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Background: Innate immunity contributes to acute rejection after kidney transplantation.
Genetic polymorphisms affecting innate immunity may therefore influence patients’ risk of
rejection. /L2 -330T > G, IL710 -1082G > A, -819C > T, and -592C > A, and TNF -308G > A
are not associated with acute rejection incidence in Caucasian kidney transplant recipients
receiving a calcineurin inhibitor, ciclosporin or tacrolimus (TAC). However, other important
innate immune genetic polymorphisms have not yet been extensively studied in recipients
and donors. In addition, innate immunogenetics have not been investigated in kidney
transplant cohorts receiving only TAC as the calcineurin inhibitor.

Objective: To investigate the effect of recipient and donor CASP1, CRP, IL1B, IL2, IL6,
IL6R, IL10, MYDS88, TGFB, TLR2, TLR4, and TNF genetics on acute kidney rejection in the
first 2 weeks post-transplant in TAC-treated kidney transplant recipients.

Methods: This study included 154 kidney transplant recipients and 81 donors
successfully genotyped for 17 polymorphisms in these genes. All recipients were under
triple immunosuppressant therapy of TAC, mycophenolate mofetil, and prednisolone.
Recipient and donor genotype differences in acute rejection incidence within the first 2
weeks post-transplantation were assessed by logistic regression, adjusting for induction
therapy, human leukocyte antigen mismatches, kidney transplant number, living donor,
and peak panel-reactive antibody scores.

Results: A trend (Cochran-Armitage P = 0.031) of increasing acute rejection incidence was
observed from recipient /L6 -6331 T/T (18%) to T/C (25%) to C/C (46%) genotype [C/C
versus T/T odds ratio (95% confidence interval) = 6.6 (1.7 to 25.8) (point-wise P = 0.017)].
However, no genotype differences were significant after Bonferroni correction for
multiple comparisons.

Conclusions: This study did not detect any statistically significant effects of recipient or
donor innate immune genetics on acute rejection incidence in the first 2 weeks post-
transplantation. However, the sample size was small, and future larger studies or
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meta-analyses are required to demonstrate conclusively if innate immune genetics such
as /L6 influence the risk of acute rejection after kidney transplantation.

Keywords: tacrolimus, immune genetics, kidney transplantation, acute rejection, IL6 -6331

INTRODUCTION

Acute rejection is the major short-term challenge following
kidney transplantation and it also increases long-term graft
loss (McDonald et al., 2007). Although induction therapy,
human leukocyte antigen (HLA) mismatches, number of
kidney transplants, living donor, and peak panel-reactive
antibodies (PRAs) have been studied as potential acute
rejection predictors (Hammond et al.,, 2010; Lim et al., 2012;
Lim et al., 2015; Zhu et al., 2016), these factors only contribute
partially to acute rejection incidence.

While the T-cell driven adaptive immune system is essential
to acute rejection, the innate immune system also plays a key
role. Extracellular damage-associated molecular patterns from
transplantation surgery and ischemia/reperfusion injury can
induce the translocation of nuclear factor x-light-chain-
enhancer of activated B cells (NF-kB) into T-cell nuclei via
activation of the myeloid differentiation primary response 88
(MyD88)-dependent Toll-like receptor (TLR) signaling pathway
(Li and Verma, 2002; Liew et al., 2005). Translocated NF-kB
activates pro-inflammatory cytokine secretion [e.g. pro-
interleukin (IL)-1P, IL-2, and tumor necrosis factor-o
(TNF-0)] (Li and Verma, 2002). Caspase 1 (encoded by
CASPI) is an inflammatory response initiator and converts
pro-IL-1P into mature IL-1B (Kostura et al., 1989; Thornberry
et al,, 1992). These pro-inflammatory mediators can assist T-cell
activation, proliferation, and differentiation, and intensify kidney
tissue damage (Watson et al., 1980; Nankivell and Alexander,
2010; Anders and Schaefer, 2014). In contrast, anti-inflammatory
cytokines (e.g. IL-10) can decrease pro-inflammatory cytokine
release (Walsh et al., 2004) and therefore have the potential to
attenuate rejection risk, whereas transforming growth factor 8
(TGF-B) and IL-6 have both pro- and anti-inflammatory action
(Saxena et al., 2008; Scheller et al., 2011). Notably, IL-6 trans-
signaling via soluble IL-6 receptor (IL-6R) is pro-inflammatory
as it can enhance the expansion and activation of T- and B-cells
and induce several acute phase reactants such as C-reactive
protein (CRP) (Wolf et al., 2014).

