
brain
sciences

Article

Extensive Evaluation of Morphological Statistical
Harmonization for Brain Age Prediction

Angela Lombardi 1 , Nicola Amoroso 1,2 , Domenico Diacono 1, Alfonso Monaco 1 ,
Sabina Tangaro 1,3,* and Roberto Bellotti 1,4

1 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy; angela.lombardi@ba.infn.it (A.L.);
nicola.amoroso@ba.infn.it (N.A.); domenico.diacono@ba.infn.it (D.D.); alfonso.monaco@ba.infn.it (A.M.);
roberto.bellotti@ba.infn.it (R.B.)

2 Dipartimento di Scienze del Farmaco, Università degli Studi di Bari ’Aldo Moro’, 70125 Bari, Italy
3 Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari ’Aldo Moro’,

70125 Bari, Italy
4 Dipartimento Interateneo di Fisica, Università degli Studi di Bari ’Aldo Moro’, 70125 Bari, Italy
* Correspondence: sonia.tangaro@ba.infn.it

Received: 5 May 2020; Accepted: 8 June 2020; Published: 11 June 2020
����������
�������

Abstract: Characterizing both neurodevelopmental and aging brain structural trajectories is
important for understanding normal biological processes and atypical patterns that are related to
pathological phenomena. Initiatives to share open access morphological data contributed significantly
to the advance in brain structure characterization. Indeed, such initiatives allow large brain
morphology multi-site datasets to be shared, which increases the statistical sensitivity of the outcomes.
However, using neuroimaging data from multi-site studies requires harmonizing data across the
site to avoid bias. In this work we evaluated three different harmonization techniques on the
Autism Brain Imaging Data Exchange (ABIDE) dataset for age prediction analysis in two groups
of subjects (i.e., controls and autism spectrum disorder). We extracted the morphological features
from T1-weighted images of a mixed cohort of 654 subjects acquired from 17 sites to predict the
biological age of the subjects using three machine learning regression models. A machine learning
framework was developed to quantify the effects of the different harmonization strategies on the
final performance of the models and on the set of morphological features that are relevant to the age
prediction problem in both the presence and absence of pathology. The results show that, even if two
harmonization strategies exhibit similar accuracy of predictive models, a greater mismatch occurs
between the sets of most age-related predictive regions for the Autism Spectrum Disorder (ASD)
subjects. Thus, we propose to use a stability index to extract meaningful features for a robust clinical
validation of the outcomes of multiple harmonization strategies.

Keywords: aging; neurodevelopment; age prediction; multi-site harmonization; morphological
analysis; FreeSurfer

1. Introduction

The structure of human brain changes throughout the lifespan, giving rise to different processes
with typical patterns in specific time intervals [1]. Brain maturation occurs from childhood to
young adulthood, with trajectories involving heterogeneous variability of anatomical features in
different cortical regions. Both spatial and temporal patterns of cortical descriptors, white and gray
matter volume, have been associated with maturation trajectories [2–4]. Several studies described
variable decreases and increases of cortical thickness reflecting changes of tissue microstructure [5–7].
In addition, increases in white matter volume and continuing myelination have been observed during
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neurodevelopment [8]. Brain aging is affected by progressive atrophy patterns and cortical thickness
decline in elderly lifespan [9,10]. Characterizing both neurodevelopmental and aging brain structural
trajectories is important for understanding normal biological processes and atypical patterns that
are related to pathological phenomena. As an example, accelerated aging atrophy has been found
in neurodegenerative diseases, such as Alzheimer’s Diseases [11,12]; other studies have investigated
altered morphological patterns during neurodevelopment in neurological disorders, such as Autism
Spectrum Disorder (ASD) [13,14]. Recently, a comprehensive index has been introduced to describe
the brain age of a subject [15]. The main rationale of this approach is to develop robust chronological
age prediction models that allow for estimating both the maturation and aging trajectories of the
human brain using a population dataset spanning a range of ages. Accordingly, the age of a subject
can be predicted and the deviation (i.e., delta) between the brain age and the chronological age can
be assessed in order to derive information regarding the brain health status. Indeed, positive delta
scores have been related to protective or resilience factors and negative delta scores have been linked
to pathological conditions and neurological and neurodevelopmental disorders [16–18].

Brain age prediction models have been improved by the joint application of large datasets
and advanced machine learning algorithms. By using magnetic resonance imaging (MRI) features
and multivariate analyses, several biomarkers have been identified to accurately describe both
neurodevelopment and aging processes [19–24]. The main steps of these approaches include:
feature extraction, feature selection, and fitting the regression model to the biological age.
According to these several state-of-the-art studies, machine learning regression algorithms can
overcome common problems such as handling correlated predictors, redundancy and model overfitting.
Moreover, machine learning approaches could take into account also nonlinear interactions among
predictors and between the predictors and the outcome variable, without assuming any regression
formula. Among structural features, morphological descriptors such as cortical thickness, surface area,
mean curvature, white matter (WM) and gray matter (GM) volumes have been proved to be reliable
age-related biomarkers, reporting mean absolute error < 4 years [19,24–27].

