer, 
granular layer, transparent layer and horny layer.42,43 The hypodermis accounts for most of the skin structure, and the 
dermis has a thickness of approximately 0.2 cm and can be divided into two layers, namely, the papillary layer and the 
reticular layer, which are mostly composed of proteins including collagen and elastin, with the addition of nerves, sweat 
glands, sebaceous glands and hair follicles.41 Subcutaneous tissue is the loose connective tissue and adipose tissue below 
the skin, which connects the skin and muscle. It is vulnerable to trauma and ischemia, especially during inflammation, 
which can cause degeneration and necrosis (Figure 1A).41 Skin wounds caused by various accidents and medical surgery 
constitute common phenomenon due to the large area of the skin and its direct exposure to the external environment. 
Additionally, skin diseases and diabetes can also cause skin wounds. The common skin wounds mainly include physical 
wounds (Figure 1B), chemical wounds (Figure 1C) and pathological wounds (Figure 1D). Most physical wounds in daily 
life are caused by scratching, scraping or superficial cuts, which damage the epidermis and dermis, while hair follicles 
and sweat glands are intact. Different degrees of wounds correspond to different skin injuries.44 Chemical damage is the 

Figure 1 Schematic diagram of skin structure (A), physical trauma (B), chemical trauma (C) and pathological trauma (D).
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acute skin damage caused by skin contact with certain chemicals, such as erythema, blisters, eschar and so on. Some 
studies have found that the skin irritation by anionic detergent sodium lauryl sulphate which causes chemical damage of 
the stratum corneum and interrupts skin barrier function.45 Pathological wounds, such as diabetic foot ulcers, can be 
classified according to their size (area and depth), infection and ischemia. Ulcers in the early stages are limited to the skin 
and subcutaneous tissue, and in severe cases they can reach muscles, tendons or deeper.46

Wound repair is a complex dynamic self-repairing process of the skin (or other organ tissues) affected by interactions 
among multiple repair cells, growth factors and the extracellular matrix after an injury occurs, and it usually comprises three 
stages.47,48 The first stage is hemostasis and inflammation.49 Vasoconstriction, platelet aggregation and fibrin clot formation 
occur immediately after skin trauma and participate in wound hemostasis. Inflammation is caused by the formation of fibrin 
clots and the degranulation of aggregated platelets, which release chemokines. These chemokines recruit white blood cells 
(mainly neutrophils), macrophages or mast cells from the blood into the wound.50–53 The inflammatory response begins to 
decrease a few days after trauma, accompanied by apoptosis of inflammatory cells, and tissue fragments and invasive 
microorganisms are removed during the inflammatory response.11,48,54 The second stage is cell proliferation and differentia-
tion: in the inflammatory stage, the remaining inflammatory cells, migrating epithelial cells and dermal cells induce and 
maintain cell proliferation and start cell migration via autocrine, paracrine and other growth factors.11,55,56 In this stage, 
vascular endothelial cells begin to form, and vascular endothelial cells degrade the basement membrane under the mediating 
effects of vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor 
(PDGF); the cells migrate to the wound, proliferate, form intercellular contacts, and finally form blood vessels. At the same 
time, fibroblasts proliferate in the wound, synthesize extracellular matrix and form granulation tissue with rich 
neovascularization.48,57,58 The entire stage is characterized by dynamic and interactive feedback between cells and the 
extracellular matrix mediated by growth factors and cytokines.59 Tissue reconstruction or scar formation is the final stage 
of wound repair. The newly formed granulation tissue is reconstructed into scar tissue. The matrix temporarily formed in the 
above stage mainly contains collagen III, fibronectin and hyaluronic acid and is gradually replaced by the extracellular matrix, 
which mainly contains collagen I. Then, the migration of fibroblasts and myofibroblasts and the subsequent reconstruction of 
granulation tissue matrix leads to wound contraction.58 Finally, fibroblasts undergo apoptosis to form scar tissue with very few 
cells, and the tensile strength of the scar tissue is similar to that of normal skin tissue (Figure 2).60

Factors Influencing Skin Wound Repair
Key Influence Factors
The speed and quality of wound repair are affected by the interaction of various factors, and further study of these factors 
could lead to the development of new and effective treatments. In general, the influencing factors can be divided into 
local factors and systemic factors. Local factors can directly affect the characteristics of the wound itself to influence the 
wound repair process, while systemic factors mainly influence the pathological, psychological and physiological states of 
the body, thereby affecting wound repair ability.61,62 Local factors affecting wound repair mainly include 
temperature,63,64 infection,62,65 oxidative stress levels.66 Systemic factors mainly include age,67 healthy state,68,69 

autoimmune disease,70 genetic factors,71 psychological factors,72 living habits73 and so on. Normally, these factors are 
interrelated, and systemic factors affect the wound repair process mainly through their effect on local wounds. The above 
factors can delay or promote the process of wound healing by affecting one or more aspects of the process and thus 
become the focus of attention in the process of wound treatment.