Single nucleotide polymorphisms (SNPs) in CASP1, CRP, IL1B,
IL2, IL6, IL6R, IL10, TGFB, and TNF can increase or decrease the
protein production and/or function of these pro- and anti-
inflammatory mediators in vitro (Kroeger et al., 1997; Turner
et al., 1997; Awad et al,, 1998; Hoffmann et al., 2001; Dunning
etal.,, 2003; Hall et al., 2004; Trompet et al., 2008; Wang et al., 2009)
or serum/plasma concentrations in vivo (Fishman et al., 1998;
Grainger et al, 1999; Galicia et al., 2004; Smith et al., 2008;
Lacruz-Guzman et al,, 2013). In addition, SNPs in the MyD88-
dependent TLR signaling pathway affect innate immune responses
to vaccines (Ovsyannikova et al,, 2011) and susceptibility to
infection or disease in vivo (Taniguchi et al., 2013;

Santos-Martins et al., 2014). Therefore, these innate
immunogenetic markers may serve as predictors of acute
rejection post-kidney transplantation.

Meta-analyses have shown that recipient and/or donor IL2
-330T > G (rs2069762), IL10 -1082G > A (rs1800896), -819C > T
(rs1800871), and -592C > A (rs1800872), and TNF -308G >
A (rs1800629) SNPs do not affect acute rejection incidence
in Caucasian kidney transplant recipients receiving
immunosuppressive therapy (Hu et al, 2011; Hu et al, 2015;
Xiong et al., 2015; Hu et al., 2016). However, none of the cross-
sectional studies included in these meta-analyses was carried out
in recipients treated with tacrolimus (TAC) as the sole calcineurin
inhibitor (CNI). Since TAC has potent immunosuppression 100
times greater than ciclosporin (Kino et al., 1987), with fewer
rejection complications (U.S. Multicenter FK506 Liver Study
Group, 1994), most kidney transplant recipients in Europe and
Australia have been treated with TAC as the first-choice CNI for
immunosuppression therapy since 2003 (Wadstrom et al., 2017)
and 2009 (ANZDATARegistry, 2010), respectively. Therefore, it
is worthwhile exploring the innate immunogenetic impact on
kidney transplant recipients treated with only TAC as the CNI.

Only one study has investigated the impact of IL1B 3954C >
T (rs1143634) on acute rejection incidence in kidney
transplant recipients and found recipient 3954C/T genotype
had higher rejection incidence than C/C genotype (point-wise
P = 0.045) but without multiple comparison adjustment
(Manchanda and Mittal, 2008). In terms of TLR4 896A > G
(rs4986790) and 1196C > T (rs4986791), it is still controversial
if these two SNPs affect acute rejection incidence in kidney
transplant recipients (Ducloux et al., 2005; Palmer et al., 2006;
Nogueira et al., 2007). Limited sample size, low minor allele
frequency of the TLR4 SNPs, different criteria for acute rejection
[biopsy-proven acute rejection (BPAR) versus clinical evidence,
e.g. serum creatinine change], varied recipient/donor ethnicities,
and different time of rejection post-transplantation between cross-
sectional studies may contribute together to the inconsistent
findings of TLR4 genetics on acute rejection incidence. In
addition, adjustment for multiple statistical comparisons was not
conducted. Notably, SNPs in CASPI, CRP, IL6R, MYD88, and
TLR2 have not been examined for their impact on acute rejection
in kidney transplant recipients.