Initiatives to share open access morphological data contributed significantly to the advance in
brain structure characterization. Indeed, such initiatives allow large brain morphology cross-sectional
datasets to be shared, which increases the statistical sensitivity of the outcomes and promotes
the development of reproducible research methods [28]. However, using neuroimaging data
from multi-site studies requires to “harmonize” data across sites: scanner effects that are related
to hardware and protocols can influence brain morphology estimates acting as “batch effects”.
Recently, ComBat [29], a batch-effect correction tool used in genomics, has been adapted for
harmonizing cortical thickness measurements obtained from multiple sites [30] and multi-site DTI
studies [31]. ComBat was found to be an effective harmonization technique that both removes
unwanted variation that is associated with site and preserves biological associations in the data.
In their work, Fortin et al. showed the effectiveness of ComBat algorithm to remove site effects,
while preserving the biological variability that is associated with the age of the subjects of four large
multi-site datasets. In particular, the authors evaluated the effects of harmonization on the prediction
of age by using the harmonized cortical thickness as features with several regression algorithms. They
showed that ComBat significantly improved both the average prediction accuracy when compared
with the raw data and the correlation between the imaging outcome and the factor of interest (i.e., age).

The aim of this work is to compare different harmonization strategies to investigate the effect
of statistical harmonization on a multi-site neuroimaging dataset. In particular, the Autism Brain
Imaging Data Exchange (ABIDE) dataset was adopted in order to extract morphological features and
predict the biological age of both control and ASD subjects by using machine learning regression
models. We provide a robust framework to compare the performance of the machine learning
models and quantify the stability of the most relevant anatomical features. The performance of
the models and the most significant morphological features were analyzed to: (i) verify whether
different harmonization techniques influence the accuracy of predictive models; and, (ii) investigate
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the effects of the harmonization on the anatomical regions with the most significant impact on age
prediction for both groups of subjects.

2. Materials and Methods

2.1. Subjects

The Autism Brain Imaging Data Exchange (ABIDE) cohort includes imaging data from
1112 participants. ABIDE represents a consortium effort to aggregate MRI datasets from individuals
with autism spectrum disorder and age-matched typically-developing controls (NC) [32]. ABIDE
was conceptualized to identify ASD-related factors that can vary across studies and to guide future
efforts to increase harmonization among research groups. The contributions per site ranged from 13
to 79 participants with ASD and 13 to 105 NC. The dataset includes three Tesla, T1-weighted MRI
acquired from 17 sites; images and acquisition details are available at http://fcon_1000.projects.nitrc.
org/indi/abide. Initial contributions were sought from members of the ADHD-200 Consortium
conducting autism research (Kennedy Krieger Institute, NYU Langone Medical Center, Oregon Health
& Science University, University of Pittsburgh). Invitations to participate were extended based on
personal communications, recent publications, and conference presentations. All of the investigators
willing and able to openly share previously collected MRI data from individuals with ASD and age-
and sex-group matched TC were included. Institutional Review Board (IRB) approval to participate,
or explicit waiver to provide fully anonymized data, was required prior to data contribution. All of the
participating sites received local Institutional Review Board approval for acquisition of the contributed
data. We only considered male subjects due to the high imbalance between male and female subjects
in the data sample. For quality assessment, we firstly evaluated a comprehensive index of anatomical
quality metrics by computing the principal component analysis of the contrast to Noise Ratio, percent
of artifact voxels, and signal to noise ratio. Subsequently, we used the median absolute deviation
(MAD) criterion [33] to exclude the extreme outliers of the anatomical index. From the remaining
T1 images, we selected subjects with age < 40 obtaining a final sample of N = 654 from 17 sites,
including N1 = 374 typically-developing participants, mean age = 17.25 years, std age = 6.89, age
range = [6.47− 39.39]; N2 = 280 ASD subjects, mean age = 16.62 years, std age = 6.32, and age range =
[7.15− 39.10].

2.2. Morphological Features

The software tool FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) was used to extract the
morphometric properties of both cortical and sub-cortical brain structures. In particular, the recon-all
pipeline of FreeSurfer v.5.3.0 [34–36] was used to extract brain morphological statistical features.
Recon-all is a fully automated workflow that performs all of the FreeSurfer cortical reconstruction and
sub-cortical segmentation steps in a unified pipeline. It includes several processing stages, such as
motion correction, non-uniform intensity normalization, Talairach transform computation, intensity
normalization, skull stripping, sub-cortical segmentation, and cortical parcellation steps. More details
regarding the steps of recon-all workflow can be found at https://surfer.nmr.mgh.harvard.edu/
fswiki/recon-all. The Desikan-Killiany atlas [37] was used to perform the cortical segmentation of MRI
into 68 regions of interest. The sub-cortical segmentation into 40 regions of interest was performed
by means of the Aseg Atlas [36]. After the segmentation of cortical and sub-cortical brain regions,
different morphometric and intensity properties of these regions can be computed. In particular, the
following statistical descriptors are automatically estimated by the recon-all pipeline:

• volume, intensity mean, standard deviation, minimum, maximum, and range of 40 sub-cortical
brain structures and white matter parcellation of brain cortex;

• volume, surface area, Gaussian curvature, mean curvature, curvature index, folding index,
thickness mean, and thickness standard deviation for the 34 cortical brain regions of
each hemisphere; and,

http://fcon_1000.projects.nitrc.org/indi/abide
http://fcon_1000.projects.nitrc.org/indi/abide
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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• global brain metrics, including surface and volume statistics of each hemisphere; total cerebellar
gray and white matter volume, brainstem volume, corpus callosum volume, and white
matter hypointensities.