Influence of the Local Microenvironment of Wounds
In recent years, a number of studies have shown that skin wound repair not only is regulated by growth factors, nucleic 
acids, cells and other active components but also is affected by the microenvironment of the wound site.74 In the process 
of wound healing, these active components of the wound site interact with the wound microenvironment in a continuous 
and bidirectional way, which plays a key role in accelerating wound repair speed and driving regenerative repair.75 For 
example, the accumulation of excessive reactive oxygen species (ROS) caused by hyperglycemic stimulation and 
a chronic inflammatory response is one of the characteristics of skin wounds in patients with chronic diabetes and 
hinders the repair process.76 Moreover, continuous exposure of endogenous proteins, nucleic acids, lipids and other 
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important biomacromolecules at the wound site to high concentrations of ROS may lead to irreversible damage to their 
structure and function, thus leading to impaired wound repair.77 Studies have shown that in a microenvironment 
characterized by inflammation and oxidative stress, the proliferation and redifferentiation of stem cells is significantly 
reduced and apoptosis can be induced, limiting their regenerative function.78,79 A large number of studies have found that 
reducing the level of excessive ROS and oxidative damage at the wound site and improving the wound microenviron-
ment are significantly conducive to repairing various skin wounds.80

Influence of Pathogen Infection
In the process of wound repair, the infection of external bacteria will lead to the delay of wound healing.81,82 Therefore, 
the prevention and treatment of wound infection is one of the focal issues in the process of skin wound repair, especially 
the wounds caused by burns and scalds, which are prone to the infection of Gram-positive bacteria such as 
Staphylococcus aureus.83,84 Moreover, the use of inadequately sterilized surgical instruments increases the risk of 

Figure 2 The different stages of normal wound healing. Normal wound healing is a complex biological process that can be divided into three stages: the hemostasis and 
inflammatory stage, the proliferation stage and the tissue remodeling stage. The inflammatory stage occurs shortly after injury and is characterized by the influx of 
inflammatory factors. In response to inflammatory signals, neutrophils, macrophages and mast cells are migrate to the wound. As the inflammatory stage subsides and the 
proliferative phase of tissue repair begins, the dermis and epidermal cells migrate and proliferate excessively in the wound bed. Epithelialization, collagen deposition, 
angiogenesis, and formation of granulation tissue occur during this stage. The beginning of the stage of tissue remodeling is characterized by matrix remodeling and 
decreased cell density. At this stage, the wound undergoes contraction to form a scar.
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infection during wound repair surgery. For instance, infections caused by Gram-negative bacteria such as Pseudomonas 
aeruginosa, Enterococcus and Acinetobacter are more common in the healing of chronic wounds, while inflammation 
caused by bacterial infection will delay the healing of wounds, form chronic wounds, increase the medical costs of 
patients, and affect the physical and mental health of patients.83,85,86

Biological Nanomaterials for Skin Wound Repair
Nanomaterials are natural or artificial materials consisting of basic particles in powder form or clumps. One or more 
dimensions of this basic particle are between 1 nm and 100 nm, and the total number of this basic particle accounts for 
more than 50% of the total number of all particles in the material as a whole. Furthermore, nanomaterials composed of 
nanocrystals have a set of innovative physical properties, such as a small size effect,87 interface effect,88 quantum effect 
and quantum tunneling effect.89,90 Naturally, nanomaterials used in skin wound repair have different functions according 
to their physical and chemical properties and structures.

Nanomaterials with Biological Activity
Bioactive nanomaterials, usually with relatively clear chemical structures and surface properties, can interact with proteins, 
cells or tissues and cause biological reactions, which directly affect the interaction between materials and tissues or cells. In 
recent years, many bioactive nanomaterials have been developed for wound repair or tissue regeneration, and these 
nanomaterials have antibacterial, antioxidant, nano adhesion and other biological activities and have good effects with 
regard to accelerating wound healing, eliminating ROS on the wound surface and inhibiting infection.91–94

Metal and Metal Oxide Nanomaterials
Silver Nanomaterials 
Silver nanomaterials (AgNPs) are used as therapeutic agents for wound healing mainly because of their significant 
anti-inflammatory and antibacterial properties.95,96 The main mechanism underlying the antibacterial activity of 
AgNPs can be simplified to the high surface area of Ag+ released by them. AgNPs in the aqueous environment are 
oxidized in the presence of oxygen and protons, and Ag+ is released when the surface of a particle dissolves. Ag+ can 
interact with mercaptan groups in key bacterial enzymes and proteins and disrupt cell respiration, resulting in cell 
death.97,98 The specific mechanisms are considered to be as follows. 1. AgNPs adhere to the surface of the cell 
membrane, which leads to the destruction of the cell membrane and changes in transport activity. 2. AgNPs enter the 
cell and interact with many organelles (mitochondria, etc.) and biomolecules (protein, DNA, etc.), resulting in its 
dysfunction. 3. AgNPs induce cytotoxicity and oxidative stress by producing ROS and free radicals. 4. Genotoxicity 
is induced by AgNPs and Ag+.97,99,100 A large number of studies have shown that by reducing the expression levels 
of proinflammatory cytokines, such as interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and so on, AgNPs can 
inhibit a variety of pathogenic microorganisms, including fungi, different types of bacteria and even viruses and have 
shown excellent anti-inflammatory activity, which means that they can be used to prevent or reduce wound 
infection.101–104 Similarly, in diabetic wounds, AgNPs accelerate wound healing by activating the proliferation and 
migration of keratinocytes and helping fibroblasts differentiate into myofibroblasts, thus promoting wound contraction 
and accelerating the healing of diabetic ulcers. AgNPs are widely used in wound healing because they accelerate cell 
proliferation, possess broad-spectrum antibacterial and anti-inflammatory activities, and promote wound healing 
(Figure 3A).105–107 Additionally, unlike conventional antibiotic therapy which faces the challenges of multiple 
resistance and biofilm formation, silver nanoparticles do not pose these difficult problems.108

Copper Nanoparticles (CuNPs) 
Compared to other metallic nanomaterials such as silver and gold nanoclusters, CuNPs with good biocompatibility can be 
prepared quickly and produced at a low cost.109,110 Moreover, CuNPs may interfere with viral activity and have a broad 
spectrum of antibacterial properties by producing oxidative stress that leads to the breakdown of viral or bacterial 
membranes.111,112 It has been found that 1 μM 80 nm CuNPs promote acute full-layer skin defect wound healing quickly 
by accelerating skin cell migration, proliferation, and new blood vessels.113 In addition, phenytoin-loaded copper 
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nanoparticles have been shown to accelerate epidermal regeneration and stimulate granulation and tissue formation in 
rats.114 Therefore, CuNPs is a material with great potential for effective and rapid wound healing.

