
sensors

Article

IoT Security Configurability with Security-by-Contract

Alberto Giaretta 1,* , Nicola Dragoni 1,2,* and Fabio Massacci 3,*
1 Centre for Applied Autonomous Sensors Systems (AASS), Örebro University, 701 82 Örebro, Sweden
2 DTU Compute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
3 Department of Information Science and Engineering, University of Trento, 38123 Trento, Italy
* Correspondence: alberto.giaretta@oru.se (A.G.); ndra@dtu.dk (N.D.); fabio.massacci@unitn.it (F.M.)

Received: 15 August 2019; Accepted: 19 September 2019; Published: 23 September 2019

Abstract: Cybersecurity is one of the biggest challenges in the Internet of Things (IoT) domain, as
well as one of its most embarrassing failures. As a matter of fact, nowadays IoT devices still exhibit
various shortcomings. For example, they lack secure default configurations and sufficient security
configurability. They also lack rich behavioural descriptions, failing to list provided and required
services. To answer this problem, we envision a future where IoT devices carry behavioural contracts
and Fog nodes store network policies. One requirement is that contract consistency must be easy to
prove. Moreover, contracts must be easy to verify against network policies. In this paper, we propose
to combine the security-by-contract (S × C) paradigm with Fog computing to secure IoT devices.
Following our previous work, first we formally define the pillars of our proposal. Then, by means of
a running case study, we show that we can model communication flows and prevent information
leaks. Last, we show that our contribution enables a holistic approach to IoT security, and that it can
also prevent unexpected chains of events.

Keywords: IoT; configurability; Fog computing; security-by-contract; security

1. Introduction

Pervasive computing foresees a future where computing appears anytime and everywhere.
To realise such a visionary paradigm, everyday objects have to embed two important features:
computational power and connectivity. The disruptive advent of Internet of Things (IoT) represents a
first important step towards the realisation of such a pervasive computing vision. Not only can IoT
devices form complex interconnected systems that exchange any kind of information, they can also
connect to the Internet and interpret such information in a broader context. However, as for every
technical result, some aspects of the IoT proved to be problematic. In particular, cybersecurity has been
so far one of the biggest challenges for the IoT, as well as one of its most embarrassing failures [1].

Since the advent of IoT, the security research community has made an effort to raise awareness on
the security challenges that the new paradigm brought. Some challenges, such as weak passwords or
the lack of security updates, stem from best practices overlooked by manufacturers at the design phase
[1]. Others, such as integration and automatic configuration, derive from the heterogeneous nature of
the IoT itself [2].

As a matter of fact, IoT devices can have radically different goals. They range from smart plugs that
turn appliances on/off, to fleets of devices that connect whole factories. These devices have different
hardware and software requirements. They can equip different sensors, different communication
protocols, and even different amounts of computing power. Heterogeneity is a strong point of IoT, and
a weak one at the same time. On the one hand, the variety of devices enables to tailor solutions on
specific requirements. On the other hand, achieving a robust and secure infrastructure is far harder
than it used to be with traditional networks.

Sensors 2019, 19, 4121; doi:10.3390/s19194121 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9293-7711
https://orcid.org/0000-0001-9575-2990
http://dx.doi.org/10.3390/s19194121
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 4121 2 of 26

Moreover, many IoT devices are computationally limited and, aiming to overcome this limitation,
manufacturers rely upon Cloud computing to undertake heavy workloads. The key problem with this two
layer approach is that Cloud computing has not been designed for the volume, variety, and velocity of data
that IoT generates. Some intrinsic drawbacks, such as unpredictable network latency and uncertain storage
location, are particularly problematic for security-related IoT generated data.

To counterbalance these issues, Fog computing has been proposed as an extension to Cloud
computing [3]. The key idea is to move critical services from the Cloud to the edge of the network,
close to IoT devices. Typically installed in a network in the form of a dedicated device (i.e., the Fog
node), the Fog provides a virtualized middle layer that sits between latency-sensitive applications
and the Cloud. Its goal is to remedy some of the Cloud drawbacks by centralizing sensors data,
undertaking time-bound tasks, and serving as a data traffic gatekeeper. Moreover, a Fog node is a
trustworthy device that can store security-related data, such as network policies, and perform real-time
policy enforcement techniques (e.g., enforcement based on traffic monitoring).

1.1. Contributions of the Paper

In this paper, we propose to combine security-by-contract (S × C) and Fog computing to
strengthen IoT systems security. S × C have previously been applied for similar goals to various
domains, such as mobile applications [4,5] and multi-application smart cards [6].

This work focuses on addressing one of the yet to be solved classes of threats concerning IoT
systems, namely insufficient security configurability [2]. In a nutshell, current IoT devices offer little
ways for configuring them according to to users’ necessities. For example, often IoT devices entirely
neglect access control granularity, since they only provide the administrator login. In particular, the
contributions of this paper are manifold:

• We provide a formal description of the pillars of the S × C approach, such as security rules,
contracts, policies.

• We show how these concepts can be combined together to secure IoT systems.
• We define the notion of consistency for both contracts and policies.
• Based on the above concepts, we define several properties useful for the security of IoT systems,

such as contract-policy matching and illegal information flow.
• We provide algorithmic versions of our formal definitions and methods, laying the foundation

for a real-world implementation.
• We illustrate these concepts by means of a running case study, based on real-world smart home

(E-care@home (http://ecareathome.se)).
• We show how S × C can successfully be integrated with Fog computing to secure IoT systems.
• We extensively discuss pros and cons of our approach in a threat model.

1.2. Paper Outline

This paper is organized as follows. In Section 2 we give an overview of IoT open security
challenges. In Section 3 we present the general idea of the application of S × C to the IoT, and the
running case study we use throughout our work. Then, in Sections 4–6 we define and describe the
building blocks of our proposal, namely security rules, security contracts, and security policies. In
Section 7 we show that our approach can also identify and prevent hidden communication paths
stemming from physical communication channels. In Section 8 we summarize the potential threats to
our Fog-based solution. Then, we discuss benefits and limitations of S × C in this context. In Section 9
we report the relevant related work. In Section 10 we discuss the ongoing development and the future
work we have planned. Last, in Section 11 we wrap up our contribution.

2. IoT Smart Services: Background and Challenges

In this section, we give a brief bird’s-eye view on IoT specific security challenges, we summarize
the related challenges, and then we clarify where our contribution sits with respect to this analysis.

http://ecareathome.se

Sensors 2019, 19, 4121 3 of 26

In a recent paper, Zhou et al. [2] analysed the main security challenges (named features) that are
characteristic of the IoT domain. They have identified eight different features, namely:

• interdependence
• diversity
• constrained
• myriad
• unattended
• intimacy
• mobile
• ubiquitous

In particular, under the umbrella of interdependence and ubiquitous features, the authors
highlighted that the main threat for IoT devices is the default insecure configurations provided
by the manufacturers, as well as the insufficient security configurability.

Over time, interactions between devices grow in complexity, while the human role in managing
such interactions becomes less and less important. This is a complex problem from a security point of
view. Manufacturers and researchers often focus on the robustness of the single device, or on the direct
communications between devices. However, the devices’ interdependence makes hard to define specific
security rules for every and each of them, often resulting in excessive privileges, granted preemptively.
Moreover, the fact that IoT devices are ubiquitous and pervasive within modern society amplifies the
aforementioned threats, particularly when IoT devices are manufactured with insecure default configurations.

At the time of writing, there are plenty of examples of insecure configurations and insufficient
security configurability. Passwords are oftentimes hardcoded within the IoT devices and, if they can
be changed, there are no entropy checks in place. There is no permission granularity, meaning that
either the user logs in as admin or not at all, which impedes to develop layered security approaches
which involve such devices. Other devices have services and connections ports open for everyone
in the name of availability, in case those services are ever needed, and usually no monitoring over
information flows are in place within IoT local networks.

Moreover, little self-configuration capabilities are present in current IoT devices. As pointed out
by Athreya et al. [7], the cloud-centric approach to IoT management is likely to fail in the future,
due to the scalability limitation that it entails. IoT devices need to be in charge of configuring and
adapting themselves to the environment they belong to, without negatively affecting other devices
and services. However, this is possible only if IoT devices declare to the environment their behavioural
specifications.

Without behavioural descriptions, plugging an IoT device into an established infrastructure opens
up to several uncertainties. What services does the device offer? Which ones does it need? Over which
communication protocols? Does this device disrupt or disturb other running services? These are just
few examples, out of many more.

Aiming to address this specific issue, Cisco proposed Manufacturer Usage Descriptions (MUD)
[8], an authoritative identifier that allows manufacturers to describe the identity and the intended
behaviour of the devices they produce. Intuitively, IoT devices carry an URI that redirects to a certified
website, where the MUD file describing their behaviour is hosted. A trusted device within the private
network, namely the MUD server, is responsible for reading the URI, pulling the MUD file, and
granting privileges accordingly. Even though MUD has shown the way to tractable descriptions
and configurations, in its current form it merely provides a device identification and a list of the
addresses/ports used. In fact, MUD profiles are not rich enough to model complex behaviour, such as
device-based permissions. Moreover, MUD profiles do not allow easy verification of device behaviour
against the network security policy, nor against the intended behaviour of other devices in the same
network. In this paper, we contribute to partially amending such shortcomings.