For the sake of clarity, we divided all the FreeSurfer features into four categories:

• global metrics (21 features);
• gortical metrics (544 features resulting from eight metrics for the 68 cortical regions of interest);
• sub-cortical metrics (240 features resulting from 6 metrics for the 40 sub-cortical regions of

interest); and,
• WM metrics (408 features resulting from six metrics for the 68 regions of interest).

Each anatomical metric was divided by total intracranial volume (ICV) of the corresponding
subject in order to normalize the statistical features to brain size and reduce their variance. We also
performed additional analyses without correcting ICV to test the impact of this correction on
harmonization and no differences were found between the two methods. Finally, the ABIDE cohort was
described by two matrices N1 × P and N2 × P, with N1 = 374, N2 = 280, and P = 1213, where each
row represents a single subject described with P morphological features.

2.3. Overview of the Framework

Usually, age prediction is performed while using multiple features that were extracted from
one or more imaging modalities. A dataset is then defined by including multiple subjects’ features
and their true ages. The dataset is fed into a supervised machine learning algorithm that learns to
predict the subjects’ ages from their brain imaging features. The machine learning algorithm aims
at predicting the brain age of a given subject while minimizing the deviation from the true age and
avoiding overfitting. Different metrics, such as Mean Absolute Error (MAE), are commonly employed
in order to evaluate the delta between the predicted age and true age of the subjects. In addition,
several feature selection techniques can be applied to remove irrelevant, noisy, and redundant features,
avoiding overfitting and improving prediction performance, reducing the computational complexity
of the learning algorithm, and proving a deeper insight into the data, which highlights which of the
features are most informative for age prediction [38,39].

In this study, a machine learning framework was developed in order to:

• compare multiple harmonization strategies;
• identify the most effective age predictive model;
• select only the most significant features among the total set of features; and,
• compare the stability of the most age-related anatomical regions of interest across

harmonization strategies.

A schematic overview of the framework is shown in Figure 1. Firstly, three harmonization strategies
were applied to both controls and ASD datasets. Ten re-sampling of a 10-fold cross-validation were
executed, producing 100 bootstraps of each dataset. In each iteration, nine-folds of the original dataset
were input to each of the three regression models (Support vector Regression, Random Forest, Lasso)
and then stepwise models were trained for ranked subsets of increasing size (e.g., the top five, 15,
20, and so on up to P ranked features). Each stepwise model was tested on the left fold and the
performances of each model were stored for successive evaluations. The purpose of stepwise analysis
is to identify the particular subset of features that minimizes the age prediction error [40]. As a result,
the output of the analysis is the number of non-redundant features kopt to consider in order to yield the
best performance of the three models for each harmonization strategy together with a matrix of size
[100× P] of ranked/selected features at each iteration. The performances of the models were compared
in order to select the most effective machine learning algorithm for age prediction. Finally, for such
regression model, we compared the sets of features that result from different harmonization strategies



Brain Sci. 2020, 10, 364 5 of 22

by using a stability index to quantify the effects of the harmonization. The main steps of the framework
are described in the following sections in more details.

Figure 1. Statistical framework to compare the three harmonization strategies and select the most
age-related predictive features. Three harmonization strategies were applied to each of the two dataset
(i.e., NC and ASD). For each resulting dataset, a nested feature selection was performed on the training
set in each round of the k-fold validation. Subsequently, 100 stepwise regression models were trained
by progressive increasing the training set size. A consensus ranking procedure was used to select the
most stable features with the lowest mean absolute error. This procedure was repeated for each of the
three regression algorithms—SVR, RF, and Lasso—resulting in nine combinations of “harmonization
strategy–regression model”. The performance of the models were compared in order to select the most
effective machine learning algorithm for age prediction. For the best regression model, the sets of
features that resulted from different harmonization strategies are compared using a stability index to
quantify the effects of the harmonization and support clinical evaluation.

2.4. Statistical Harmonization

Linear regression is the most popular method for performing harmonization, adjusting the images
for site effects. It does not take into account the potential confounding between the site variables
and the biological covariates of interest in the study. For the regression model, the morphological
measurement yijυ for imaging site i, for participant j and feature υ is expressed as:

yijυ = αυ + ZijΘυ + εijυ, (1)

where αυ is the average morphological metric for the reference site for feature υ; Z is the matrix of site
indicators; Θυ is the [c× 1] vector of the coefficients associated with Z for feature υ; and, εijυ is the
residual term. For each feature separately, regular ordinary least squares (OLS) is used to estimate
the parameter vector Θυ. The removal of site effects is done by subtracting the estimated site effects.
The adjusted residuals harmonization method supervises the removal of site effects by adjusting for
biological covariates, while using the modified linear regression model:

yijυ = αυ + Wijβυ + ZijΘυ + εijυ, (2)



Brain Sci. 2020, 10, 364 6 of 22

where W is the matrix of biological covariate of interests; βυ is the [c× 1] vector of the coefficients that
are associated with Wij for feature υ.