Ceria Nanomaterials 
Ceria nanomaterials display good biocompatibility and high antioxidant capacity and can be used to remove ROS in the 
lesion site. As a nano antioxidant enzyme with excellent performance, ceria materials have a large number of oxygen 
defects on the surface, and Ce3+ and Ce4+ can be rapidly transformed into each other, which confers on them antioxidant 
enzyme activity and a renewable ability to remove a variety of ROS.115–118 Numerous in vitro and in vivo studies have 
shown that ceria nanomaterials can protect tissue cells from oxidative damage, prolong cell life in the oxidative 
microenvironment, promote cell proliferation and migration, and reduce the activity of functional enzymes such as 

Figure 3 (A) Schematic diagram of the antibacterial mechanism and wound healing mechanism of silver nanomaterials. Exposure to silver nanomaterials (AgNPs) prevents 
bacterial colonization and inflammation in the wound, thereby promoting wound closure. Adapted with permission from: Lee SH, Jun BH. Silver nanoparticles: synthesis and 
application for nanomedicine. Int J Mol Sci. 2019;20(4):E865. doi:10.3390/ijms20040865.97 © 2019 by the authors. Licensee MDPI, Basel, Switzerland (http://creativecommons. 
org/licenses/by/4.0/). And from: Nqakala ZB, Sibuyi NRS, Fadaka AO, Meyer M, Onani MO, Madiehe AM. Advances in nanotechnology towards development of silver 
nanoparticle-based wound-healing agents. Int J Mol Sci. 2021;22(20):11272. doi:10.3390/ijms222011272.125 Copyright © 2021 by the authors. Licensee MDPI, Basel, 
Switzerland. Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). (B) Establishment of a mesoporous CeO2 hollow sphere/ 
enzyme nanoreactor and schematic diagram of cascade catalytic antibacterial therapy. Reproduced with permission from: Qin J, Feng Y, Cheng D, et al. Construction of 
a mesoporous ceria hollow sphere/enzyme nanoreactor for enhanced cascade catalytic antibacterial therapy. ACS Appl Mater Interfaces. 2021;13(34):40302–40314. 
doi:10.1021/acsami.1c10821.124 Copyright © 2021, American Chemical Society.
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those involved in inflammation.119–121 Ceria is considered an antibacterial agent that kills bacteria by a Fenton-like 
reaction in the presence of H2O2.122,123 Qin et al124 established a mesoporous ceria hollow sphere/enzyme nanoreactor by 
preparing ceria hollow sphere nanozymes loaded with glucose oxidase. The nanoreactor can effectively convert nontoxic 
glucose into highly toxic hydroxyl radicals through a cascade catalytic reaction, thus seriously destroying the cell 
structure of bacteria and preventing the formation of biofilms. In addition, gluconic acid can reduce the local pH value 
and further improve the peroxidase-like catalytic performance of mesoporous ceria. At the same time, in vivo experi-
ments showed that the nanoreactor eliminated up to 99.9% of the bacteria in the wound tissue to prevent persistent 
inflammation and did not damage normal tissue (Figure 3B).

Metal-Organic Frameworks (MOFs) 
MOFs are inorganic-organic hybrid porous nanomaterials self-assembled from metal ions/clusters and multi-tooth 
organic ligands.126 Compared with traditional organic and inorganic drug delivery systems, drug carriers based on 
MOFs have higher drug load and the possibility of chemical functionalization, which can enhance drug affinity.127,128 

They are widely used in biological fields such as drug delivery and biomarker detection due to their large pore volume, 
pore size and surface area, as well as adjustable surface functionality, and the metal-ligand bond strength is determined 
by the properties of metal ions and ligands, and is also the key to determining the hydrothermal stability of 
MOFs.127,129,130 Recently, Yao et al131 prepared a Zn-MOF encapsulated methacrylated hyaluronic acid (MeHA) 
microneedles (MNs) array. This MNs array has excellent antibacterial activity and considerable biocompatibility. It 
can significantly accelerate epithelial regeneration and neovascularization, promote wound healing, and play an important 
role in promoting wound healing.

Upconversion Nanoparticles (UCNPs) 
Among many nanomaterials, UCNPs with luminescent properties show unique advantages, which are light stability, 
persistent luminescence, deep tissue penetration and self-fluorescence inhibition and so on in medical diagnosis and 
treatment.132 In order to make UCNPs have good water dispersion and biocompatibility, a large number of studies have 
been conducted to functionalize them by exchanging oleic acid ligands with DNA, which has great advantages in drug 
delivery targeting and imaging function in recent years.133,134 Sun et al135 reported an antibacterial nanocomposite film 
containing UCNPs. After 5min was irradiated by near-infrared light, UCNP in the nanocomposite film could trigger the 
release of ROS by photosensitizer, thus rapidly killing Gram-positive Staphylococcus aureus (94.5%) and Gram-negative 
Escherichia coli (93.2%). This work provides a new strategy for designing new antibacterial materials for anti-infection 
and wound healing.