Last, in the aforementioned work, Zhou et al. [2] classified the body of literature about IoT
security, and identified seven different classes of threats on which researchers have focused until today:

Sensors 2019, 19, 4121 4 of 26

• privacy leaks
• insecure network communication/protocol
• vulnerable cloud/web service
• insecure mobile application
• vulnerable system/firmware
• insufficient security configurability
• other threats

Their analysis showed that the largest amount of research went into privacy leaks and insecure
network communication issues, with different percentages for different scenarios. What stands out is
that, although critical for the IoT, the insufficient configurability has still to be thoroughly addressed
by the community. We believe that this research gap is due to the complex traits of this problem. Our
effort aims at specifically addressing this key open challenge.

Running Case Study: E-Care@Home

E-care@Home is a Swedish interdisciplinary distributed research environment that pulls together
competences in artificial intelligence, semantic web, IoT and sensors for health [9]. Ängen, a real
smart home composed by several IoT devices, was created within the E-care@home initiative (Figure 1
shows Ängen layout). Each room is equipped with PIR (passive infrared) motion sensors, running
over different boards, such as Pycom WiPy 3.0 boards, and different boards running Contiki OS. Bed,
sofa, and chairs use binary pressure switches to detect whether someone is sitting. In the kitchen, the
oven has an on/off sensor. A smart light Philips Hue White v3.0, a Philips Hue Motion v1.0 motion
sensor, and a smart speaker Amazon Echo v1.0 are installed in the living room. Moreover, in the living
room we have Pepper, a humanoid robot from manufacturer SoftBank. For safety reasons, in the future
there will be a D-Link DCS-933L security IoT camera right outside the facility door. Last, all devices
are integrated through the E-care@Home middleware, from which a context reasoner extracts the
necessary information. Currently, a simple laptop collects the ground truth, and infers information
through a reasoner. In our future plans, captured by Figure 1, a Fog node will replace the laptop, and
take on the necessary security tasks.

Fog Node

PIR

PIR

PIR

PIR

Philips
Motion

On/Off

D-Link
DCS-933L

Philips
Bulb

Pepper

Amazon
Echo

Figure 1. Ängen context-aware smart home, equipped with various sensors, like motion and
pressure ones.

3. S × C Fundamentals

The S × C framework [4,5] is based on two key concepts, namely contract and policy.
A security contract (or simply contract) represents the specification of the behaviour of an IoT

device for what concerns relevant security actions. An IoT device is equipped with a contract, and this
contract has to be exhibited to the Fog node before being accepted to participate to the network.

Sensors 2019, 19, 4121 5 of 26

A security policy (or simply policy) is instead a specification of the acceptable behaviour of the
IoT devices a Fog node is responsible for, for what concerns relevant security actions.

It is clear that, to refine the concepts of contract and policy in the IoT domain, it is necessary to
narrow down the meaning of relevant security actions. For the scope of this paper, we restrict the set of
possible relevant security actions to the one of the possible interactions among IoT devices governed
by a Fog node (for a broader set of actions we refer to Giaretta et al. [10]). In this particular setting, a
contract describes which resources are necessary for the device to operate, and which resources the
device provides to others. A policy declares what actions are allowed within that specific context, and
what resources all the included devices need/provide.

As shown in Figure 2, whenever an IoT device attempts to join the network its contract is parsed
by the Fog node, which runs the matching algorithm and decides if the IoT device is compatible with
the network policy, or not. Besides, if the device contract or its software are updated, the matching
process re-starts, to ensure that the device is still compatible with the network policy.

Stage 1 Stage 3

Stage 2

 SxC IoT Device
Digital signature

Development
Manufacturer produces the IoT
device, equipped with the first

software version

Contract
Update

Manufacturer rolls out
a contract update

Contract
Made by manufacturer or trusted

third-party, either manually or
through automatic profiling

Stage 6B

Stage 4

Stage 5

SxC Matching
Possible outcomes:

allow or reject the device

Proof of
Compliance

E.g., through software
static analysis

Stage 6A

Software
Update

Manufacturer rolls out
a software update

Figure 2. Security-by-contract (S × C) contract lifecycle. In Stage 4, the manufacturer digitally signs all
the components, achieving software validation and non-repudiability: S × C provides semantics for
digital signatures on an IoT code.

3.1. Who Writes Contracts and Policies?

A question that naturally comes when we talk about contracts and policies is who are the actors
that define them.

With regards to contracts, ideally they should be defined by the company manufacturing the IoT
devices, for two main reasons. First, the user should have the assurance that, whenever he buys a
new device and plugs it into a networked environment, right away the device is going to do exactly
what it claims, without interfering with existing services. To this aim, the manufacturer can equip the
device with proof-of-compliance (PoC), which binds the IoT software to the contract (proving that
the software is compliant with the contract). This is a fundamental component of the S × C approach
that, for space limitation, we do not touch on in this paper (more details in [10] and S × C literature).
Second, it would be much easier for the manufacturer to create complete contracts from the beginning,
instead of trying to define later a contract through reverse-engineering approaches which might leave
out some hidden behaviour. Besides, this should put some pressure on manufacturers, forcing them to
implement healthy lifecycles for their products.

However, this is not achievable for already-produced IoT devices. In this case, it is possible to extract
(possibly incomplete) contracts through profiling routines. A device can be sandboxed and the consequent
analysis can be performed over its traffic, in order to figure out its observed behaviour. A similar approach
has been used with MUD policies by Hamza et al. [11], for extracting MUD profiles from legacy IoT devices.
We also foresee that contracts can be customized at the time of first booting. As an example, when a smart
light is installed it might ask which smartphone will be controlling it, through the manufacturer app.

On the other hand, policies are more complex than contracts and their sources might be quite
different. For example, policies could be handed out by smart home manufacturers, consumer

Sensors 2019, 19, 4121 6 of 26

protection organizations, security companies, or non-profit organizations (e.g., the Electronic Frontier
Foundation), in the same way that virtual operating system (OS) boxes are distributed (https://www.
osboxes.org/virtualbox-images/). Moreover, policies could be defined from scratch by the network
administrator himself, or created using the aforementioned ones as templates.

3.2. Implications

Security solutions should be kept simple in order to be effective. Overcomplicated tasks are likely
to drive users and administrators away from security, or to encourage dangerous shortcuts. With this
in mind S × C aims to have as simple results as possible.

With respect to simple users, S × C is completely transparent. Users’ devices store their own
contract and, at connection time, the Fog node is responsible for verifying them. In the case that the
contract is compliant with the policy, the device will be simply accepted. On the contrary, if the contract
violates the policy, the user will be notified that the device is not compliant with the network policies.

Regarding network administrators, a little overhead is required for them. Administrators are
responsible for managing the network and its policies, and the S × C policy would be part of their
responsibility. However, as shown throughout this paper, policies are simple security rules, relatively
easy to write and edit for administrators. Moreover, as mentioned in 3.1, S × C policies and templates
could be written by trusted third parties. It would be easy for an administrator to start with a template
and edit it according to his network necessities.

Last, manufacturers are the most affected by the introduction of S × C. First, they have the
responsibility for writing their products’ contracts. Second, they write the PoC which formally binds
code and contract. Moreover, whenever the manufacturer rolls out an update, it has to update both
contract and PoC, accordingly. Even though this is a considerable overhead for a manufacturer, it can
also be considered a great opportunity for improving product lifecycles. As a matter of fact, following
an update with a consistency check between contract and actual behaviour not only protects the
customers, it also helps manufacturers themselves to keep track of their own products. In Table 1 we
summarise roles, actions, and implications.

Table 1. Roles, actions, and implications in the S × C setting.

Actions Implications

User Connects his S × C device to the network Completely transparent for the user

Administrator Manages the S × C network policy Small overhead, in the form of policy creation and
management

Manufacturer Write device contract and provides PoC Overhead in the form of contract and PoC certificate
creation

4. S × C for IoT: Security Rules

In this section, we define the building blocks of our proposal. We start by describing how we refer
to a device and its services. Then we define the concept of security rule.

Definition 1 ((IoT device)). A device D is a well formed composition of a device name D and a manufacturer
of the device M , expressed as M .D.

Definition 2 (Service). A service S provided by an IoT device D = M.D is a well formed composition of a service
name S, the servicing IoT device name D and the manufacturer of the device M. As a result, S is expressed as M.D.S.