The ComBat harmonization model extends the adjusted residuals harmonization model presented
in Equation (2) and assumes that the expected values of the imaging feature measurements can be
modeled as a linear combination of the biological variables and the site effects, whose error term
is modulated by additional site-specific scaling factors [30]. ComBat models the morphological
measurement yijυ for imaging site i, for participant j and feature υ as:

yijυ = αυ + Wijβυ + γiυ + δiυεijυ (3)

where γiυ is related to the coefficients that are associated with the site indicators i for feature υ and the
parameter δiυ describes the multiplicative site effect of the i-th site on feature υ. The procedure for the
estimation of the site parameters γiυ and δiυ uses Empirical Bayes, as described in [29,31].

For the removal of site effects, three different harmonization procedures were compared:
(i) absence of harmonization (no harmonization), which considers as an additional feature the site
number identifier expressed as deviations from a baseline site resulting in [N × (P + 1)] matrix of
features; (ii) removal of site effects using ComBat with age as biological covariate of interest (age
covariate); and, (iii) removal of site effects using ComBat without specifying the age as a biological
covariate to be preserved (no age covariate). In particular, we applied two version of the ComBat
harmonization in order to also test the effect of site removal without taking the chronological age of
the subjects into account. Indeed, an interaction between the site variable and the age of the subjects
can occur if some sites only include subjects with age in specific ranges and it is therefore important to
ensure that the harmonization of the site effect does not affect the age-related biological variability
of the dataset. Moreover, for the no harmonization strategy, the information of the site is embedded
in a data-driven manner as additional feature and it is a baseline against which the two ComBat
harmonization strategies are compared.

2.5. Age Prediction

When considering the regression problem of predicting brain ages of N subjects Y ∈ RN based
on the matrix of predicting variables X ∈ RN×P, we used three different techniques: support vector
regression (SVR), random forest, and Lasso regression. Two different metrics were employed to
evaluate the regression performance:

• Mean Absolute Error (MAE):

MAE =
1
N

N

∑
i=1
|yi − ŷi| (4)

• Coefficient of determination (R2):

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2

(5)

with N being the sample size, yi the chronological age, ŷi the predicted brain age, and ȳ the sample
average age.

2.5.1. Support Vector Regression

SVR is a kernel-based machine learning algorithm for regression [41], which estimates the
following function:

f (x) = x′β + b (6)

subject to:
∀n : |yn − (x′nβ + b)| < ε (7)
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In other words, SVR attempts to find a function f (x) that deviates from yn by a value that is no
greater than ε for each training point xn. It can be thought of as a linear regression function in a high
dimensional feature space where the input data are mapped via a non-linear function [42]. By using
the kernel function, the data can be implicitly mapped into a feature space. In this work, we used
a linear kernel and the default parameters (ε = 0.1) of the SVR implementation in “Caret" R package.
Support Vector Machine-Recursive Feature Elimination (SVM-RFE) was adopted to perform feature
ranking [43]. This embedded method integrates in a single consistent framework both feature selection
and pattern classification: it trains the regression model, computes the ranking of all the features,
and removes the features with the smallest ranking criterion. This process is iteratively computed
until all of the features have been removed.

2.5.2. Random Forest

Random forest (RF) is an ensemble learner of tree-structured base learners. Each tree individually
predicts the target response while the final predictions result from the average of the individual tree
predictions [44]. Two source of randomness are recognized in RF: (i) each tree is based on a random
subset of the observations, and (ii) each split within each tree is created based on a random subset of
mtry candidate predictors. A decision threshold is selected, which partitions the node input samples
into two subsets according to a purity measure, so a tree is grown until the nodes have split their
inputs into subsets that consist of samples containing just one label. According to random sampling of
observations, 36.8% of the observations are not used for any individual tree. These observations are
included in the out of the bag (OOB) samples for that tree. The accuracy of RF can be estimated from
these OOB samples, as:

OOB−MSE =
1
n

n

∑
i=1

(yi − ¯̂yiO)
2 (8)

where ¯̂yiO denotes the average prediction for the ith observation from all trees for which this
observation has been OOB.

The permutation-based MSE reduction criterion [45] has been adopted to compute RF feature
importance. For each variable in each tree, the difference between the OOB-MSE of the permutation of
the variable’s out-of-bag data for the tree and the actual OOB-MSE is computed. The MSE reduction
according to each predictor for the complete forest is obtained as the average over all trees of these
differences. The main idea underlying this algorithm is that if a variable does not have predictive
value for the response, the differences between predictions on OOB samples with the actual values
of such predictor and predictions with its randomly permuted values are expected to be negligible.
We used the “RandomForest” R Package with the default parameter mtry = P/3 and ntree = 500.

2.5.3. Lasso

Lasso (Least Absolute Shrinkage and Selection Operator) [46] regression is a regularization
method introduced to solve both the multicollinearity problem and overfitting in ordinary least square
regression (OLS). This approach introduces a penalty term that controls the complexity of the model
with sparsity effect. Indeed, Lasso regression tries to only retain the important features by removing
some coefficients of the least significant predictors. The outcome is a subset of the predictors yielding
the largest contribution to the regression model, so it is also used as an embedded feature selection
method. Lasso minimizes the residual sum of squares (RSS) to find the coefficients of the predictors:

RSS =
1
2
||Y− βX||22 − λ||β||1 (9)

Tuning the λ parameter is required for the optimization of the accuracy. We used the inner round
of each fold of the cross validation to find the best value of λ.
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2.6. Feature Importance