To bridge these research gaps, this study aimed to explore the
impact of recipient and donor CASP1, CRP, IL1B, IL2, IL6, IL6R,
IL10, MYDS88, TGFB, TLR2, TLR4, and TNF genotypes on BPAR
incidence in a cohort of predominantly Caucasian kidney
transplant recipients treated with TAC as the only CNI (Hu
et al, 2018; Hu et al.,, 2019a; Hu et al., 2019b). We hypothesized
that these recipient and donor innate immunogenetics would
affect BPAR incidence in kidney transplant recipients in the first
2 weeks post-transplantation.
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MATERIALS AND METHODS

Study Participants and Data Collection

This study was approved by the Central Adelaide Local Health
Network Human Research Ethics Committee (Protocol number
2008178). All procedures complied with the Declaration of Helsinki
and/or institutional research committee ethical requirements.

As described previously, 165 kidney transplant recipients and
129 donors were recruited (Hu et al., 2018; Hu et al., 2019a; Hu
et al., 2019b). All recipients and living donors gave written
informed consent before participation. For deceased donors,
their respective recipients gave informed consent to use excess
donor tissue blood vessels for genotyping. Recipient inclusion
and exclusion criteria, demographics, anti-CD-25 induction
therapy, immunosuppressant regimen (TAC, mycophenolate
mofetil, and prednisolone), the number of HLA mismatches
(HLA-A, -B, and -DR antigens) between recipients and donors,
number of kidney transplants, donor type (living or deceased),
PRA scores (%), and BPAR based on Banff classification of Solez
et al., 2008 (as the transplants were performed between 2005 and
2011) have been described previously (Hu et al., 2018; Hu et al.,
2019a; Hu et al., 2019D).

Genotyping

Genomic DNA was extracted from blood, buccal swab, and
kidney tissue (Hu et al., 2018; Hu et al,, 2019a). A panel of 21
SNPs in 15 genes described previously (Mulholland et al., 2014;
Barratt et al., 2015; Coller et al., 2015; Somogyi et al., 2016; Coller
et al., 2019) were assayed using Agena Bioscience (formerly
known as Sequenom) MassARRAY at the Australian Genome
Research Facility (Brisbane, Australia). This panel included SNPs
in the MyD88-dependent TLR signaling pathway—TLR2
1350T > C (rs3804100), TLR4 896A > G and 1196C > T, and
MYDS88 1593A > G (rs6853); pro- and anti-inflammatory
mediators—CASP1 5352G > A (rs580253) and 10643G > C
(rs554344), CRP -717T > C (rs2794521), ILIB -511C > T
(rs16944), -31T > C (rs1143627), and -3954C > T, IL2 -330T >
G, IL6 -6331T > C (rs10499563), IL6R -48892A > C (rs8192284),
IL10-1082G > A and -819C > T, TGFB -509C > T (rs1800469), and
TNF -308G > A. The panel also included BDNF 196G > A (1s6265)
and OPRM1 118A > G (rs1799971) that were considered outside the
scope of this study, and TGFB -1287G > A (rs11466314) and LY96
379C > T (rs11466004) that are known to be of very low frequency
in Caucasians; these four SNPs were therefore not included in the
analyses described below.

Statistical Analyses

Hardy-Weinberg Equilibrium (HWE) tests for all genotypes,
linkage disequilibrium (LD) between SNPs and haplotype
inference within genes, and logistic regression analyses, were as
described previously (Hu et al., 2018; Hu et al., 2019a). Due to the
relatively limited sample size, only SNPs with minor allele
frequencies >5% were included in logistic regression analyses.
For SNPs in perfect or near-perfect (r* > 0.9) LD, only 1 of the
linked SNPs in that gene, instead of haplotypes/diplotypes, was
analyzed in logistic regression analysis.

Genotype differences in BPAR incidence were analyzed for
each SNP separately by logistic regression, adjusting for
induction therapy [yes/no (Y/N)], living donor (Y/N), HLA
mismatches (<3 or >3), kidney transplant number (1 or > 2),
and peak PRA scores (<10% or >10%). Statistical significance
was assessed by the likelihood-ratio test, and effects described by
odds ratios (OR) with 95% confidence intervals (CI). Genotype
differences in BPAR without adjusting for non-genetic variables
were tested by Cochran-Armitage test for trend in GraphPad
Prism v8 (GraphPad Software, San Diego, CA, USA), or Fisher’s
exact test for SNPs with rare homozygous genotypes (n < 5)
combined with heterozygotes, and OR with 95% CI.