Nonmetallic Nanomaterials
Polymer Nanomaterials 
Nanopolymers (especially natural ones), which have excellent biocompatibility and biodegradation, have been widely 
used in biomedical research.136–138 For instance, as a kind of representative polymer nanomaterial, chitosan nanoparticles 
have good application prospects in the field of wound repair due to their excellent mucosal adhesion, anti-infection 
activity and hemostatic activity.139–141 Huang et al142 developed a nanocomposite self-healing hydrogel using water- 
soluble carboxymethyl chitosan (CMC) and rigid rod-like dialdehyde-modified cellulose nanocrystal (DACNC), which 
can be injected into irregular and deep burn wound beds. Once injected, it quickly heals, reforms a complete hydrogel, 
thoroughly fills the wound area and protects the wound from the external environment (Figure 4A).

Silicon Oxide Nanomaterials 
Meddahi-Pellé et al143 discovered and demonstrated that aqueous silica nanomaterials had a nanobridge effect that 
enabled rapid and strong bonding in both skin wounds and organic deep wounds. Silica nanoparticle adhesive aqueous 
solution for wound repair has the advantages of quick and convenient use and it does not require complex and time- 
consuming operation.144 Unlike polymer tissue adhesives, silica nanoparticle adhesives do not require complex cross- 
linking reactions; furthermore, they still have a good adhesion effect under the humid environment in the body.19 
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Moreover, unlike traditional suture, suture nail and other closed wound treatment methods, nano aqueous solution does 
not readily cause secondary damage to soft tissues or organs, such as the skin, liver and lung, and does not require 
subsequent stitch removal.145 Li et al146 reported a bioactive silica-based nanocomposite hydrogel scaffold (PABC 
scaffold) with high angiogenesis-promoting abilities for supporting diabetic wound healing and skin repair, including the 
main network formed by polyethylene glycol diacrylate (PEGDA) and an auxiliary dynamic network formed between 
copper-containing bioactive glass nanoparticles containing copper (BGNC) and alginate (ALG). The scaffold can 
significantly promote the viability, proliferation and angiogenesis of endothelial progenitor cells (EPCs) in vitro. In 
vivo, it can promote early angiogenesis/neovascularization, effectively repair the vascular network and significantly 
accelerate wound healing and skin tissue regeneration by increasing the expression levels of hypoxia-inducible factor-1α 
(HIF-1α)/VEGF and the deposition of collagen matrix in diabetic full-thickness wounds (Figure 4B).

Carbon Nanomaterials 
Carbon nanomaterials have the advantages of large drug load, good biocompatibility and strong targeting, especially which are 
modified.147 Carbon nanotubes are ideal drug carriers for their large surface area, excellent optical properties and good 
compatibility with cells. Their water dispersion and biocompatibility coated with polymer materials are greatly improved, and 
their precious metal coordination and binding abilities are enhanced, which have significant advantages in drug delivery, 
biosensor and wound diagnosis.148 Magnetic hollow carbon nanospheres with acorn as carbon source are prepared via high 
temperature calcination method, and the drug loading and release of ibuprofen show that they have good drug loading and 
release ability.149 Carbon nanotubes have also been studied as potential antimicrobial agents with inherent antibiotic activity. 
Carbon nanotubes have effective bactericidal activity against Enterobacter and Escherichia coli, which can cause cell 
aggregation and microbial death.150 This may be expected to be used in the process of wound repair.

Nanofiber Materials 
Nanofiber materials have a large specific surface area, high porosity and facilitate the transport of nutrients and oxygen, 
which led researchers to the idea of using them for drug delivery.151,152 In recent years, breakthroughs have been made in 

Figure 4 (A) Carboxymethyl chitosan (CMC) combined with dialdehyde-modified cellulose nanocrystal (DACNC) nanocomposite hydrogel for irregular and deep burn 
wounds. Reproduced with permission from: Huang W, Wang Y, Huang Z, et al. On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose 
nanocrystal for deep partial thickness burn wound healing. ACS Appl Mater Interfaces. 2018;10(48):41076–41088. doi:10.1021/acsami.8b14526.142 Copyright © 2018, 
American Chemical Society. (B) Synthesis of bioactive silica-based nanocomposite (PABC) hydrogel scaffold and its potential application and hypothetical mechanism in 
diabetic wound healing. Reproduced with permission from: Li Y, Xu T, Tu Z, et al. Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high 
angiogenesis for promoting diabetic wound healing and skin repair. Theranostics. 2020;10(11):4929–4943. doi:10.7150/thno.41839.146 Copyright © The author(s). Creative 
commons attribution license (https://creativecommons.org/licenses/by/4.0/).

Drug Design, Development and Therapy 2022:16                                                                             https://doi.org/10.2147/DDDT.S375541                                                                                                                                                                                                                       

DovePress                                                                                                                       
2715

Dovepress                                                                                                                                                               Lin et al

Powered by TCPDF (www.tcpdf.org)

https://creativecommons.org/licenses/by/4.0/
https://www.dovepress.com
https://www.dovepress.com


the research and preparation of starch nanofibers for drug loading and external application. For example, starch 
nanofibers prepared by crosslinking method have the advantages of controllable sustained release and good 
biocompatibility.153 Xuan et al154 prepared an injectable nanofiber polysaccharide self-healing hydrogel, which can 
significantly promote wound healing.