Example 1 (IoT device A). Referring to the camera D-LINK.933L, previously mentioned in Section 2, this
device provides two different services. The first service is called SETDAYNIGHT, and it is responsible for
switching on/off the device LED; the second service is SETSYSTEMMOTION, which is responsible for enabling
and disabling the integrated motion sensor. In terms of an S × C contract, we would refer to these two services
as D-LINK.933L .SETDAYNIGHT and D-LINK.933L.SETSYSTEMMOTION, respectively.

https://www.osboxes.org/virtualbox-images/
https://www.osboxes.org/virtualbox-images/

Sensors 2019, 19, 4121 7 of 26

Example 2 (IoT device B). The device PHILIPS .HUEWHITE we defined in Section 2 provides three different
services called ON, BRI, and HUE. ON is used to remotely turn on/off the light, whereas BRI changes the
brightness, and HUE changes the hue, according to the user preferences. Following our formalization, in
a contract we would refer to these services as PHILIPS.HUEWHITE.ON, PHILIPS.HUEWHITE.BRI, and
PHILIPS.HUEWHITE.HUE, respectively.

Definition 3 (Domain). A domain DOM is a non-empty string identifying the context (in terms of network
domain, such as a local area network (LAN)) where a security rule applies.

4.1. Security Rule

Definition 4 (Security rule). A security rule (or simply, rule) R is a 5-tuple represented by the fields listed in
Table 2.

Table 2. Security rule structure.

Device D The device name D and manufacturer M of the device, expressed as M.D .

Domain DOM
The domain where the rule applies. For instance, DOM = LAN for rules that apply within the
local network, or DOM = * for rules that apply to any domain.

SHARES
List of devices that the device D can interact with, in the domain DOM .
We use * to denote that anything applies. Examples: M.* specifies any device from a specific
manufacturer M. Similarly, *.* (or simply *) specifies any device from any manufacturer.

PROVIDES List of services S1, ..., Sn, n ≥ 0, that the IoT device D provides to the devices in SHARES(D).

REQUIRES List of services S1, ..., Sm, m ≥ 0 that the IoT device D requires to function.

From now on, we will use the notation R[D] to denote the device D of a security rule R. Analogously,
R[DOM], R[SHARES], R[PROVIDES], and R[REQUIRES] denote the related fields of a rule R.

Example 3 (Security rule RA1). The IoT camera surveillance D-LINK.933L allows the owner to enable/disable
the camera LED from his smartphone, over any domain. As mentioned in Section 3.1, we depict that, for example,
at deployment time a smartphone can be chosen as a main controlling device. In order to express this, the
resulting security rule would look as shown in Table 3.

Table 3. Security rule RA1.

Rule RA1

D D-LINK .933L
DOM *

SHARES APPLE .LUKEPHONE

PROVIDES SETDAYNIGHT

REQUIRES -

Example 4 (Security rule RA2). Let us now suppose that the IoT camera surveillance D-LINK.933L enables the
owner to access a PHILIPS.HUEWHITE device, and turn on the lightbulb whenever the internal motion sensor of the
camera detects a movement. Therefore, the camera requires service ON, but it does not want to provide any service to
other devices. In order to express this, the resulting security rule would look as shown in Table 4.

Table 4. Security rule RA2.

Rule RA2

D D-LINK .933L
DOM *

SHARES -
PROVIDES -
REQUIRES PHILIPS .HUEWHITE .ON

Sensors 2019, 19, 4121 8 of 26

Example 5 (Security rule RB1). The lightbulb PHILIPS .HUEWHITE provides three different services (namely
ON, BRI, and HUE) to every PHILIPS device. Moreover, the device requires a motion sensor HUEMOTION

(produced by the same manufacturer, PHILIPS), which provides service PRESENCE and enables to switch on/off
the lights, depending on the presence of people in the room. Last, HUEWHITE is designed to communicate only
within the LAN. A security rule that expresses these requirements is shown in Table 5.

Table 5. Security rule RB1.

Rule RB1

D PHILIPS .HUEWHITE

DOM LAN
SHARES PHILIPS .*

PROVIDES ON , BRI , HUE

REQUIRES PHILIPS .HUEMOTION .PRESENCE

4.2. Well Formed and Core Security Rules

In order to avoid malformed security rules, we introduce a notion of well formed security rule.
Intuitively, a security rule R concerning a device D is well formed if the rule specifies which IoT
devices can use the services provided by D. Since these devices are listed in R[SHARES], we have that
R[SHARES] must not be empty in case D provides some services in R (i.e., R[PROVIDES] is not empty).
Note that this has several meanings: R[SHARES] could include a specific list of devices, or whatever
device of one or more manufacturers, or in general whatever device of whatever manufacturer.
However, R[SHARES] must not be empty if D provides some services.

Definition 5 (Well formed security rule). A security rule R is said to be well formed if and only if the
following condition holds: If R[PROVIDES] is not empty, then R[SHARES] must not be empty.

In Algorithm 1, we provide a pseudo-algorithm that verifies if a rule is well-formed and returns
true/false, accordingly.

Algorithm 1: IsWellFormedRule Function
Require: R
Ensure: TrueorFalse

if R [PROVIDES] 6= ∅ and R [SHARES] = ∅ then

return False
end if
return True

Example 6 (Well formed security rule). The security rule defined in Example 4 is an example of a well formed
security rule.

Example 7 (Malformed security rule). Let us assume that we modify the security rule defined in Example 4,
Table 4, and that we change both the PROVIDES and REQUIRES fields. Such modifications are shown in Table 6.

Table 6. Security rule RMA.

Rule RMA

D D-LINK .933L
DOM *

SHARES -
PROVIDES SETDAYNIGHT

REQUIRES -

Sensors 2019, 19, 4121 9 of 26

We would obtain a malformed security rule, according to Definition 5. In particular, rule RMA

claims that the device provides the SETDAYNIGHT service. However, RMA[SHARES] is empty, which
violates Definition 5.

Ensuring that a security rule is well formed is necessary, but not sufficient, to achieve consistency
among security rules. Intuitively, that is because two rules can be well formed with respect to
themselves, but they could contradict each other. Thus, we want to capture the property that no rule
concerning a device restricts another rule concerning the same device. Here restricts means that the
rule provides less or the same number of services to the same set, or a subset, of devices. This concept
of core rule will form the basis of the notion of consistent security contract in Section 5, where a set of
rules represents the contract of a device.

Definition 6 (Core rule). Given a set of security rules SET = {R1, . . . , Rm}, m>0, a rule R ∈ SET is said to
be core with respect to SET, if and only if the following condition holds:

R ∈ SET is core iff @ R?∈ SET: (R[D] = R?[D]) ∧ (R[DOM] = R?[DOM]) ∧ R?[SHARES] 6= ∅ ∧
(R?[SHARES] ⊆ R[SHARES]) ∧ (R?[PROVIDES] ⊆ R[PROVIDES]).

In Algorithm 2, we provide a pseudo-algorithm that verifies if a rule is core and returns true/false,
accordingly.

Algorithm 2: IsCoreRule Function
Require: R, SET
Ensure: TrueorFalse

for ∀ R? 6= R ∈ SET do
if R [D] = R?[D] and R [DOM] = R?[DOM] then

provideFlag← True, sharesFlag← True
if R?[SHARES] = ∅ then

sharesFlag← False
else

for ∀ D4 ∈ R?[SHARES] do
if D4 6∈ R [SHARES] then

sharesFlag← False
end if

end for
end if
for ∀ S4 ∈ R?[PROVIDES] do

if S4 6∈ R [PROVIDES] then
provideFlag← False

end if
end for
if provideFlag = True and sharesFlag = True then

return False
end if

end if
end for
return True

5. S × C for IoT: Security Contract

In the previous section we described the building blocks of our formalization. Next, we need to define
security contracts. Informally, a security contract of an IoT device is a non-empty set of security rules
describing the security behaviour of the device. Formally:

Sensors 2019, 19, 4121 10 of 26

Definition 7 (Security contract). A security contract (or simply contract) CD of an IoT device D is a
non-empty and non-ordered set of security rules concerning the device D, such that:

CD = {R1, . . . , Rn},

where n > 0 and ∀ i 6= j: Ri[D] = Rj[D], Ri 6= Rj.

Example 8 (Security contract CA). An IoT camera surveillance enables Luke to enable/disable the camera
LED from his smartphone over any domain, through the service SETDAYNIGHT. However, it enables him to
access the administration panel only from within the network. For this to work, we need the 933L camera to
have the contract in Table 7. Without considering security vulnerabilities resulting from vulnerable embedded
software, this contract can easily prevent potential stalking episodes, which are more probable with currently
manufactured IP cameras [12].

Table 7. Security contract CA.

Rule RA1 Rule RA3

D D-LINK .933L D-LINK .933L
DOM * LAN

SHARES APPLE .LUKEPHONE APPLE .LUKEPHONE

PROVIDES SETDAYNIGHT SETDAYNIGHT , ADMINPANEL

REQUIRES - -

Example 9 (Security contract CB). In this example, let us assume that PHILIPS.HUEWHITE exposes rule
RB1 which provides to PHILIPS devices within the LAN domain three different services, namely ON, BRI, and
HUE. Moreover, the device requires service PHILIPS .HUEMOTION.PRESENCE for switching on/off the light,
based on the presence of people in the room. Last, HUEWHITE exposes a second rule RB2, which provides access
to services ON and BRI to any device, within the LAN domain . A security rule that express these requirements
is shown in Table 8.