P-value thresholds for significance were corrected for
multiple testing by Bonferroni-adjustment (0w = 0.05/N, where
N is the number of SNPs analyzed in the recipient or donor
cohort, respectively).

RESULTS

One hundred and fifty-four recipients and 81 (57 living, 24
deceased) donors had sufficient DNA for genotyping. In total,
23% (n = 35) of recipients with genotype data developed BPAR
in the first 2 weeks post-transplantation. The impact of induction
therapy, HLA mismatches, kidney transplant number, living
donor, and peak PRA scores on BPAR incidence has been
reported (Hu et al., 2019a); none were statistically significant
(likelihood-ratio test P-value > 0.1).

Genetic Variability in Kidney Transplant
Recipients and Donors

All recipient and donor allele and genotype frequencies are
summarized in Table 1. Six recipients each received a kidney
from three deceased donors (two kidneys per donor), therefore,
these three donors were counted only once for HWE tests but
were treated independently for logistic regression analyses. For
some SNPs, one to four recipients and/or donors had missing
genotypes due to genotyping failure. All recipient and donor
genotypes were in HWE (P > 0.2). CASPI, IL1B, IL10, and TLR4
haplotype and diplotype frequencies are summarized in
Supplementary Table 1. Recipient and donor CASPI1 10643G
and 5352G, ILIB -511C and -31T, and TLR4 896A and 1196C
were in perfect or near-perfect LD (D’ > 0.99; r* > 0.96) while
IL10 -1082G and -819C were in complete but not perfect LD
[D’ = 1.0; r* = 0.30; resulting in six observed diplotypes
(Supplementary Table 1)]. Therefore, only 5352G > A in
CASPI, -511C > T and 3954C > T in ILIB, and 896A > G in
TLR4, along with all SNPs (including IL10 -1082G > A and
-819C > T separately) in other innate immune genes, were
included in the subsequent analyses.

Rare homozygous genotypes (n < 5) were combined with
heterozygous genotypes for logistic regression and Fisher’s exact
test as follows: recipient MYD88 rs6853 A/A genotype versus G
allele carriers (A/G + G/G), TLR4 896A/A genotype versus G
allele carriers (A/G + G/G); donor IL6 -6331T/T genotype versus
C allele carriers (T/C + C/C); recipient and donor CASPI 5352G/
G genotype versus A allele carriers (G/A + A/A), TLR2 1350T/T
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TABLE 1 | Recipient and donor genotype and allele frequencies of SNPs in pro- and anti-inflammatory mediators and MyD88-dependent TLR signaling pathway genes.