Biological Nanomaterials for Topical Therapeutic Drug Delivery Carriers
Biological nanomaterials used for local therapeutic drug delivery carriers are mainly employed to transport nitric oxide, 
antioxidants, growth factors, nucleic acids, antibiotics, and other active ingredients to promote wound repair. Here, we 
focus on the following four types of active ingredients loaded in nanomaterials.

Nanomaterials Loaded with Growth Factors
It is well known that growth factors play a key role in all stages of wound repair.56 For example, recombinant human 
platelet-derived growth factor has been approved by the American FDA for the treatment of chronic diabetic foot.155 

Under normal physiological conditions, growth factors are not stable and are easily degraded by enzymes in the wound 
microenvironment. In addition, high local concentrations of these factors may even cause disorder in the wound repair 
process; however, loading growth factors into nanomaterials can effectively prevent these problems. Furthermore, they 
can achieve sustained release and improve the therapeutic effect of growth factors in the process of wound repair.156–158 

Choi et al159 designed and established an electrospun nanocomposite containing human recombinant epidermal growth 
factor (EGF), which achieved continuous and effective release of EGF and achieved good results in diabetic wound 
repair. In addition, Wu et al160 based on the Fe3O4 nanoparticle, developed a basic fibroblast growth factor (bFGF) loaded 
Fe3O4 nanoparticle (bFGF-HDC@Fe3O4) using a simple mussel-inspired surface immobilization method, which can 
stabilize bFGF under different conditions and exhibit a sustained release effect. It has been found that bFGF- 
HDC@Fe3O4 can greatly promote wound healing by promoting M2 macrophage polarization and cell proliferation. 
Therefore, the continuous release of growth factors with regulatory behavior is achieved by modifying nanoparticles, 
which provides a broad prospect for their application to tissue regeneration (Figure 5A).

Nanomaterials Loaded with Nucleic Acids
MicroRNAs (miRNAs) have been shown to be potentially involved in the entire wound healing process in a highly decisive 
and coordinated manner.161–164 However, exogenous miRNA therapy has several limitations, including poor stability, low 
cell uptake rate, limited selectivity for target tissues and so on. To improve the local release of miRNAs and improve the 
efficiency of wound healing, the method of introducing nanomaterials to load nucleic acid molecules has been continuously 
studied.165–167 Nanomaterials can also deliver DNA, siRNA, miRNA and other nucleic acid molecules to upregulate or 
inhibit the expression of target genes, thereby regulating of the skin wound repair process.168,169 Randeria et al170 connected 
thiolated siRNA to the surface of gold nanoparticles with a diameter of 13 nm, which was used to downregulate 
monosialoganglioside 3 synthase expression in diabetic ulcer sites. The experimental results showed that siRNA-loaded 
nanocomposites can promote keratinocyte migration and proliferation and thus effectively promote the repair of diabetic 
lesions. Wang et al166 introduced miRNA-21 nanocarriers electrostatically complexed with three types of bile acid-attached 
polyethyleneimine (BA-PEI) conjugates, including cholic acid (CA), deoxycholic acid (DA), and lithocholic acid (LA) for 
treatment of skin wounds. This nanocarrier delivery system has been found to regulate programmed cell death protein 4 
(PDCD4) and matrix metalloproteinases (MMPs) after transcription to promote cell migration and proliferation, which in 
turn helps to accelerate wound repair (Figure 5B).

Nanomaterials Loaded with Therapeutic Gases
Endogenous gas signaling molecules, such as nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), can affect 
vascular dilation, transfer information among cells, participate in neural development and regulate gene expression.171–173 At 
the site of skin wounds, severe trauma often leads to damage to blood vessels, nerves and tissues, and wound repair requires 
the active participation of these gas signaling molecules.174,175 As the earliest discovered and studied gas signaling molecule, 
NO has been applied in a large number of products for the clinical treatment of various diseases.176 NO is an endogenous 
fungicide produced by a large number of macrophages and has broad-spectrum antibacterial properties. It has been reported 
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that NO can destroy bacterial cell membranes, proteins and DNA through the formation of active nitrogen species or direct 
nitrosation, resulting in bacterial cell death.177,178 In addition to the antibacterial activity of NO, NO has attracted much 
attention as a new type of infectious wound healing drug because of its beneficial role in regulating inflammation and 
promoting wound healing, such as through promoting cell proliferation and tissue remodeling.176,179 In the wound repair field, 
NO can promote angiogenesis at the wound site by activating signaling pathways related to vascular endothelial growth factor, 
basic fibroblast growth factor and transforming growth factor-β.180,181 It has been found that NO loaded in poly(lactic acid- 
glycolic acid)(PLGA)-doped polyethyleneimine (PEI) (PLGA-PEI) composite nanoparticles significantly improved the repair 
speed of wounds infected with methicillin-resistant Staphylococcus aureus.182 Lee et al183 synthesized S-nitrosoglutathione 
(GSNO)-conjugated PLGA (GSNO-PLGA) and used this new polymer to prepare GSNO-PLGA nanoparticles (GPNPs) for 