Table 8. Security contract CB.

Rule RB1 Rule RB2

D PHILIPS .HUEWHITE PHILIPS .HUEWHITE

DOM LAN LAN
SHARES PHILIPS .* *.*

PROVIDES ON , BRI , HUE ON , BRI

REQUIRES PHILIPS .HUEMOTION .PRESENCE -

Within the context of the Ängen smarthome (described previously in Figure 1), let us suppose that
the device PHILIPS.HUEWHITE is equipped with Contract CB. In Figure 3 we show the interactions
that PHILIPS.HUEWHITE would perform with the other devices, according to the behaviour defined
in its contract. In particular, the figure shows that the only device that benefits from service
PHILIPS.HUEWHITE.HUE is PHILIPS.HUEMOTION.

The next key concept we want to express in our framework is the consistent contract concept.
Consistency is seen here as a quality check of a contract. First, we require all the rules in a consistent
contract to be well formed. Second, we want that all the rules in the contract are core, to be sure that
no rule in the contract restricts another rule in the same contract. As a result, a consistent contract is a
set of well formed and core rules.

Sensors 2019, 19, 4121 11 of 26

Philips
HueWhite

Philips
HueMotion

Philips.*

.

Provides: On, Bri, Hue

Requires: Presence

Provides: On, Bri

PIR1 .. n Fog Node

D-Link
DCS-933L

Pepper

Amazon
Echo

Figure 3. Security contract CB. PHILIPS .HUEWHITE shares services ON and BRI with all the devices in
the LAN (e.g., with Amazon Echo). Service HUE is shared only with PHILIPS devices, which means
that in this scenario only PHILIPS .HUEMOTION is allowed to use it. Moreover, PHILIPS .HUEWHITE

requires from PHILIPS .HUEMOTION the service PRESENCE .

Definition 8 (Consistent security contract). A security contract CD of a device D is said to be consistent if
and only if the following two conditions hold:

1. ∀ R ∈ CD , R is well formed
2. ∀ R ∈ CD , R is core in CD

In Algorithm 3, we provide a pseudo-algorithm that verifies if a contract is consistent and returns
true/false accordingly.

Algorithm 3: IsConsistentContract Function
Require: CD
Ensure: TrueorFalse

for ∀ R ∈ CD do

if IsWellFormedRule(R) = False then

return False
end if

end for
for ∀ R ∈ CD do

if IsCoreRule(R, CD) = False then

return False
end if

end for
return True

Example 10 (Consistent security contract CB). The security contract described in Example 9 is an example
of a consistent security contract, with respect to Definition 8.

Sensors 2019, 19, 4121 12 of 26

Example 11 (Inconsistent security contract CIB). Let us assume that we modify the security contract
described in Example 9. In particular, let us remove both BRI and HUE from rule RB1 (obtaining rule RB3).
The contract shown in Table 9 formalizes our goal.

Table 9. Security contract CIB.

Rule RB3 Rule RB2

D PHILIPS .HUEWHITE PHILIPS .HUEWHITE

DOM LAN LAN
SHARES PHILIPS .* *.*

PROVIDES ON ON , BRI

REQUIRES PHILIPS .HUEMOTION .PRESENCE -

In this case, the resulting contract CIB contradicts Definition 8, because rule RB3 restricts rule RB2. In
particular, less services are provided to less devices in the same domain (i.e., RB3 [PROVIDES]⊆ RB2[PROVIDES]
∧ RB3[SHARES] ⊆ RB2[SHARES]).

6. S × C for IoT: Security Policy

Building on top of the previous sections, in this section we describe security policies. Informally,
a security policy of a Fog node is a non-empty set of security rules describing the allowed security
behaviour of the devices for which the Fog node is responsible. Formally:

Definition 9 (Security policy). A security policy (or simply policy) PF of a Fog node F is a non-empty and
non-ordered set of security rules, such that:

PF = {R1, . . . , Rm}, where m > 0 and Ri 6= Rj, i 6= j.

From a practical perspective, the security rules within a policy PF can derive from two different
sources: The contracts CD1

, ..., CDn of the IoT devices the Fog node F is responsible for, and a number
of additional contracts CA

D1
, ..., CA

Dp
defined by the administrator A, which apply to the respective

devices D1, ..., Dp. This set of additional contracts can be empty, in case the administrator does not
define any specific security rule. As a result, a policy of a Fog node F can be seen as union of the
contracts of the IoT devices and the contracts defined by the administrator of the Fog node.

PF = CD1
, ..., CDn , CA

D1
, ..., CA

Dp

Example 12 (Security policy PA). In the example we show in Table 10, a policy is a composition of three
different rules, one from device D-LINK.933L , and two from device PHILIPS .HUEWHITE . It is worth noticing
that a security policy can have rules for different devices, as long as these rules do not contradict each other (we
will better clarify this point in the rest of the section).

Table 10. Security policy PA.

Rule RA1 Rule RB1 Rule RB2

D D-LINK .933L PHILIPS .HUEWHITE PHILIPS .HUEWHITE

DOM * LAN LAN
SHARES APPLE .LUKEPHONE PHILIPS .* *.*

PROVIDES SETDAYNIGHT ON , BRI , HUE ON , BRI

REQUIRES - PHILIPS .HUEMOTION .PRESENCE -

Sensors 2019, 19, 4121 13 of 26

Example 13 (Security policy PB). In this second example, shown in Table 11, let us suppose that the
administrator wants to add a rule to his security policy. This rule (namely, rule RAdmin1) allows every device
from manufacturer PHILIPS to use service D-LINK.933L .SETDAYNIGHT over the Internet.

Table 11. Security policy PB.

Rule RA1 Rule RB2 Rule RAdmin1

D D-LINK .933L PHILIPS .HUEWHITE PHILIPS .*
DOM * LAN Internet

SHARES APPLE .LUKEPHONE *.* -
PROVIDES SETDAYNIGHT ON , BRI -
REQUIRES - - D-LINK .933L.SETDAYNIGHT

Analogously to the security contract case, what we want to capture in our S × C framework is the
concept of consistent security policy. Since a policy includes rules of contracts from different devices, the
notion of consistency given in the contract case is not enough. This is because the contracts of two different
devices might lead to a leak of information (or illegal information exchange). This is the case of a device D1

that (1) requires some services provided by a device D2, but (2) D2 cannot share these services to D1 because
it would lead to information leakage (due to the fact that D1 can communicate with devices that D2 refuses
to communicate with). In the following, we formalise (1) by means of the concept of direct communication
among two IoT devices, and the consequent concept of allowed information flow. Then, we formalise (2) by
means of the concept of forbidden information flow. We will then combine these concepts to define the
notion of illegal information exchange, which is what we want to avoid in a (consistent) policy.

Definition 10 (Direct Communication). Given a device D1 with consistent contract CD1
and a device D2

with consistent contract CD2
, we say that D1 directly communicates with D2, denoted D1 D2, if ∃ R? ∈

CD1
, R◦ ∈ CD2

: R?[REQUIRES] ∩ R◦[PROVIDES] 6= ∅.

In Algorithm 4, we provide a pseudo-algorithm that verifies if two devices directly communicate.

Definition 11 (Allowed direct communication). Given a device D1 with consistent contract CD1
and a

device D2 with consistent contract CD2
, such that D1 D2, we say that D1 is allowed to directly communicate

with D2, denoted D1→ D2, if ∀ R? ∈ CD1
, R◦ ∈ CD2

: R?[REQUIRES] ∩ R◦[PROVIDES] 6= ∅, we have D1

∈ R◦[SHARES].

Algorithm 4: DirectCommunication Function
Require: CD1

, CD2

Ensure: TrueorFalse
for ∀ R? ∈ CD1

do

for ∀ R◦ ∈ CD2
do

if R?[DOM] ∩ R◦[DOM]

and R?[REQUIRES] ∩ R◦[PROVIDES] 6= ∅ then

return True
end if

end for
end for
return False

In Algorithm 5, we provide a pseudo-algorithm that verifies if two devices are allowed to directly
communicate.

Sensors 2019, 19, 4121 14 of 26

Definition 12 (Allowed information flow). Given a device D1 with consistent contract CD1
and a device D2

with consistent contract CD2
, such that D1→ D2, there is an allowed information flow between D1 and D2, denoted D1−→

ok D2, if ∀ R? ∈ CD1
, R◦ ∈ CD2

: R?[REQUIRES] ∩ R◦[PROVIDES] 6= ∅, we have R?[SHARES]⊆ R◦[SHARES].