Genes & SNPs Recipients” (n = 153-154) Donors* (n = 77-81)
Genotypes Alleles HWE Genotypes Alleles HWE
(n, %) (n, %) P (n, %) (n, %) P
CASP1 5352G > A G/G (107, 69) G (258, 84) 0.8 G/G (88, 72) G (137, 85) 1
G/A (44, 29) A (50, 16) G/A (21, 26) A (25, 15)
AA @3, 2) A/A (2, 2)
10643G > C G/G (107, 69) G (258, 84) 0.8 G/G (88, 72) G (137, 85) 1
G/C (44, 29) C (50, 16) G/C (21, 26) C (25, 15)
C/C (3, 2) C/C (2, 2)
CRP -717T>C T/T (77, 50) T (215, 70) 0.4 T/T (33, 41) T (108, 64) 1
T/C (61, 40) C (93, 30) T/C (37, 46) C (57, 36)
C/C (16, 10) C/C (10, 13)
IL1B -511C>T C/C (76, 49) C (215, 70) 0.7 C/C (41, 51) C (114, 70) 0.8
/T (63, 41) T (93, 30) /T (32, 40) T (48, 30)
/T (15, 10) T/T (8, 10)
-31T>C fl' (74, 48) T (211, 69) 0.7 T/T (41, 51) T (114, 70) 0.8
T/C (63, 41) C (95, 31) T/C (32, 40) C (48, 30)
C/C (16, 10) C/C (8, 10)
3954C>T C/C (84, 55) C (229, 74) 0.5 C/C (52, 64) C (128, 79) 0.5
C/T (61, 40) T (79, 26) C/T (24, 30) T (34, 21)
T/T (9, 6) T/T (5, 6)
Lz -330T > G T/T (70, 45) T (203, 66) 0.3 T/T (39, 48) T (114, 70) 0.6
T/G (63, 41) G (105, 34) T/G (36, 44) G (48, 30)
G/G (21, 14) G/G (6, 7)
IL6 -6331T > C T/T (80, 52) T (221, 72) 0.8 T/T (50, 62) T (128, 79) 1
T/C (61, 40) C (87, 28) T/C (28, 35) C (34, 21)
C/C (13, 8) C/C (3, 4)
IL6R 48892 > C A/A (50, 33) A (178, 58) 0.6 AA (27, 34) A (93, 58) 1
C (78, 51) C (128, 42) C (39, 49) C (67, 42)
C/C (25, 16) C/C (14, 18)
IL10 -1082G > A G/G (31, 20) G (141, 46) 0.6 G/G (16, 20) G (68, 42) 0.5
G/A (79, 52) A (165, 54) G/A (36, 44) A (94, 58)
A (43, 28) A (29, 36)
-819C >T C/C (88, 58) C (230, 75) 0.5 C/C (42, 52) C (119, 73) 0.4
/T (54, 35) T (76, 25) C/T (35, 43) T (43, 27)
T/T(1,7) T/T (4, 5)
MYD88 1593A > G A/A (123, 80) A (275, 89) 0.7 A/A (64, 79) A (145, 90) 0.6
AG (29, 19) G (33, 11) AG (17, 21) G (17,10)
G/G (2, 1) G/G (0, 0)
TGFB -509C > T C/C (81, 53) C (222, 72) 0.8 C/C (45, 56) C (119, 73) 0.6
C/T (60, 39) T (86, 28) C/T (29, 36) T (43, 27)
T/T (13, 8) T/T(7,9)
TLR2 1350T > C T/T (133, 86) T (285, 93) 0.2 T/T (74, 91) T (154, 95) 0.2
T/C (19, 12) C(23,7) T/C(6,7) C (8, 5)
C/C (2,1) C/C (1, 1)
TLR4 896A > G A/A (137, 89) A (290, 94) 0.4 A/A (71, 88) A (152, 94) 1
A/G (16, 10) G (18, 6) A/G (10, 12) G (10, 6)
G/G(1,1) G/G (0, 0)
1196C > T C/C (136, 88) C (289, 94) 0.4 C/C (70, 88) C (150, 94) 1
C/T(17,11) T(19,6) C/T (10, 13) T (10, 6)
T/T@1,1) T/T (0, 0)
TNF -308G > A G/G (113, 73) G (261, 85) 0.2 G/G (50, 62) G (130, 80) 0.2
G/A (35, 23) A (47, 15) G/A (30, 37) A (32, 20)
A/A (6, 4) A/A (1, 1)

HWE P, Hardy-Weinberg Equilibrium P-value; n, number; SNP, single nucleotide polymorphism.
Donors*: donor numbers may differ from those in Table 2, as 3 deceased donors each provided kidneys for 6 different recipients, these 3 donors were not counted twice in HWE; also,
donor numbers may differ within Table 1 due to genotyping failure.

Recipients *: recipient numbers may differ within Table 1 due to genotyping failure.

genotype versus C allele carriers (T/C + C/C), TNF -308G/G

genotype versus A allele carriers (G/A + A/A).

Consequently, a multiple testing-adjusted P-value threshold
for significance was determined at 0.0036 (o0 = 0.05/14).