Figure 5 (A) Fe3O4 nanoparticles loaded with basic fibroblast growth factor (bFGF) can greatly promote wound healing by polarizing M2 macrophages and promoting cell 
proliferation. Reproduced with permission from: Wu J, Zhu J, Wu Q, et al. Mussel-inspired surface immobilization of heparin on magnetic nanoparticles for enhanced wound 
repair via sustained release of a Growth Factor and M2 Macrophage Polarization. ACS Appl Mater Interfaces. 2021;13(2):2230–2244. doi:10.1021/acsami.0c18388.160 Copyright 
© 2021, American Chemical Society. (B) A schematic diagram of the use of miRNA-21 mimic nanocarriers in the treatment of skin wounds and the role of miRNA-21 
mimics in wound repair by activating cell proliferation and migration. Reproduced with permission from: Wang SY, Kim H, Kwak G, et al. Development of microRNA-21 
mimic nanocarriers for the treatment of cutaneous wounds. Theranostics. 2020;10(7):3240–3253. doi:10.7150/thno.39870.166 Copyright © The author(s). Creative Commons 
Attribution License (https://creativecommons.org/licenses/by/4.0/). (C) Schematic diagram of S-nitrosoglutathione-conjugated poly(lactic acid-glycolic acid) nanoparticles 
(GPNPs) synthesis and treatment of methicillin-resistant Staphylococcus aureus (MRSA)-infected skin wounds. Reproduced with permission from: Lee J, Kwak D, Kim H, et al. 
Nitric Oxide-Releasing S-Nitrosoglutathione-Conjugated Poly(Lactic-Co-Glycolic Acid) Nanoparticles for the Treatment of MRSA-Infected Cutaneous Wounds. 
Pharmaceutics. 2020;12(7):E618. doi:/10.3390/pharmaceutics12070618.183 Copyright © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). (D) Preparation of CIP-loaded and ceria-decorated polymer vesicles (CIP-Ceria-PVs) and 
combination of antioxidants-antibiotics in the treatment of diabetic infected wounds. Reproduced with permission from: Wang T, Li Y, Cornel EJ, Li C, Du J. Combined 
Antioxidant-Antibiotic Treatment for Effectively Healing Infected Diabetic Wounds Based on Polymer Vesicles. ACS Nano. 2021;15(5):9027–9038. doi:10.1021/ 
acsnano.1c02102.195 Copyright © 2021, American Chemical Society.
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the treatment of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds. GPNPs had a higher NO load and 
showed stronger antibacterial activity against MRSA than did GSNO (Figure 5C).

Nanomaterials Loaded with Antibiotics
Traditional wound dressings mainly play a role in hemostasis, infection control, wound cleaning and exudate absorption. This 
method requires large doses of antibiotics and takes weeks to months. In addition, this treatment can produce drug-resistant 
pathogens in the body.184–186 More effective antibiotic strategies have been developed. For example, antibiotics can be loaded in 
functional nanoparticles, such as micelles,187 vesicles,188 nanosheets189 and so on, which can achieve slow release of antibiotics, 
resulting in a continuous antibacterial effect, and can also be functionalized through targeted modifications. These characteristics 
reduce the required dose of antibiotics, thereby reducing the chance of developing antibiotic resistance.190–192 Due to their 
intrinsic biological activity and therapeutic efficacy, nanomaterials can regulate different stages of wound repair, which promises 
to be a new approach to wound treatment. Evidence verified that mesoporous silica nanoparticles (MSNs) loaded with the broad- 
spectrum antibiotic tetracycline in their channels and mixed with carboxymethyl cellulose hydrogel synchronously absorbed 
wound exudate and released antibiotics to prevent infection, which could effectively promote the skin wound repair process.193,194 

Wang et al195 proposed a method to treat diabetic infected wounds based on polymer vesicles combined with antioxidant- 
antibiotic therapy. Polymer vesicles are self-assembled by amphiphilic block copolymers poly(ε-caprolactone)-block- 
polyglutamic acid. In this self-assembly process, ciprofloxacin (CIP) is loaded into the vesicles, and ceria nanoparticles grow 
in situ on the CIP-loaded polymer vesicles after self-assembly. These CIP-loaded and ceria-decorated polymer vesicles (CIP- 
Ceria-PVs) showed strong antibacterial activity and scavenging ability of superoxide anion free radicals in the treatment of 
diabetic infected wounds (Figure 5D).

Therefore, based on the various factors influencing the process of skin wound repair, a variety of multifunctional composite 
nanobioactive materials have been designed at the micro and nano scales to combine the unique advantages of each material, and 
when these composites are loaded with the appropriate therapeutic drugs, this approach is expected to result in new safe and 
effective wound treatment methods. In recent years, nanomaterials used as local drug delivery carriers have become a research 
hotspot in the biomedical field, but there are still some problems and challenges in the clinical transformation application. 
Although drug-carrying nanoparticles have some advantages in terms of particle size, synthesis method, surface modification and 
biocompatibility, it is still a challenge to study the behavior, toxicity, biological distribution and clearance mode of these nano- 
delivery systems in vivo before they can be used in clinic.196 Therefore, the clinical transformation of making drug-loaded 
nanoparticles as drug delivery system is a key problem to be solved in the development of drug-loaded nanomaterials.