The output of each regression algorithm is a list of performance metrics; moreover, the ranked
features and the number of features kopt to be selected to yield the highest accuracy for each round
of cross-validation are returned by the RF and SVR algorithms, while a sparse matrix of weighted
coefficients of the regression is output by Lasso. Because, in principle, the features of each subset
corresponding to the top kopt elements of each round can be different from one cross-validation round
to another, we applied a consensus ranking algorithm to select the most stable features across all
of the 100 rounds. Indeed, a feature selection algorithm could be sensitive with respect to changes
in the training set, which results in subsets of features not representative of the population under
investigation [47]. In order to overcome this limitation, several algorithms have been proposed for
quantifying the stability of a ranked or selected list of features with respect to small changes of the
training sets drawn from a distribution of samples [48]. Here we adopted:

• robust rank aggregation (RRA) algorithm [49] to combine the multiple base rankers into a final
aggregated ranked list for RF and SVR; and,

• frequency-based criterion with a fixed threshold to retain the most frequent features selected in
each round of Lasso regression.

The RRA approach computes the position of each item in the final ranking by comparing its
position in all of the ranked lists to a non-informative null model of random permutations of the
items. A numerical score for each item is then assigned according to the reference beta distributions of
order statistics and the Bonferroni correction is applied to compute the P-values and to find the list of
statistically significant items. The P-values are then sorted to obtain the final ranking. The algorithm
was also extended for accounting partial rankings, i.e., lists, where only the k top elements are available.

Because the output produced by Lasso is a sparse matrix of weights, we considered as features
that are relevant to the target variable within each round of cross validation those corresponding
to non-zero weights. Consequently, the matrix of selected features is a binary matrix, where 1 is
found at the (i, j) entry if the jth feature has been selected at the round ith. Subsequently, we applied
a frequency-based criterion by selecting as significantly stable features those that occurred in at least
80% of the rounds. This threshold was chosen while taking into account that the value of 80% is
slightly higher than the chance level (i.e., 50%).

2.7. Stability Index

In order to verify whether the harmonization strategies affected the most significant age-related
regions of interest, we evaluated the overlap between the two sets of selected ROIs that resulted from
two different harmonization strategies. In particular, the Jaccard index was used as a measure of the
percentage of overlap between two sets, as:

J(A, B) =
|A ∩ B|
|A ∪ B| (10)

where A and B are two sets of ROIs. This index represents the proportion of agreement between the two
sets of features and it is related to the stability of the features selected with respect to machine learning
algorithm [50]. In this case, it represents an index of stability of the most significant anatomical regions
for the age prediction with respect to the adopted harmonization strategy. Indeed, since 0 ≤ J ≤ 1,
a higher percentage of overlap between the two sets implies that the resulting selected features are
stable and invariant with respect to the harmonization algorithm. A permutation test was performed
by randomly permuted 104 times the selected features between the two sets for determining the
statistical significance of their percentage of overlap. Specifically, the permutation test was used to test
the null hypothesis that the percentage of overlap between the two sets was given by chance.
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2.8. Age Models

The predictions of brain age that result from the different cross-validation rounds were averaged
for each subject in order to obtain the final age prediction of each regression model and each
harmonization strategy. For each of the nine combination (e.g., regression model-harmonization
strategy), we evaluated three model fits of chronological age vs. predicted age relation, i.e., linear,
quadratic, and cubic fit for each population:

ŷ = p1y + p2 (11)

ŷ = p1y2 + p2y + p3 (12)

ŷ = p1y3 + p2y2 + p3y + p4 (13)

where ŷ is the estimated brain age and y is the chronological age of the subject. The adjusted explained
variance R2 was evaluated to select the best-fitting model among the three fits.

To assess the deviation of each model from the ideal age model fit (i.e., ŷ = y), the normalized
area under the fitted curve (AUCŷ) of the nine models for both populations were evaluated as:

AUCŷ =
2

(ageMAX − ageMIN)2 AUCmodel (14)

where ageMAX is maximum age value of the sample, ageMIN is minimum age value of the sample and
AUCmodel is the area under the model fit. This quantity assumes:

• AUCŷ = 1 for the ideal model;
• AUCŷ > 1 for an age overestimation prevalence of the model;
• AUCŷ < 1 for an age underestimation prevalence of the model.

Thus, the signed difference between the AUCŷ of the ideal model fit and each of the nine
best-fitting models can express the degree of deviation of each model from the ideal one.

3. Results

3.1. Age Prediction

We performed the stepwise analysis in order to identify the number of ranked features kopt

that minimizes the average MAE values. Table 1 reports the kopt values for the three harmonization
strategies and the three regression algorithms for both groups. Figure 2 shows the violin plots of
the MAE distributions for the selected kopt. Numerical values of the mean and standard deviation
of MAE and R2 values are also reported in Tables 2 and 3, respectively. The results clearly show
that harmonizing without taking the chronological age of the subjects into account returns the worst
performance. Moreover, all of the ML algorithms exhibit comparable results with both not harmonized
and age covariate harmonized datasets reporting average MAE < 2.65, with a slight improvement in
the case of the Random Forest algorithm.

Table 1. Number of ranked features kopt at which the regression models exhibit the minimum
average Mean absolute error (MAE).