Innate Immunogenetic Impact on
BPAR Incidence
Table 2 summarizes the associations between recipient and
donor genotypes and BPAR incidence in the first 2 weeks
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post-transplantation, adjusting for induction therapy, HLA
mismatches, kidney transplant number, living donor, and peak
PRA scores. Although recipients with IL6 -6331C/C genotype had
a higher incidence of BPAR compared to T/T genotype recipients
[OR (95% CI) = 6.6 (1.7-25.8), likelihood-ratio test P-value =
0.017], none of the genetic factors (including IL6 -6331T > C)
statistically significantly affected BPAR incidence after correction
for multiple comparisons (P-value threshold = 0.0036).

In univariate analysis, there was a trend of increasing BPAR
incidence for recipient IL6 -6331T > C (18% in T/T, 25% in T/C,
and 46% in C/C; Cochran-Armitage P = 0.031), although it was
non-statistically significant after correcting for multiple
comparisons (P-value threshold = 0.0036). Similar trends of
increasing BPAR incidence were observed in recipient CRP
-717T > C (16% in T/T, 30% in T/C, and 31% in C/C;
Cochran-Armitage P = 0.048), recipient CASPI 5352G > A
(18% in G/G, 34% in G/A, and 33% in A/A; Cochran-
Armitage P = 0.033) and donor IL6R -48892A > C (15% in A/
A, 28% in A/C, and 47% in C/C; Cochran-Armitage P = 0.019).
Point-wise Cochran-Armitage and Fisher’s exact test P-values
were > 0.05 for all other recipient and donor SNPs.

Supplementary Table 2 summarizes recipient and donor
genotype differences in BPAR incidence in the first 2 weeks post-
transplantation for all 21 SNPs included in the genotyping panel.

DISCUSSION

To our knowledge, this is the first innate immunogenetic study
retrospectively investigating both recipient and donor genetics of
pro- and anti-inflammatory mediators for their impact on BPAR
incidence in kidney transplant recipients receiving only TAC as
the CNL

The IL6 -6331 T/T genotype was associated with up to 6-fold
higher plasma IL-6 concentrations than C allele carriers in acute
inflammatory-status patients post-coronary artery bypass
grafting surgery and in patients requiring intensive
periodontal therapy, whereas no significant impact was found
in healthy volunteers (Smith et al., 2008). However, the
relationship between -6331T > C genotypes and plasma IL-6
concentration has not previously been examined post-kidney
transplantation, nor the impact of these genotypes on BPAR
incidence in kidney transplant recipients. Our results indicate
that recipient C/C genotype is associated with 6.6-fold higher
odds of BPAR, and with a genotype trend of increasing BPAR
incidence from T/T (18%) to T/C (25%) to C/C (46%).
However, probably due to a limited sample size (see Table 2),
the impact of -6331T > C on BPAR incidence was not statistically
significant after adjusting for multiple comparisons. Although a
recent liver transplant study also failed to show a significant
relationship between -6331T > C and BPAR incidence, its
sample size was even smaller (liver transplant recipient and
donor n = 29; BPAR n = 8), and there were no recipients with
the -6331 C/C genotype (Coller et al., 2019). Therefore, the impact
of the IL6 -6331T > C on inflammation and BPAR incidence is still
uncertain, and more studies with larger sample sizes are needed to

elucidate if this SNP affects BPAR incidence in kidney
transplant recipients.