Multifunctional Composite Biological Nanomaterials
In recent decades, considering that a single functional material or therapeutic has difficulty addressing the multiple factors of skin 
wound repair, the strategies of wound tissue repair and regeneration and local drug delivery, based on multifunctional 
nanocomposite materials, have gradually attracted the attention of researchers.197 The establishment of multifunctional nano-
composites and local drug delivery systems can not only retain the biological activity of nanomaterials but also overcome the 
deficiency of the poor efficacy of single materials when carrying therapeutic drugs. Moreover, the overall performance of 
composite materials is optimized, and this approach is expected to open a new direction for skin wound repair and local drug 
delivery.146,198,199

For example, due to high surface charge density, silicate nanosheets can induce coagulation factor aggregation to promote 
coagulation; moreover, they can also greatly improve the physiological stability, injectability and hemostatic ability of nano-
composite hydrogels and have a good synergistic effect with a gelatin matrix.200 A study showed that nanocomposite hydrogels 
with shear thinning properties can be used as injectable hemostatic agents by loading silicate nanosheets into a gelatin matrix.201 

Castleberry et al202 established a nanocoating containing siRNA based on a nylon matrix using layer-layer self-assembly 
technology, which achieved the sustained release of siRNA in the wound site, thus successfully downregulating the expression 
of target gene metalloproteinase-9 and greatly promoting the repair of diabetic wounds. Jang et al203 prepared silver and copper 
bimetallic nanoparticles on the surface of graphene oxide (GO) by a chemical reduction method (Ag/Cu/GO). To evaluate the 
potential of the antibacterial treatment in vivo, the effect of Ag/Cu/GO on the skin of mice subjected to trauma and infected with 
Pseudomonas aeruginosa was analyzed. It was found that local application of Ag/Cu/GO could effectively remove antibiotic- 

https://doi.org/10.2147/DDDT.S375541                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2022:16 2718

Lin et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


resistant bacteria and quickly and effectively heal skin or wound diseases caused by bacterial infection and biofilm formation 
(Figure 6A). Cheng et al204 designed a arginine-loaded and detachable ceria-graphene nanocomposites (ACG NCS). In the 
inflammatory stage, ACG NCS can effectively produce ROS and kill bacteria under white light irradiation. During the 
proliferative phase, ceria nanoparticles can be isolated from ACG NCS and absorbed by cells to remove intracellular ROS and 
promote cell proliferation, while the isolated graphene can be used as a scaffold to promote fibroblast migration to the wound site 
(Figure 6B). With the advantages of good biocompatibility and small particle size, nanomaterials can be combined with traditional 
dressings, thus showing advantages of easy fixation and removability in wound repair.205

Figure 6 (A) Preparation of silver/copper/graphene oxide nanocomposites and their antibacterial film effect and promotion of wound healing after Pseudomonas aeruginosa 
infection. Reproduced with permission from: Jang J, Lee JM, Oh SB, Choi Y, Jung HS, Choi J. Development of Antibiofilm Nanocomposites: Ag/Cu Bimetallic Nanoparticles 
Synthesized on the Surface of Graphene Oxide Nanosheets. ACS Appl Mater Interfaces. 2020;12(32):35826–35834. doi: 10.1021/acsami.0c06054.203 Copyright © 2020, 
American Chemical Society. (B) Schematic diagram of the wound healing mechanism of arginine-loaded and detachable ceria-graphene nanocomposites (ACG NCS). 
Reproduced with permission from: Cheng Y, Chang Y, Feng Y, et al. Hierarchical acceleration of wound healing through intelligent nanosystem to promote multiple stages. 
ACS Appl Mater Interfaces. 2019;11(37):33725–33733. doi:10.1021/acsami.9b13267.204 Copyright © 2019, American Chemical Society.
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Polymer-based nanocomposites, as one of the multifunctional composites and mainly including hyperbranched polymers, 
liposomes and polymer micelles, have great application value in drug delivery systems due to their good biocompatibility and 
ability to load hydrophobic/hydrophilic drugs, proteins and other bioactive agents.206,207 For example, polymer micelles are 
nano-agglomerates with shell/core structure formed by self-assembly of amphiphilic block copolymer in aqueous solution, 
and widely used in the field of wound repair.208,209 Their hydrophobic core can encapsulate a variety of hydrophobic anti- 
inflammatory and antibacterial drugs and improve their stability and solubility without changing their chemical structure, so 
the hydrophilic shell and nano particle size are conducive to drug release and enrichment at the trauma site.209 Another 
multifunctional nanocomposite materials are hydrogel nanocomposites used for drug sustained-release material, wound 
dressing and scaffold for tissue engineering during wound repair treatment, with good biocompatibility, shaping ability and 
performance characteristics similar to extracellular matrix.210,211 However, the further development of hydrogels is still 
limited because of their poor mechanical properties and self-healing properties, which has great potential for improvement. 
The introduction of different types of nanoparticles into hydrogel nanocomposites, such as carbon-based, polymer-based, 
inorganic and metal-based nanoparticles, is a common method to obtain nano-composite hydrogels with excellent properties 
and customized functions, which can not only enhance the mechanical properties, self-healing properties and chemical 
properties, but also improve their stability.197,198,212 Therefore, multifunctional nanocomposites have a good application 
potentiality in the field of wound repair.

Therefore, nanomaterials and physical materials with different physical and chemical properties, biological activities 
and drug loading capacities are synergistically integrated into nanocomposites, providing a new approach to wound 
repair, tissue regeneration and local drug delivery. Multifunctional nanocomposites take full advantage of the unique 
physicochemical properties and synergistic gains of therapeutic drugs, biomaterials and nanomaterials, and this approach 
is beneficial for addressing the diverse pathological mechanisms discovered in research and advancing the field of wound 
repair and tissue regeneration.