Harmonization Technique
NC ASD

SVR RF Lasso SVR RF Lasso

No harmonization 400 90 55 150 130 35
Age covariate 1000 100 100 400 50 65
No age covariate 40 30 15 50 20 15
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(a)

(b)

(c)

Figure 2. Violin plots of MAE resulting from (a) support vector regression (SVR); (b) Random forest (RF);
and, (c) Lasso, for the three harmonization strategies.
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Table 2. Mean MAE ± SD resulting from age prediction for each class and each harmonization
technique for the three regression algorithms SVR, Random Forest, and Lasso. The best performances
are highlighted in gray.

Harmonization Technique
NC ASD

SVR RF Lasso SVR RF Lasso
No harmonization 2.66± 0.38 2.59± 0.37 2.79± 0.37 2.56± 0.49 2.54± 0.45 2.80± 0.51
Age covariate 2.70± 0.36 2.62± 0.32 2.68± 0.37 2.46± 0.40 2.46± 0.39 2.68± 0.36
No age covariate 4.40± 0.55 3.67± 0.54 4.82± 0.53 4.28± 0.58 3.29± 0.55 4.56± 0.59

Table 3. Mean R2 ± SD resulting from age prediction for each class and each harmonization technique
for the three regression algorithms SVR, Random Forest, and Lasso. The best performances are
highlighted in gray.

Harmonization Technique
NC ASD

SVR RF Lasso SVR RF Lasso
No harmonization 0.76± 0.06 0.77± 0.06 0.74± 0.06 0.72± 0.06 0.73± 0.08 0.69± 0.07
Age covariate 0.77± 0.06 0.77± 0.06 0.77± 0.06 0.76± 0.06 0.76± 0.07 0.74± 0.06
No age covariate 0.27± 0.10 0.52± 0.11 0.24± 0.10 0.30± 0.13 0.58± 0.10 0.27± 0.12

3.2. Age Models

Figure 3 reports the final model fit of the “chronological age–predicted brain age” relation for each
of the nine combinations regression model–harmonization strategy. Individual fits with sample points
are shown in Figure S1 of Supplementary Information. The adjusted explained variance R2 values of
the resulting best-fitting models are listed in Table 4. As shown in Figure 3a,c the SVR and Lasso models
both achieved similar fits for the two strategies no harmonization and age covariate harmonization.
Indeed, these two strategies exhibit the same linear behavior for age < 25, while a better quadratic
fit is evident in the age covariate harmonization strategy. Moreover, there is always a systematic age
underestimation in ASD subjects. The difference between these two harmonization strategies and the
subject classes is less evident in the RF fits (see Figure 3b).

Table 4. Best-fitting models of age prediction and adjusted R2 for each class and each harmonization
technique for the three regression algorithms SVR, Random Forest and Lasso.

Harmonization Technique Class SVR RF Lasso

No harmonization
NC ŷ = −0.02y2 + 1.6y− 3.25 ŷ = −0.01y2 + 1.16y + 1.3 ŷ = −0.02y2 + 1.5y− 2.6

R2 = 0.80 R2 = 0.82 R2 = 0.79

ASD ŷ = −0.02y2 + 1.54y− 2.3 ŷ = −0.006y2 + 0.88y + 3.8 ŷ = −0.02y2 + 1.7y− 4.2
R2 = 0.79 R2 = 0.81 R2 = 0.78

Age covariate
NC ŷ = −0.01y2 + 1.4y− 2.5 ŷ = 0.01y2 + 0.65y + 4.3 ŷ = −0.01y2 + 1.4y− 1.8

R2 = 0.80 R2 = 0.83 R2 = 0.80

ASD ŷ = −0.01y2 + 1.4y− 2.7 ŷ = 0.65y + 5.7 ŷ = −0.02y2 + 1.6y− 3.7
R2 = 0.83 R2 = 0.80 R2 = 0.79

No age covariate
NC ŷ = −0.01y2 + 0.93y + 5.4 ŷ = −0.01y2 + 1.22y + 2.44 ŷ = −0.01y2 + 0.82y + 8.2

R2 = 0.48 R2 = 0.68 R2 = 0.40

ASD ŷ = 0.0005y3 − 0.04y2 + 1.3y + 5.6 ŷ = −0.0003y3 − 0.03y2 + 1.4y + 2.4 ŷ = 0.0006y3 − 0.04y2 + 1.2y + 6.9
R2 = 0.33 R2 = 0.66 R2 = 0.30

The values of the signed difference between the AUCŷ of the ideal model fit and each of the
nine best-fitting models are listed in Table 5. For all of the models, a negative value is reported,
which suggests a systematic age underestimation. Table 5 also highlights that the RF model yields a
smaller deviation from the ideal age model than the other models, which confirms the best performance
over the total age range of the sample under investigation.
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(a)

(b)

(c)

Figure 3. Best-fitting models of chronological age-predicted age resulting from (a) SVR; (b) RF; (c) Lasso,
for the three harmonization strategies.
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Table 5. Signed difference between the AUCŷ of the ideal model fit and each of the nine best-fitting
models for NC and ASD classes.