In terms of the impact of IL2 -330T > G, IL10 -1082G > A, and
TNF -308G > A on BPAR incidence, our results are in accordance
with previous meta-analyses (Hu et al., 2011; Hu et al., 2015; Xiong
etal.,2015; Huetal,, 2016) indicating these SNPs are not significant
determinants of BPAR incidence in Caucasian kidney transplant
recipients receiving TAC or ciclosporin. Our study also supports
cross-sectional studies in which ILI1B-511C > T did not affect BPAR
incidence in kidney transplant recipients receiving TAC or
ciclosporin (Marshall et al., 2000; Marshall et al., 2001;
Manchanda and Mittal, 2008; Seyhun et al., 2012; Ding et al,
2016). Some studies reported that ILIB3954C > T and TLR4 896A >
G and 1196C > T affected BPAR incidence but without multiple
comparison adjustment (Ducloux et al., 2005; Palmer et al., 2006;
Manchanda and Mittal, 2008). These findings were not reproduced
in our cohort and in another kidney transplant study exploring the
relationship between TLR4 genetics and BPAR incidence (Nogueira
etal.,2007). Weare not aware of any other kidney transplant studies
investigating the impact of these three SNPs on BPAR incidence in
kidney transplant recipients. Recipient and donor CASP1, CRP,
IL6R, MYD88, and TLR2 genetics were expected to be important for
any innate immune contribution to BPAR incidence in kidney
transplant patients, however, common variants in these genes had
no significant impact on BPAR incidence in our study. Overall,
these results suggest that the innate immunogenetic SNPs
investigated (except for IL6-6331T > C) are not likely to
contribute greatly to BPAR incidence in the first 2 weeks
following transplantation in Caucasian kidney transplant
recipients receiving immunosuppressive therapy.

Our study has several limitations to consider when
interpreting the results. Firstly, as a retrospective study, the
limited sample size (recipient and donor n = 151 and 81,
respectively) may have been insufficient to support the findings
of no major innate immunogenetic impact on BPAR incidence.
However, the data presented in this study, along with other
innate immunogenetic studies may together provide valuable
information for future meta-analyses investigating the impact of
innate immunogenetics on BPAR incidence. Secondly, it was
necessary to combine some rare homozygous genotypes for
statistical purposes; thus the effect of certain rare homozygous
genotypes is unknown. Thirdly, some additional SNPs, e.g. IL6
-174G > C (rs1800795) and IL10 -592C > A (Lv et al.,2012; Xiong
et al.,2015) were not included in this study because of
incompatibility with the genotyping array, and insufficient
DNA was available to carry out separate genotyping of these
SNPs. In addition, other important innate immune genes, e.g.
NFKBI (encoding for the NF-xB1 subunit) (Misra et al., 2016),
were not included in the gene panel design and are worthwhile
exploring in the future for their impact on BPAR incidence.

In conclusion, this study did not detect any statistically
significant impact of recipient and donor innate immune
genetics on BPAR incidence in the first 2 weeks post-kidney
transplantation. However, due to the limited sample size, future
immunogenetic studies and/or meta-analyses are still required
to demonstrate conclusively if innate immune genetics such
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TABLE 2 | Recipient and Donor Innate Immune Genotype Differences in BPAR Incidence in the first 2 Weeks Post-Transplantation, Adjusting for HLA Mismatches,
Induction Therapy, Kidney Transplant Number, Living Donor and Peak PRA Scores.