Algorithm 5: AllowedDirectCommunication Function
Require: CD1

, CD2

Ensure: TrueorFalse
if DirectCommunication(CD1

, CD2
) = False then

return False
end if
for ∀ R? ∈ CD1

do

for ∀ R◦ ∈ CD2
do

if R?[DOM] ∩ R◦[DOM]

and D1 6∈ R◦[SHARES]

and R?[REQUIRES] ∩ R◦[PROVIDES] 6= ∅ then

return False
end if

end for
end for
return True

Definition 13 (Forbidden information flow). Given a device D1 with consistent contract CD1
and a device D2

with consistent contract CD2
, such that D1→ D2, there is a forbidden information flow between D1 and D2, denoted

D1
−→no D2, if ∃ R? ∈ CD1

, R◦ ∈ CD2
: R?[REQUIRES] ∩ R◦[PROVIDES] 6= ∅ ∧ R?[SHARES] * R◦[SHARES].

In Algorithm 6, we provide a pseudo-algorithm that verifies if a forbidden information flow exists
between two devices.

Algorithm 6: ForbiddenInformationFlow Function
Require: CD1

, CD2

Ensure: TrueorFalse
if AllowedDirectCommunication(CD1

, CD2
) = False then

return False
end if
for ∀ R? ∈ CD1

do

for ∀ R◦ ∈ CD2
do

if R?[DOM] ∩ R◦[DOM]

and R?[SHARES] 6⊆ R◦[SHARES]

and R?[REQUIRES] ∩ R◦[PROVIDES] 6= ∅ then

return True
end if

end for
end for
return False

Definition 14 (Illegal information exchange). Given a consistent contract CD1
of a device D1 and a security

policy PF of a Fog node F , there is an illegal information exchange, denoted CD1
; PF , if there exists a contract

CD2
∈ PF such that (D1

−→no D2) ∨ (D2
−→no D1).

Sensors 2019, 19, 4121 15 of 26

In Algorithm 7, we provide a pseudo-algorithm that verifies if two devices generate an illegal
information exchange.

Algorithm 7: IllegalInformationExchange Function
Require: CD1

, PF
Ensure: TrueorFalse

for ∀CD2
∈ PF do

if ForbiddenInformationFlow(CD1
, CD2

) or

ForbiddenInformationFlow(CD2
, CD1

) then

return True
end if

end for
return False

Example 14 (Illegal information exchange). For the sake of simplicity, in Table 12 we suppose that CD1
and

CD2
∈ PF are composed of a single rule, respectively.
According to Definition 14, this scenario would cause an illegal information exchange. First, we can verify

that CD2
[REQUIRES] ∩ CD1

[PROVIDES] = ∅, therefore there is no allowed direct communication D2 → D1

and the second condition of the illegal information exchange (D2
−→no D1) can be ignored.

Second, we can verify that D1→ D2, since that CD1
[REQUIRES] ∩ CD2

[PROVIDES] = ON (therefore, 6= ∅),
and that D-LINK.933L ∈ CD2

[SHARES]. However, CD1
[SHARES] (= {APPLE.LUKEPHONE}) * CD2

[SHARES]
(= {D-LINK.933L, PHILIPS.HUEWHITE}). Therefore, we have D1

−→no D2 and an illegal information exchange.
Looking at Figure 4, the outgoing arrows for D-LINK.933L and PHILIPS.HUEMOTION clearly

show that it an illegal information exchange exists between the two devices. In particular, D-LINK.933L
shares a set of services with PHILIPS.HUEMOTION and PHILIPS. HUEMOTION shares another set with
APPLE.LUKEPHONE. However, D-LINK.933L does not share any service with APPLE.LUKEPHONE and
this flow might leak unintended information. Therefore, an illegal information exchange error is raised here.

Table 12. Illegal information exchange CD1
; PF .

CD1 CD2 ∈ PF

D D-LINK .933L PHILIPS .HUEMOTION

DOM LAN LAN
SHARES APPLE .LUKEPHONE D-LINK .933L, PHILIPS .HUEWHITE

PROVIDES SETDAYNIGHT ON , BRI

REQUIRES PHILIPS .HUEMOTION .ON -

D-Link
DCS-933L

Apple
LukePhone

Provides:
On, Bri

Philips
HueMotionRequires: On

Philips
HueWhite

Provides:
SetDayNight

Provides:
On, Bri

Illegal
Information
Exchange

Figure 4. Illegal information exchange CD1
; PF . D-LINK.933L does not want to share any service with

APPLE.LUKEPHONE (i.e., there are no outgoing arrows), but PHILIPS.HUEMOTION can potentially act as a
bridge between the two devices. This might lead to critical information leak, therefore it has to be prevented.

Sensors 2019, 19, 4121 16 of 26

Definition 15 (Consistent security policy). A security policy PF of a Fog node F is said to be consistent if
and only if the following conditions hold:

1. ∀ R ∈ PF , R is well formed
2. ∀ R ∈ PF , R is core in PF
3. 6 ∃ CD ∈ PF , CD ; PF

4. 6 ∃ CA
D ∈ PF , CA

D ; PF

In Algorithm 8, we provide a pseudo-algorithm that verifies if a policy is consistent.

Example 15 (Consistent security policy PIA). The security policy described in Example 12 is an example of a
consistent security policy, with respect to our own Definition 15.

Algorithm 8: IsConsistentPolicy Function
Require: PF
Ensure: TrueorFalse

for ∀ R ∈ PF do

if IsWellFormedRule(R) = False then

return False
end if

end for
for ∀ R ∈ PF do

if IsCoreRule(R, PF) = False then

return False
end if

end for
for ∀ CD ∈ PF do

if IllegalInformationExchange(CD , PF) then

return False
end if

end for
for ∀ CA

D ∈ PF do

if IllegalInformationExchange(CA
D , PF) then

return False
end if

end for
return True

Example 16 (Inconsistent security policy PIB). Let us suppose that the administrator modifies the policy
previously defined in Example 13. In particular, let us suppose that the administrator substitutes rule RAdmin1

with rule RAdmin2, enabling PHILIPS.HUEWHITE to provide every PHILIPS device three services, as shown
in Table 13. In this case, the policy would not be consistent, since rule RB2 would restrict Rule RAdmin2. In
particular, rule RAdmin2 would not be core, violating the fourth condition defined in Definition 15.

Table 13. Inconsistent security policy PIB.

Rule RA1 Rule RB2 Rule RAdmin2

D D-LINK .933L PHILIPS .HUEWHITE PHILIPS .HUEWHITE

DOM * LAN LAN
SHARES APPLE .LUKEPHONE *.* *.*

PROVIDES SETDAYNIGHT ON , BRI ON , BRI , HUE

REQUIRES - - -

Sensors 2019, 19, 4121 17 of 26

The last concept we have to define concerns the matching between a contract of a device and the policy
of a Fog node. This is the core idea behind the S× C approach: A device is accepted in a network of devices
governed by a Fog node if and only if the contract of the device matches the policy of the Fog node.

Definition 16 (Contract–policy matching). Given a contract CD of a device D and a consistent policy PF of
a Fog node F, we say that CD matches PF if P

′
F = PF ∪ CD is consistent.

In Algorithm 9 we show the pseudo-code for our matching algorithm. All the rules from the
contract CD are added one by one to a temporary policy P

′
F . Then, the consistency of P

′
F is verified

and the match can return either true or false.

Algorithm 9: Matching Function
Require: PF , CD
Ensure: TrueorFalse

P
′
F ← PF

for ∀ R ∈ CD do

P
′
F ← P

′
F + R

end for
if IsConsistentPolicy(P

′
F) = True then

return True
end if
return False

7. Jumping the Air Gap

Agadakos et al. [13] have recently highlighted that one of the key issues with the IoT is that security
is solely considered on device and device-to-device levels. They claim that, given the complexity of
interactions that happen in the IoT, the approach should be much more holistic. We totally agree with
their view.

In this section, we show that our approach can nicely model the case studies proposed by
Agadakos et al., as well as prevent the issue of unexpected chains of events they depicted.

7.1. Hidden Paths

In this scenario, there are communication paths, fully or partially composed of physical
interactions that are hidden. As an example, Agadakos et al. consider a typical smart living room
equipped with an Amazon Echo device and a Philips Smart TV, and assume that no direct cyber
channels exist between the two, as shown in Figure 5. However, since the smart TV produces sound
outputs, and the Amazon Echo does not have any protection over its input vocal channel (such as
vocal identification), a hidden communication path exists between the two devices.

Amazon
Echo

Access
Point

Kevo
Smart
Lock

Philips
Smart
TV

Cyber Channel Cyber Channel

Cyber ChannelPhysical Channel
(Hidden Path)

Figure 5. The topological map for the use case defined by [13].

Sensors 2019, 19, 4121 18 of 26

Example 17 (Security contract CEcho1). In our proposal, a hypothetical contract carried by Amazon Echo
would explicitly state that the device has a vocal service (as an example, let us call it VocalInput) which allows
anyone to communicate with it, within the LAN domain. Enforcing explicit declarations about services, as
shown in Table 14, would help to identify potential hidden paths, if not to avoid them completely.

Table 14. Security contract CEcho1.

Rule RE1

D AMAZON.ECHO

DOM LAN
SHARES *.*

PROVIDES VOCALINPUT

REQUIRES -

Another issue that has been raised in the past about vocal assistants is that the vocal perimeter can
easily extend outside the smart home (https://techcrunch.com/2017/05/23/alexa-dont-talk-to-strangers/).
A person walking by an open window can easily talk out loud and activate a vocal assistant placed in the
living room. This situation can be easily captured by S× C contracts, as shown in the following Example 18.