Harmonization Technique Class SVR RF Lasso

No harmonization NC −0.18 −0.13 −0.15

ASD −0.22 −0.15 −0.17

Age covariate NC −0.11 −0.10 −0.11

ASD −0.16 −0.11 −0.14

No age coviariate NC −0.32 −0.18 −0.24

ASD −0.34 −0.20 −0.25

3.3. Feature Importance

We computed the relative frequency occurrence of the features’ categories among the kopt

features selected by each regression model for the three harmonization strategies in order to show the
importance ranking of each category for both populations of subjects. Figure 4 shows the ranking of
the four categories. The three regression models exhibit a similar distribution of the importance of
the four categories for control subjects and ASD subjects, except for the non-harmonized strategy of
the SVR model. Cortical and WM features exhibit a relative frequency of occurrence of approximately
40%, while sub-cortical features appear less than 20% of the times among the features selected by
the SVR regression model. For both RF and Lasso models, a greater balancing of the importance of
cortical, sub-cortical, and WM features for the age-covariate harmonization occurs, which highlights
a frequency of occurrence of about 30%. Cortical features prevail among the kopt features in the
Lasso model for all of the harmonization techniques (frequency > 50%), while global features are
totally missing.

Similarly, we computed the occurrence frequency of each ROI across the kopt features to show
the most important regions that are involved in age prediction. Figures 5–8 only show the most
important ROIs for the RF model for the strategies no harmonization and age covariate harmonization,
which resulted the most reliable age regression models. Tables S1–S4 of Supplementary Information
file also list the same regions with MNI coordinates.

(a)

Figure 4. Cont.
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(b)

(c)

Figure 4. Frequency of occurrence of feature categories resulting from (a) SVR; (b) RF; (c) Lasso, for the
three harmonization strategies and both populations.

Figure 5. The most significant ROIs for the RF age prediction with no harmonization in NC population.
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Figure 6. The most significant ROIs for the RF age prediction with age covariate harmonization in
NC population.

Figure 7. The most significant ROIs for the RF age prediction with no harmonization in ASD population.
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Figure 8. The most significant ROIs for the RF age prediction with age covariate harmonization in
ASD population.

3.4. Stability Index

For the random forest classifier, we compared the two sets of selected regions of interest for the
two strategies “no harmonization” (i.e., the set A) and “age covariate harmonization” (i.e., the set B)
for each of the two groups NC and ASD. The resulting stability index is J(A, B) = 0.45, p = 0.01 for the
NC group and J(A, B) = 0.29, p = 0.005 for the ASD group, showing a significant greater matching
between the selected ROIs of the two harmonization strategies for the control subjects.

4. Discussion

In this study, three different regression algorithms were used for age prediction for the three
harmonization strategies. The results shown in Figure 2 and summarized in Tables 2 and 3 indicate
that the statistical harmonization without the biological age as coviariate of interest yields the worst
performance for both groups, regardless of the regression methods. This finding clearly suggests
that, when an interaction occurs between the batch effect (i.e., site) and the biological covariate
of interest (i.e., age), performing statistical harmonization while ignoring the covariate leads to
confusing effects on the resulting harmonized dataset. On the other hand, it can be observed that
the two strategies age-coviariate harmonization and no-harmonization produce almost the same
performance for both groups of subjects with an improvement of the mean absolute error with the
random forest algorithm. The prediction accuracy that we obtained is in the same range as has been
demonstrated by previous studies while using different morphological measures and age prediction
methods (0.6 < R2 < 0.87) [22,51–55]. Most of these studies are focused on younger subjects (age< 20
years) and reported MAE< 2 [51,52,54,55], while other works showed that the prediction error
increases with increasing age with MAE> 3 in the same age range of our analysis [22,53,56]. Our
results seem to confirm such an observation: even though the overall mean prediction errors resulting
from random forest age regression for the age covariate harmonization and no harmonization are
similar to those reported in literature, all of the models show worse performance for age > 25 years.
Indeed, a systematic underestimation of the age occurs for subjects older than 25 years, as shown in
Figure 3. The analysis of the signed difference between the AUCŷ of the ideal model fit and each of
the nine best-fitting models confirms an overall age underestimation of all the regression algorithms
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as reported in Table 5. However, the deviation from the ideal model is less pronounced for the age
covariate harmonization. This analysis also shows greater deviation from the ideal curve for the ASD
subjects class than for the NC class for all regression models and harmonization strategies.

The analysis of the importance of the features by category (i.e. cortical, white matter, subcortical,
and global), shows that for the strategies of statistical harmonization with age as covariate and
for no harmonization, the features related to cortical and white matter statistics, are equally the
most important for both classes of subjects, highlighting a greater contribution of cortical areas than
subcortical and global structures in the age regression problem. This finding confirms the results of
previous work, in which the authors investigated age-related changes of the simultaneous contribution
of cortical thickness, regional WM volume, and diffusion characteristics of the brain, concluding that
none of the measures are redundant and their integration yields a more complete understanding of
brain maturation [57].