Genes & SNPs Recipients” (n = 153-154) Donors* (n = 83-84)
Genotypes (n) BPAR (n, %) OR [95% CI] P Genotypes (n) BPAR (n, %) OR [95% CI] P
CASP1 5352G > A G/G (107) 19, 18 Ref 0.07 G/G (60) 16, 27 Ref 0.9
G/A + A/A (47) 16, 34 2.2[0.9-5.2] G/A + A/A (24) 7,29 1.0 [0.3-2.9]
CRP -717T>C T/T (77) 12,16 Ref 0.05 T/T (34) 6,18 Ref 0.1
T/C (61) 18, 30 3.0 [1.2-7.6] T/C (39) 15, 38 3.1 [1.0-10.5]
C/C (16) 5, 31 2.1[0.5-7.8] C/C (10) 2,20 1.3[0.2-7.5]
IL1B 511C>T C/C (76) 18, 24 Ref 0.9 C/C (41) 13, 32 Ref 0.5
C/T (63) 13, 21 0.8[0.3-1.9] C/T (34) 9, 26 0.7 [0.2-2.2]
T/T (15) 4,27 0.9 [0.2-3.6] T/T9) 1, 11 0.3[0.01-1.9]
3954C > T C/C (84) 16, 19 Ref 0.2 C/C (54) 13, 24 Ref 0.07
C/T (61) 18, 30 2.0 [0.9-4.6] C/T (25) 10, 40 2.3[0.8-6.6]
T/T (9) 1, 11 0.6 [0.03-4.1] T/T (5) 0,0 NA
L2 -330T > G T/T (70) 12,17 Ref 0.3 T/T (41) 10, 24 Ref 0.09
T/G (63) 16, 25 1.5[0.6-3.6] T/G (37) 9,24 1.1[0.4-3.2]
G/G (21) 7,33 2.410.7-7.2] G/G (6) 4,67 8.1 [1.2-78.5]
IL6 -6331T > C T/T (80) 14,18 Ref 0.02 T/T (52) 11, 21 Ref 0.09
T/C (61) 15, 25 1.6 [0.7-4.0] T/C + C/C (32) 12, 38 2.4[0.9-6.9]
C/C (13) 6, 46 6.6 [1.7-25.8]
IL6R 48892A > C A/A (50) 12,24 Ref 0.9 A/A (29) 4,14 Ref 0.09
A/C (78) 16, 21 0.8[0.3-2.1] A/C (39) 11,28 2.3[0.6-10.1]
C/C (25) 6, 24 0.9[0.3-3.2] C/C (15) 7,47 5.4 [1.2-27.5]
IL70 -1082G > A G/G (31) 8, 26 Ref 0.7 G/G (18) 3,17 Ref 0.4
G/A (79) 19, 24 1.0 [0.4-2.9] G/A (37) 11, 30 2.3[0.6-11.8]
A/A (43) 8,19 0.7 [0.2-2.3] A/A (29) 9, 31 2.5[0.6-13.3]
-819C>T C/C (88) 22,25 Ref 0.4 C/C (44) 9, 20 Ref 0.05
C/T (54) 10, 19 0.6 [0.2-1.4] C/T (36) 14, 39 2.7 [1.0-7.9]
/T (11) 3,27 1.2 [0.2-4.6] T/T (4) 0,0 NA
MYD88 1593A > G A/A (123) 28, 23 Ref 0.6 A/A (66) 17,26 Ref 0.5
AG + G/G (31) 7,23 0.7 [0.2-2.0] AG (18) 6, 33 1.5[0.4-4.7]
TGFB -509C > T C/C (81) 18, 22 Ref 0.7 C/C (47) 14, 30 Ref 0.5
C/T (60) 13, 22 1.0 [0.4-2.3] C/T (29) 6, 21 0.5[0.2-1.7]
T/T (13) 4,31 1.7 [0.4-6.1] T/T (8) 3,38 1.3[0.2-6.2]
TLR2 1350T > C T/T (133) 33, 25 Ref 0.07 T/T(77) 22,29 Ref 0.5
T/C + C/C (21) 2,10 0.3 [0.04-1.1] T/C + C/C (7) 1,14 0.5 [0.02-3.4]
TLR4 896A > G A/A (137) 31,23 Ref 0.7 A/A (74) 20, 27 Ref 0.9
AG + G/G(17) 4,24 1.3 [0.3-4.3] AG (10) 3, 30 0.9 [0.2-3.8]
TNF -308G > A G/G (113) 21,19 Ref 0.04 G/G (593) 13,25 Ref 0.5
G/A + A/A (41) 14, 34 2.4 [1.0-5.7] G/A + A/A (31) 10, 32 1.4 [0.5-3.8]

BPAR, biopsy-proven acute rejection; HLA, human leukocyte antigens (HLA-A, -B, and -DR) mismatches; n, number; NA, not available; OR, odds ratio; P, likelihood-ratio P-value; peak
PRAS, peak panel-reactive antibodies scores assessed by serum lymphocytotoxicity assay; Ref, reference group, SNP, single nucleotide polymorphism; 95% CI, 95% confidence interval.
Donors*, donor numbers may differ from those in Table 1, as each of the 3 deceased donors provided kidneys for € different recipients, these 3 donors were counted only once for HWE
tests but they were treated independently when associated with BPAR for the individual recipients. In addition, donor numbers may differ within Table 2 due to genotyping failure.
Recipients”, recipient numbers may differ within Table 1 due to genotyping failure.

as IL6 -6331T > C influence the risk of BPAR incidence post-
kidney transplantation.
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