Example 18 (Security contract CEcho2). In order to model an extended vocal perimeter, a contract would
simply have to state that the VocalInput function is reachable by anyone in any domain, meaning that anyone
outside the LAN (human being or device) can activate the Amazon Echo without belonging to the same LAN.
An example of this contract is shown in Table 15.

Table 15. Security contract CEcho2.

Rule RE2

D AMAZON.ECHO

DOM *
SHARES *.*

PROVIDES VOCALINPUT

REQUIRES -

The previous explicit contracts, namely CEcho1 and CEcho2, would help the administrator to have
a grasp of potential attack vectors introduced by new devices and to setup proper policies accordingly.

Example 19 (Security policy PFR). Let us suppose that a Federal Reserve building has in place policies
that impede any kind of communication with the outside world, for safety reasons. In particular, the network
administrator wants to avoid that a naive employee takes his brand new Amazon Echo to the office and plugs it
in the network, exposing the building to external attacks. As we show in Table 16, with S × C it would be easy
to avoid this scenario. Assuming that RFR1 is already in place, when the Amazon Echo device is plugged in and
shows its Contract CEcho2, Rule RE2 is evaluated non-core within PFR (since it is restricted by rule RFR1), and
the Amazon Echo is not accepted. For the sake of clarity, in this example we wrote only the relevant rules for this
discussion, but more rules could be part of this policy, as shown in previous sections.

https://techcrunch.com/2017/05/23/alexa-dont-talk-to-strangers/).

Sensors 2019, 19, 4121 19 of 26

Table 16. Inconsistent security policy PFR.

Rule RFR1 Rule RE2

D AMAZON.ECHO AMAZON.ECHO

DOM * *
SHARES *.* *.*

PROVIDES - VOCALINPUT

REQUIRES - -

7.2. Security Degradation

Agadakos et al. identified another problem arising from combining IoT devices, namely the
security degradation problem. This problem, similar to the confused deputy problem, states that a
device which receives inputs over unauthenticated channels, but sends outputs over authenticated
ones, can be tricked by malicious attackers into performing actions in their stead.

Example 20 (Security degradation as an illegal information exchange). In terms of our work, this problem
is an instance of an illegal information flow. A Samsung Hub requires a service OpenClose from a Samsung
Window Sensor, in order to alarm the user if the window is open. The Hub is powered by an OORT Smartplug,
therefore the Hub contract declares that it shares its OnOff service with the Smartplug. Last, the Smartplug
receives unauthenticated messages over a BLE channel so its contract states two things: That it shares all its
services with anyone in the LAN domain, and that it requires the Samsung Hub OnOff service (to make explicit
that it is capable of turning on/off the Hub). The resulting (inconsistent) security policy is shown in Table 17.

Table 17. Inconsistent security policy POORT.

Rule RPlug Rule RHub Rule RSensor

D OORT.PLUG SAMSUNG.HUB SAMSUNG.SENSOR

DOM LAN LAN LAN
SHARES *.* OORT.PLUG SAMSUNG.HUB

PROVIDES * ONOFF OPENCLOSE

REQUIRES SAMSUNG.HUB.ONOFF SAMSUNG.SENSOR.OPENCLOSE -

In particular, the reason why this policy is inconsistent is because there is an illegal information exchange
DHub

−→no DSensor, according to Definition 14.
First, there is a DHub→ DSensor, since CDHub

[REQUIRES] ∩ CDSensor
[PROVIDES] = OPENCLOSE (i.e.,

6= ∅), and SAMSUNG.HUB ∈ CDSensor
[SHARES]. However, DHub

−→no DSensor is equally true. In particular,
CDHub

[SHARES] (= {OORT.PLUG}) * CDSensor
[SHARES] (= {SAMSUNG.HUB}), which entails an illegal

information exchange DHub
−→no DSensor.

7.3. Transitions and States

As a last use case, in [13] the authors show that with their approach it is possible to model
transitions and states, allowing them to identify security violations over time. In their example,
there is a Roomba Vacuum that should never leave the house, and an OORT Smart Lock capable of
closing/opening a garage door to the outside. Similar to Section 7.2, this issue is fuelled by the fact
that the smart lock is allowed to communicate over BLE with any device, and that this is not formally
declared to the network. However, if the OORT lock shows a contract similar to COORTLock in Table 18,
the administrator can have a clear view about the device characteristics, and a strong policy can easily
refuse this device to join the network.

Sensors 2019, 19, 4121 20 of 26

Table 18. Security contract COORTLock.

Rule RL1

D OORT.LOCK

DOM *
SHARES *.*

PROVIDES OPENCLOSE

REQUIRES -

As we have previously stated in Section 7.1, enforcing devices to declare required and provided
services considerably strengthens a network: Explicit behavioural descriptions allow for a much easier
holistic view on the chain of events that can potentially happen in a complex IoT environment.

8. Threat Model

In this work, we have focused on two main threats affecting nowadays IoT systems (Zhou et al. [2]):
Insufficient security configurability and, partially, insufficient security configurations. Of course, many other
weaknesses can arise from IoT networks and it is out of the scope of this article to address all of them. As an
example, with regards to the threats listed in Section 2, we do not address insecure network communications,
nor vulnerable cloud/web services. Moreover, our solution partially covers other problems of the same list,
as a side effect. Namely, we mitigate privacy leaks through the concept of illegal information exchange, and
we mitigate vulnerable firmwares by means of signed proofs of compliance (PoCs).

In order to have a better picture about the robustness of the S × C approach, in Figure 6 we
present a threat model. In the picture we highlight the attacks that could be performed on the main
actors of a Fog-based IoT system. The reader will notice that our threat model does not list each and
every possible attack. We focus only on the most well known and disruptive ones. In the remainder of
this Section, we discuss the specific threats and the system resilience with/without S × C.

Fog Node

Internet and
Cloud Services

IoT Device

Fog
Boundary

Internet
Boundary

IoT Device

Threats / IoT Devices

Compromised Behaviour

Compromised Contract

Compromised PoC

Threats / Fog Node

Compromised Policy

DoS Attack

Threats / Communications

MitM Attack

Figure 6. Graphical representation of the architecture threat model.

Sensors 2019, 19, 4121 21 of 26

8.1. Threats to IoT Devices

Let us start from the threats to the IoT devices shown in Figure 6. As noted before, IoT devices
currently sold on the market do not carry behavioural descriptions. Therefore, it is actually not clear
and not simple to find out whether an IoT device has been tampered with or not.

With S × C, we equip IoT devices with a contract and a proof-of-compliance (PoC). The PoC is a
proof, signed by the manufacturer and stored in the IoT device, which binds the onboard code to the
contract. The PoC must be formally verifiable through an external validator. If the code or the contract
change, due to a software update, the manufacturer has to issue and sign a new PoC. Thus, not only a
malicious actor must create a new contract, in order to tamper with a device. He must also be able to
forge a new PoC and sign it with the manufacturer credentials. If the PoC matches both the code and
the contract, we say that the triplet <Code, Contract, PoC> is consistent. If the three elements do not
match, the triplet is inconsistent.

Let us assume that a malicious actor tampers with the contract, but not with the PoC nor the code.
As mentioned before, the PoC would not match with the contract and the code, thus the triplet would
not be consistent. At installation time, the device can be rejected, but at runtime the Fog Node monitors
only the device behaviour. Therefore, the Fog node can discover that the contract has changed only
when the device behaves differently from the contract, stored in the policy. As soon as an unexpected
behaviour emerges, the Fog node acts as if the contract have been updated and checks the triplet again.
In this case, the Fog node finds out that the triplet is inconsistent and rejects the device.

As an example, if an attacker breaches into the Amazon Echo described in Table 14 and removes
the service VOCALINPUT, the triplet is not consistent any more. At installation time the Fog node
rejects the IoT device or notifies the inconsistency to the administrator. At runtime the Fog node does
not realize the breach, until the device behaves unexpectedly.

The situation is similar if the attacker tampers with the PoC, but does not modify the code nor the
contract. At installation time the triples is inconsistent, so the device is rejected right away. If the PoC
changes at runtime, the Fog node does not discover it, but no problems arise since that the device still
behaves as expected (i.e., code and contract are unaltered). Legacy IoT devices do not carry contracts
nor PoCs, therefore the aforementioned scenarios only apply to S × C.

Now, suppose that a malicious actor tampers with the code, but not with the PoC nor the contract.
Again, this would create an inconsistent triplet. The Fog node would notice at runtime the discrepancy
as soon as the tampered-with device behaves differently from its contract. However, a non-S × C
architecture cannot identify this security threat, and it would allow the IoT device to join the network.