For the best performing age regression models, we found that the most informative features for
age prediction in control subjects mainly refer to fronto-parietal areas. In particular, the superior
frontal cortex is identified in both the harmonized dataset and in the non-harmonized dataset.
The precuneus/posterior cingulate (PCC) is also a significant region in both datasets. It is worth
noting that several studies confirmed age-related cortical associations of such regions of interest.
Both neurodevelopmental and aging analysis revealed distinct chronological structural patterns of
different shape metrics in frontal lobe, several parietal regions and cingulate cortex [9,54,55,57–59].
In [55], the authors used a multivariate approach to characterize covariation patterns across several
cortical and subcortical measures and use them to predict age in a cohort of subjects during the
developing stages. Their analysis outlines the role of middle frontal and lateral occipital regions as
reliable maturation biomarkers. An accelerated thinning of fronto-parietal regions was also found
in [54]. Further, functional and structural connectivity analysis highlighted that the connection
between the PCC and mPFC (medial prefrontal cortex), two main hubs of the DMN (default mode
network), also plays a fundamental role in neurodevelopment [60,61]. Our study shows that, for the
control subjects, a high degree of overlap between the sets of significant cortical regions occurs,
highlighting that the statistical harmonization does not introduce major variations with respect to the
non-harmonization strategy. This observation is not valid for ASD class where a lower overlap arises
between the two sets of features. Indeed in ASD subjects an overlap between the two harmonization
techniques is found for the upper and lateral frontal regions and the precuneus, while, among the
non-harmonized features, are also included regions of the cingulate and parietal cortex and some
regions of the frontal lobe. The effects of age on different subcortical brain volumes has been extensively
examined in literature, reporting no relationship between age and the volumes of amygdala and
heterogeneous age responses for thalamus, caudate, hippocampus, and cerebellar white and gray
matter [62–64]. In our analysis, both left and right pallidum appear to be significantly associated with
age in both populations for the two harmonization strategies, while regions of striatum are only found
among the non-harmonized features of control subjects. It is worth noting that the volume of white
and grey matter of the cerebellum is a significant feature for age prediction only for control subjects for
both harmonization strategies, while it does not occur among those of ASD subjects. This difference
could suggest this feature as a neurodevelopment discriminating factor between the two populations,
thus confirming the morphological cerebellum anomalies in ASD reported in several studies [65,66].

In summary, the age-covariate harmonization does not affect the performance of the age prediction
models; however, on one hand, it shows less significant effects on predictive features in the control
population, but, on the other hand, a greater mismatch of the selected anatomical features between the
two strategies was found in ASD subjects, which indicated a more relevant effect of harmonization
on the predictive features. Harmonizing a dataset is a fundamental step for multi-site analysis and
it is often performed on imaging-derived data before any further analysis. Our results suggest that
this process should be embedded into the complete analysis framework in order to assess its effects
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both on the performance of the algorithms or analysis methods and on the anatomical regions that are
relevant to the performed analysis.

5. Limitations

Although this study shows important consequences of harmonization on age prediction in
a multi-site dataset, it presents some limitations. We estimated the brain age of subjects using different
methods and a final index was computed to assess the deviation of each model from the ideal age model
fit. In some recent works, various sources of bias in estimating brain age delta have been highlighted,
such as the non-Gaussian distribution of subject ages [67–69]. The authors in [69] also suggested a
procedure for removing bias and increasing the accuracy of delta estimation. Further improvements
of the proposed framework will include models for correcting the underestimation of brain aging and
removing the resulting dependency of delta on age, as suggested in [69]. In addition, several measures
from cognitive testing have been found to be associated with brain age delta; hence, age prediction
models could be improved and validated using health or cognitive factors.

Another limitation concerns the data sample: only male participants were included in the analysis
due to strong prevalence of male subjects in the ABIDE dataset. Moreover, the dataset does not include
multiple MRI measures from the same individual: for further validations of the method, a dataset with
multiple measurements should be used to perform the test-retest reliability of the results.

Finally, although cross-validation is commonly used to test the models ability to generalize to an
independent dataset while avoiding problems, like overfitting or selection bias [70], independent tests
on an external validation set should be required to ensure a better generalization of the age prediction
models. Future work will include more datasets to further strengthen the effectiveness of our results.

6. Conclusions

In this work, we proposed a novel machine learning framework to evaluate three different
harmonization techniques of a cross-sectional dataset for age prediction analysis in two groups of
subjects (i.e., controls and ASD). Our analysis aimed to verify the effects of the different harmonization
strategies on the final performance and on the set of features that are relevant to the age prediction
problem both in the presence and absence of pathology using a stability index to provide a final robust
overlap index between the features selected by each ML algorithm for each harmonization strategy.

The results show that the age covariate harmonization and no-harmonization techniques
yield comparable results in terms of performance for both groups of subjects, while the statistical
harmonization seems to affect the most age-related predictive features. This finding suggests carefully
evaluating the effect of the harmonization preprocessing step when planning to predict age on the
basis of anatomical measures, especially when analyzing neurodevelopment- or aging-related diseases.
The steps performed in the proposed framework can be generalized in order to provide a robust set
of relevant features by means of an objective comparison of the outcomes that result from different
harmonization strategies to potentially strengthen the relevance of clinical considerations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/6/364/s1,
Figure S1: Individual fits with sample points of the “chronological age - predicted brain age” relation for each
of the nine combinations regression model - harmonization strategy for both population (Control and Autism
Spectrum Disorder), Table S1: most important ROIs with MNI coordinates for the RF model for the age covariate
harmonization in ASD population, Table S2: most important ROIs with MNI coordinates for the RF model for
the age covariate harmonization in NC population, Table S3: most important ROIs with MNI coordinates for
the RF model for the no harmonization strategy in ASD population, Table S4: most important ROIs with MNI
coordinates for the RF model for the no harmonization strategy in NC population.
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