Toxicity and Side Effects and the Challenges and Perspectives of Biological 
Nanomaterials in Wound Repair
At present, with the increasing frequency of the usage of nanomaterials, there is an urgent need to evaluate their 
biological safety. However, the establishment of a nanomaterial biosafety evaluation system is still in the exploratory 
stage, and the biosafety evaluation of nanomaterials mainly focuses on the toxicological study of their health effects, but 
there is still a lack of follow-up observation and evaluation after clinical wound repair. Nanomaterials can enter cells and 
affect the transmembrane process, cell division, proliferation, apoptosis and other basic life processes and the regulation 
of related signal transduction pathways, so as to produce certain biological effects at the cellular level.91,213 It has been 
found that carbon nanotubes can easily enter human cells and affect the cell structure. At low doses, carbon nanotubes 
can stimulate the phagocytosis of macrophages, but at high doses, they can seriously reduce the phagocytosis of 
macrophages to exogenous poisons.214,215 Cells treated with nano TiO2 can be detected to leak large amounts of Ca2+, 
and studies have shown that nano TiO2 can attack cell membranes, causing them to rupture, leading to cell death.216,217 

What’s more, after entering human cytoplasm by virtue of the tiny properties, nano TiO2 can oxidize and damage cellular 
genetic material depending on their high chemical activity. Research found that 8-hydroxyguanosine could be detected in 
RNA, which were separated from the cells treated by nano TiO2, thus resulting in that the expression of cell genetic 
information is affected indirectly via RNA.218 ROS generation and oxidative stress response are important mechanisms 
of nanomaterials to induce a variety of biological toxicity effects.219 The toxicity study of nano-ZnO shows that nano- 
ZnO has higher cytotoxicity and could significantly increase intracellular ROS levels, deplete glutathione, and signifi-
cantly reduce malondialdehyde and superoxide dismutase contents.220 Therefore, oxidative stress may be a major 
manifestation of the cytotoxicity of nanomaterials.

Many consumer products such as sunscreens and cosmetics may contain nano-TiO2, so it is meaningful to study the 
skin absorption of these nanoparticles. In one study, pig skin, considered most similar to human skin, was treated by 
nano-TiO2, and particle-induced X-ray fluorescence analysis was used to observe the distribution of nano-TiO2 in the 
skin structure. The results showed that nano-TiO2 can enter the granular layer below the epidermis through the cuticle, 
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especially in the epidermal germinal layer.221 Moreover, deposits of ultrafine TiO2 particles in sunscreen were found in 
the cuticle and dermal papilla of hair follicles.222,223

According to the current research results, nanomaterials have three main characteristics promoting skin penetration. 
The first is related to the particle size of nanomaterials, and the smaller the particle size, the easier it is for it to penetrate 
the skin. Second, the degree of skin irritation is determined by the properties of the nanomaterial entering the dermis. 
Third, nanoparticles or other extracts containing soluble substances and metals easily penetrate human skin.224–226 Due to 
the use of various nanoparticle types and their different physical and chemical properties, even the same nanomaterial 
with different particle sizes will display different biological effects. Therefore, there is a particularly urgent need to 
evaluate the biosafety of the new nanomaterials emerging every year, and researchers and designers should try to avoid or 
lessen these toxic side effects when designing related nanomaterials.

Although some biological effects of nanomaterials have been assessed, the potential toxicity and possible effects are 
not clear. On account of the high yield of nanomaterials and the urgency of screening potential hazards, the current 
priority is to reach an international convention on the impact of nanotechnology on the human body and the environment, 
and establish scientific and perfect detection methods. However, there is no systematic study on the metabolism and 
biochemical reaction of nanomaterials toxicity in vivo. Therefore, the preliminary establishment of a structure-activity 
relationship model provides a scientific basis for comprehensive and accurate evaluation of the toxicity of nanomaterials. 
In recent years, flow cytometry, high throughput virtual screening and metabonomics all have been widely used in 
toxicological research, but the biggest problem is the uncertainty and randomness of evaluation methods, and there is no 
objective index that can directly reflect the toxicity of nanomaterials. Although nanomaterials may produce some toxic 
effects, the current research results and data are not sufficient to indicate that these toxic effects will become a major 
problem in wound repair, and they have great potential clinical application value, we should treat the impact of 
nanomaterials positively and objectively.

Conclusions and Perspectives
Various acute and chronic skin wounds are common clinical problems; moreover, the mortality and disability rates 
caused by chronic diabetes wounds are high, which all result in substantial health problems and inconvenience for 
patients. Although the existing clinical wound treatment methods can control infection, stop bleeding and absorb 
exudates to some extent, various difficulties still exist, and the ideal wound repair effect still cannot be achieved. In 
recent years, nanomaterials with good biocompatibility, controllable preparation methods and unique physicochemical 
and biological properties have not only effectively overcome the shortcomings of traditional therapeutic methods but also 
show unique functions and properties.

This review summarizes three types of nanomaterials currently used in the treatment of skin wounds, namely, 
nanomaterials with inherent biological activity, nanomaterials used as local delivery carriers for therapeutic drugs, and 
multifunctional composite nanomaterials. Nanomaterials currently used in skin wound repair show ideal efficacy and 
advantages over traditional treatment methods. Moreover, the toxicity and side effects of related nanomaterials are also 
emphasized, and a sound biosafety evaluation system is expected to be established. We believe that with the development 
of biomedicine and materials science, additional innovations in skin wound repair nanomaterials with ideal repair 
functions and few toxic side effects will emerge, resulting in considerable reparative effects in skin wound patients.
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