Last, suppose that a malicious attacker manipulates the entire triplet, so that it looks consistent. It
is worth highlighting that the PoC must be signed by the manufacturer, hence forging a PoC is not an
easy task. Without S × C the IoT device would join the network, and it would be easy for the attacker
to perform malicious actions. Keeping in mind that the Fog node performs real-time monitoring, with
S × C we have two different scenarios. In cases where the IoT device violates at run-time the network
policy, the Fog node can identify the inconsistency and react. On the other hand, if the code has been
tampered with in a way that it still complies with the policy, S × C cannot detect the breach.

In Table 19 we summarise these concepts, showing the benefits of S × C as well as this limitation.

Sensors 2019, 19, 4121 22 of 26

Table 19. Possible attacks on IoT devices (with vs without S × C).

Action Without S× C With S× C

Compromised contract;
Unaltered code;
Unaltered PoC

Do not apply, no contract exists -

Fog node rejects device at installation time 3

Fog node discovers the breach at runtime as soon as
the device behaves unexpectedly 3

Compromised PoC;
Unaltered code;
Unaltered contract

Do not apply, no PoC exists - Fog node rejects device at installation time 3

Compromised code;
Unaltered contract;
Unaltered PoC

Fog node has no way to detect unintended
behaviours. Device is erroneously accepted 7

Fog node detects at runtime the breach as soon as the
device behaves in a way that violates the policy 3

Behaviour violating policy;
Matching code, contract, and PoC

Fog node has no way to detect unintended
behaviours. Device is erroneously accepted 7

Fog node detects at runtime that the behaviour does
not match the network policy. Device is rejected 3

Behaviour complying with policy;
Matching code, contract, and PoC

Fog node has no way to detect unintended
behaviours. Device is erroneously accepted 7

Fog node cannot detect at runtime that the behaviour
does not match the network policy. Device is
erroneously accepted 7

We can better understand the last row of the S × C column in Table 19, if we take another point
of view. IoT devices can receive updates over their lifecycle and their behaviour can change. This
means we cannot reject IoT devices on the basis of inconsistency between current and past behaviour.
We can only rely upon the triplet. Therefore, if the triplet is consistent and the PoC looks genuine,
we cannot decide if the device underwent an honest update or a well-executed violation. Referring
again to the contract in Table 14, let us assume that the attacker removes VOCALINPUT and forges
a consistent triplet <Behaviour, Contract, PoC>. In this case, there is no way to decide whether the
contract modification was genuine or not.

Other threats might arise from misusing services, while formally complying with the security
policy. For the sake of argument, we take the policy described in Table 17 and we show a consistent
alternative in Table 20.

Table 20. Consistent security policy POORTCons.

Rule RPlug Rule RHub Rule RSensor

D OORT.PLUG SAMSUNG.HUB SAMSUNG.SENSOR

DOM LAN LAN LAN
SHARES *.* OORT.PLUG SAMSUNG.HUB, OORT.PLUG

PROVIDES * ONOFF OPENCLOSE

REQUIRES SAMSUNG.HUB.ONOFF SAMSUNG.SENSOR.OPENCLOSE -

Let us suppose that an attacker violates SAMSUNG.HUB. Without changing anything in the device,
the attacker issues hundreds of commands to SAMSUNG.SENSORS.OPENCLOSE. This is perfectly fine
with the network security policy. However, this behaviour is clearly not as intended, and it might
lead to serious damages to SAMSUNG.SENSOR. The problem resides in the very nature of declarative
security approaches. If the framework is not powerful enough to describe fine-grained behaviour,
policies cannot mark allowed actions nor forbidden ones.

8.2. Threats to Fog Node and Communication Channels

It is worth mentioning that our solution introduces some potential threats as a side effect. The
main culprit is the Fog node. As for every centralized solution, single points of trust translate into
single points of failure. When we entrust a Fog node with storing the network policy, we centralize
critical tasks in a single actor. As a consequence, the Fog node is going to be a likely target for a
malicious attacker.

Three main issues could arise. First, an attacker could aim to breach the Fog node and manipulate
the policy. As an example, he could cut communications between two critical devices by means of a
restrictive policy. On the opposite spectrum, the attacker might try to allow flows the administrator
wanted to impede. In this case, the attacker can be more permissive than the administrator but this

Sensors 2019, 19, 4121 23 of 26

will not override the devices contracts. Thus, the attacker cannot force the devices to act differently
from their intended behaviour. Third, the same attacker might decide to perform a DoS attack, aiming
to disrupt the entire network.

In its current form, the S × C architecture we designed is prone to such attacks. However, there
are a couple of potential solutions. One solution is replication, a common strategy for fault-tolerant
systems. Indeed, introducing multiple instances of a Fog node within the network, we can mitigate
some risks. Another solution would be to implement fallback routines in the IoT devices, and allow
them to maintain communications over machine-to-machine (M2M) channels. In this scenario, the
devices would bypass the compromised Fog node and negotiate directly, according to their own
contracts.

Last, but not least, we would like to mention that a multitude of man-in-the-middle (MitM)
attacks are possible on any networked systems. For the sake of simplicity, in our paper we assumed
the channels to be secure and tamper-proof. However, it is good to keep in mind that many dangers
can come from insecure communication flows. In Table 21, we summarise the issues introduced by a
single Fog node.

Table 21. Possible attacks on fog node and communication channels (with vs without S × C).

Action Without S× C With S× C

Compromising policy Do not apply, Fog node is not in
charge of the security policy -

Compromised policy, but devices’ contracts and codes
are unaltered. Attacker can only impede
communications through a restricting policy. A more
permissive policy cannot cause unexpected information
leaks, devices still respect their own contracts ~

DoS attack on Fog node Do not apply, Fog node is not in
charge of the security policy -

Compromised system, but devices’ contracts and codes
are unaltered. Devices can potentially negotiate M2M
and keep working according to their contracts ~

Man-in-the-Middle (MitM) attack Attacker can steal and alter data 7 Attacker can steal and alter data 7

9. Related Work

In recent years, IoT security has been largely discussed. Matheu-Garcia et al. [14] highlighted that
manufacturers should be included in the loop, in order to create more resilient devices. The authors
propose a certification methodology that delivers a measurable evaluation of IoT devices security,
as well as an automatic security assessment. Moreover, they noted the lack of an IoT vulnerability
database, which would enable better automatic security tests. Once these problems are amended,
manufacturers could include in contracts useful information about compliance to security standards.
As an example, a contract could include the last time the device software was verified against the
vulnerability database, or the security level assigned by the automatic evaluation tool.

Kuusijärvi et al. [15] proposed to strengthen IoT security through a network edge device (NED),
a secure device which stores the user-defined policies and enforces them on resource-constraint IoT
devices. However, this kind of approach fails to identify specific requirements of the devices (i.e., they
do not envision anything like a contract), offloading on the end-user the cumbersome task of defining
fine-grained policies.

Other researchers proposed Fog-based policy enforcement approaches to solve different problems
in the IoT world, for example, ensuring data privacy [16] and providing secure resource orchestration
in Fog computing [17]. Similar to our work, they share the necessity of enforcing policies at the Fog
layer over devices that might not be compliant by design.

Cisco manufacturer usage descriptions (MUD) [8] shares a number of common traits with
our proposal. First and foremost, they envision a file that acts as a contract and states the device
requirements. Second, the MUD file is parsed by a special node within the network (the MUD server)
which defines appropriate access control lists (ACLs). However, a MUD file is pretty restrictive, as
it barely describes basic information like allowed protocols and reachable hosts. Moreover, each
MUD-compliant device does not carry the contract itself, but a simple URI that points the MUD

Sensors 2019, 19, 4121 24 of 26

manager to the online MUD file: Lack of Internet access would entail the total incapability of joining a
network. Moreover, it is unclear how the contracts should be parsed, verified, and treated with respect
to a security policy. Here, the key S × C concept of contract/ policy matching, as well as a way to
enforce policies on untrustworthy devices, seems to be missing.

Other researchers built on MUD. Hamza et al. [18] tried to undertake the problem of enforcing
policies by means of combination with a software defined network (SDN). In this context, the authors
produced a translation from MUD policies to routing rules, aiming to implement the result into
network switches. Again, they also noted that flow-based rules can be a first step to identify volumetric
attacks, but they are not perfect. In particular, if such attacks happen on intended ports, MUD alone
cannot be enough to identify the ongoing attack.

Another work proposed an automatic process, mainly (but not exclusively) targeted at manufacturers,
to extract a MUD file from an IoT device traffic trace. Moreover, they sketched the necessity of formally
matching MUD files with network security policies [11].

10. Future Work

As future work, we plan to further expand on the matching routines and the dynamic evolution
of an S × C based environment. For instance, what happens when a new device receives a software
update, or when contracts and policies receive updates, or when we try to remove from the network a
device which is critical for other functionalities. Moreover, we plan to mitigate the threats discussed
in Section 8. In particular, we will focus on reducing the susceptibility of the Fog node to disruptive
attacks.

With this in mind, we are currently developing a Java prototype of an S × C IoT system. Our
goal is to show the feasibility of our approach and demonstrate a few key points. First, we want to
show that our system has the capability of detecting inconsistencies. Second, we want to show that
our system solves or signals each and every inconsistency. As a consequence of the first two steps, we
want to show that an S × C system can maintain consistency over time. Last, we want to show that
such a system allows only intended communication flows and prevents unintended data leaks.

As an example of the ongoing implementation, in Figure 7 we show a Java code-snippet. In
particular, this function tests whether our implementation of IllegalInformationExchange is correct.

@Test
final void testIllegalInformationExchangeD1ToPF() {
 init();

 contractCD1 = new Contract("files/Contract_D1.json");
 contractCD2 = new Contract("files/Contract_D2.json");

 policyPF.addContract(contractCD2);

 assertTrue(contractCD1.illegalInformationExchange(policyPF),
 "CD1 shares with Apple.LukePhone, but CD2 does NOT, thus"
 + "we have an Illegal Information Exchange");
}

Figure 7. Code snippet that tests the implementation of IllegalInformationExchange.

Last but not least, we are working on extending our framework for integrating devices that are not
S × C compliant (that is, devices that do not have a contract). We believe this represents a fundamental
point for the adoption of our approach.

11. Conclusions

In this paper, we have proposed a novel approach that combines security-by-contract (S × C) and
Fog computing to tackle the issue of IoT insufficient security configurability.

In our proposal devices are equipped with security contracts that can be verified against the
security policy stored within the Fog node. In turn, this allows for tractable contracts and policies,

Sensors 2019, 19, 4121 25 of 26

efficient matching routines, and trustworthy IoT environments. By means of a running case scenario
and a number of illustrative examples, we have defined all the necessary pillars to develop our
proposal, from basic security rules up to consistent security policies. Moreover, we have provided
pseudo-code algorithms which show the feasibility of our approach.

Author Contributions: Investigation, A.G. and N.D.; Supervision, N.D. and F.M.; Validation, A.G., N.D. and F.M.;
Writing—original draft, A.G. and N.D.; Writing—review and editing, A.G. and N.D.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Dragoni, N.; Giaretta, A.; Mazzara, M. The Internet of hackable things. In Proceedings of the 5th International
Conference in Software Engineering for Defence Applications, Rome, Italy, 10 May 2016; Ciancarini, P., Litvinov, S.,
Messina, A., Sillitti, A., Succi, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 129–140.

2. Zhou, W.; Jia, Y.; Peng, A.; Zhang, Y.; Liu, P. The Effect of IoT New Features on Security and Privacy: New
Threats, Existing Solutions, and Challenges Yet to Be Solved. IEEE Internet Things J. 2019, 6, 1606–1616.
[CrossRef]

3. Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. Fog computing: A platform for Internet of things and analytics.
In Big Data and Internet of Things: A Roadmap for Smart Environments; Bessis, N., Dobre, C., Eds.; Springer:
Cham, Switzerland, 2014; pp. 169–186. [CrossRef]

4. Dragoni, N.; Massacci, F.; Naliuka, K.; Siahaan, I. Security-by-contract: Toward a semantics for digital
signatures on mobile code. In Public Key Infrastructure, Proceedings of the (PKI’07) 4th European PKI Workshop:
Theory and Practice, Palma de Mallorca, Spain, 28–30 June 2007; Lopez, J., Samarati, P., Ferrer, J.L., Eds.; Springer:
Cham, Switzerland, 2007; pp. 297–312.

5. Dragoni, N.; Massacci, F.; Walter, T.; Schaefer, C. What the heck is this application doing? A security-by-contract
architecture for pervasive services. Comput. Secur. 2009, 28, 566–577. [CrossRef]

6. Dragoni, N.; Gadyatskaya, O.; Massacci, F. Supporting applications’ evolution in multi-application smart
cards by security-by-contract. In Proceedings of the 4th Workshop in Information Security Theory and
Practices (WISTP 2010), Passau, Germany, 12–14 April 2010; Springer: Cham, Switzerland, 2010.

7. Athreya, A.P.; DeBruhl, B.; Tague, P. Designing for self-configuration and self-adaptation in the Internet of
Things. In Proceedings of the 9th IEEE International Conference on Collaborative Computing: Networking,
Applications and Worksharing, Austin, TX, USA, 20–23 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp.
585–592. [CrossRef]

8. Lear, E.; Weis, B. Slinging MUD: Manufacturer usage descriptions: How the network can protect things. In
Proceedings of the International Conference on Selected Topics in Mobile Wireless Networking (MoWNeT),
Cairo, Egypt, 11–13 April 2016; IEEE: Piscataway, NJ, USA, 2016.

9. Alirezaie, M.; Renoux, J.; Kockemann, U.; Kristoffersson, A.; Karlsson, L.; Blomqvist, E.; Tsiftes, N.; Voigt, T.;
Loutfi, A. An ontology-based context-aware system for smart homes: E-care@home. Sensors 2017, 17, 1586.
[CrossRef] [PubMed]

10. Giaretta, A.; Dragoni, N.; Massacci, F. Protecting the Internet of Things with security-by-contract and Fog
computing. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick,
Ireland, 15–18 April 2019.

11. Hamza, A.; Ranathunga, D.; Gharakheili, H.H.; Roughan, M.; Sivaraman, V. Clear as MUD: Generating, validating
and applying IoT behavioural profiles. In Proceedings of the 2018 Workshop on IoT Security and Privacy, Budapest,
Hungary, 20 August 2018; ACM: New York, NY, USA, 2018; pp. 8–14. [CrossRef]

12. Eterovic-Soric, B.; Choo, K.K.R.; Ashman, H.; Mubarak, S. Stalking the stalkers–detecting and deterring
stalking behaviours using technology: A review. Comput. Secur. 2017, 70, 278–289. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2018.2847733
http://dx.doi.org/10.1007/978-3-319-05029-4_7
http://dx.doi.org/10.1016/j.cose.2009.06.005
http://dx.doi.org/10.4108/icst.collaboratecom.2013.254091
http://dx.doi.org/10.3390/s17071586
http://www.ncbi.nlm.nih.gov/pubmed/28684686
http://dx.doi.org/10.1145/3229565.3229566
http://dx.doi.org/10.1016/j.cose.2017.06.008

Sensors 2019, 19, 4121 26 of 26

13. Agadakos, I.; Chen, C.Y.; Campanelli, M.; Anantharaman, P.; Hasan, M.; Copos, B.; Lepoint, T.; Locasto,
M.; Ciocarlie, G.F.; Lindqvist, U. Jumping the air gap: Modeling cyber-physical attack paths in the
Internet-of-Things. In Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy,
Dallas, TX, USA, 30 October–3 November 2017; ACM: New York, NY, USA, 2017; pp. 37–48. [CrossRef]

14. Matheu-García, S.N.; Hernández-Ramos, J.L.; Skarmeta, A.F.; Baldini, G. Risk-based automated assessment
and testing for the cybersecurity certification and labelling of IoT devices. Comput. Standard. Interfaces 2019,
62, 64–83. [CrossRef]

15. Kuusijärvi, J.; Savola, R.; Savolainen, P.; Evesti, A. Mitigating IoT security threats with a trusted network
element. In Proceedings of the 11th International Conference for Internet Technology and Secured
Transactions (ICITST), Barcelona, Spain, 5–7 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 260–265.
[CrossRef]

16. Al-Hasnawi, A.; Mohammed, I.; Al-Gburi, A. Performance evaluation of the policy enforcement Fog
module for protecting privacy of IoT data. In Proceedings of the 2018 IEEE International Conference on
Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 951–957. [CrossRef]

17. Dsouza, C.; Ahn, G.; Taguinod, M. Policy-driven security management for Fog computing: Preliminary
framework and a case study. In Proceedings of the 2014 IEEE 15th International Conference on Information
Reuse and Integration (IRI 2014), Redwood City, CA, USA, 13–15 August 2014; pp. 16–23. [CrossRef]

18. Hamza, A.; Gharakheili, H.H.; Sivaraman, V. Combining MUD policies with SDN for IoT intrusion detection.
In Proceedings of the 2018 Workshop on IoT Security and Privacy, Budapest, Hungary, 20 August 2018;
ACM: New York, NY, USA, 2018; pp. 1–7. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/3140241.3140252
http://dx.doi.org/10.1016/j.csi.2018.08.003
http://dx.doi.org/10.1109/ICITST.2016.7856708
http://dx.doi.org/10.1109/EIT.2018.8500157
http://dx.doi.org/10.1109/IRI.2014.7051866
http://dx.doi.org/10.1145/3229565.3229571
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Contributions of the Paper
	Paper Outline

	IoT Smart Services: Background and Challenges
	S C Fundamentals
	Who Writes Contracts and Policies?
	Implications

	S C for IoT: Security Rules
	Security Rule
	Well Formed and Core Security Rules

	S C for IoT: Security Contract
	S C for IoT: Security Policy
	Jumping the Air Gap
	Hidden Paths
	Security Degradation
	Transitions and States

	Threat Model
	Threats to IoT Devices
	Threats to Fog Node and Communication Channels

	Related Work
	Future Work
	Conclusions
	References

