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ABSTRACT

Intrinsically disordered proteins and regions (IDPs
and IDRs) lack stable 3D structure under physio-
logical conditions in-vitro, are common in eukary-
otes, and facilitate interactions with RNA, DNA and
proteins. Current methods for prediction of IDPs
and IDRs do not provide insights into their func-
tions, except for a handful of methods that ad-
dress predictions of protein-binding regions. We re-
port first-of-its-kind computational method DisoR-
DPbind for high-throughput prediction of RNA, DNA
and protein binding residues located in IDRs from
protein sequences. DisoRDPbind is implemented
using a runtime-efficient multi-layered design that
utilizes information extracted from physiochemical
properties of amino acids, sequence complexity,
putative secondary structure and disorder and se-
quence alignment. Empirical tests demonstrate that
it provides accurate predictions that are competitive
with other predictors of disorder-mediated protein
binding regions and complementary to the meth-
ods that predict RNA- and DNA-binding residues
annotated based on crystal structures. Application
in Homo sapiens, Mus musculus, Caenorhabditis
elegans and Drosophila melanogaster proteomes
reveals that RNA- and DNA-binding proteins pre-
dicted by DisoRDPbind complement and overlap
with the corresponding known binding proteins col-
lected from several sources. Also, the number of
the putative protein-binding regions predicted with
DisoRDPbind correlates with the promiscuity of
proteins in the corresponding protein–protein in-
teraction networks. Webserver: http://biomine.ece.
ualberta.ca/DisoRDPbind/

INTRODUCTION

Intrinsically disordered proteins and regions (IDPs and
IDRs) lack stable 3D structure under physiological condi-

tions in-vitro, actively participate in a wide repertoire of
cellular functions and are relatively common in nature (1–
3). Dozens of computational methods were developed to
predict intrinsic disorder from the protein sequences (4–
6).They were used to estimate the natural abundance of
IDPs/IDRs and to investigate their functions (1,7–10). In
particular, IDPs and IDRs were shown to be important for
the protein–protein interactions (PPIs) and are enriched in
the RNA- and DNA-binding proteins (1,11–16). Prediction
of protein functions related to RNA binding (17,18), DNA
binding (19,20) and PPIs (21,22) has generated strong inter-
est in recent years. However, these predictions focus on the
interactions that are extracted from crystal structures and
thus which are primarily facilitated by ordered (structured)
regions.

Similar studies for IDPs and IDRs also gain momentum.
Recently, prediction of over 100 Gene Ontology (GO) an-
notations associated with disordered proteins was investi-
gated (23). However, these predictions were performed at
the whole protein level, were based on predicted disordered
regions and assumed that the predicted IDRs contribute
toward the GO annotations of the corresponding protein.
The ANCHOR (24) and PepBindPred (25) methods that
predict protein–protein binding residues located in IDRs
and MoRFpred (26) and DISOPRED3 (27) methods that
find short protein-binding regions (up to 25 consecutive
residues) in IDRs that are involved in molecular recognition
were also developed. These attempts suggest that functions
of IDRs are predictable from the protein sequence. The
DisProt database (28) includes over 800 functionally anno-
tated IDRs, with about 500 that correspond to the disor-
dered RNA-, DNA- and protein-binding; for convenience,
we use the disordered RNA-, DNA- and protein-binding
terms to denote the RNA-, DNA- and protein-binding lo-
cated in IDRs. The availability of the annotated data, in-
terest in these types of interactions and predictability of
disorder-mediated functions motivate the development of
our method DisoRDPbind. Our approach has the follow-
ing four characteristics:

1. First attempt to predict multiple functions mediated by
IDPs and IDRs. DisoRDPbind is the first method that
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predicts disordered RNA- and DNA-binding residues,
and it also predicts disordered protein-binding residues.

2. High-throughput predictions. DisoRDPbind predicts an
average size protein with 450 residues in two seconds on
a modern desktop computer; this means that our method
can be applied on the genomic scale.

3. Good predictive quality. DisoRDPbind is empirically
shown to obtain good predictive performance using two
independent (from a training data set) test data sets. Our
method also provides accurate predictions when applied
to find putative disordered RNA-, DNA- and protein-
binding regions on four complete proteomes/genomes.

4. Complementarity to other predictors of DNA- and
RNA-binding regions. DisoRDPbind’s predictions are
empirically shown to complement predictions of repre-
sentative methods that were built using ordered DNA-
and RNA-binding residues, i.e. using annotations based
on crystal structures.

MATERIALS AND METHODS

Annotation of disordered RNA-, DNA- and protein-binding

The DisProt database (28) includes IDRs that were anno-
tated with over 30 functional subclasses (29). We grouped
multiple subclasses to define RNA-, DNA- and protein-
binding. We define the disordered RNA-binding, DNA-
binding and protein-binding by combining five, three and
five functional subclasses, respectively (see Supplementary
Table S1). Motivated by related works (30,31) we consider
the disordered regions with at least 4 consecutive disordered
residues.

Benchmark data sets

We extracted all annotated proteins from release v5.6 of
DisProt and removed those that contain IDRs that are an-
notated as ‘Unknown’ and ‘Disordered region is not es-
sential for protein function’. Next, we clustered these pro-
teins using CD-HIT (32) at 30% sequence similarity. We
placed the entire protein clusters at random into one of
the two data sets, the TRAINING data set with 315 pro-
teins that we used to design the predictive model and the
TEST114 data set that we utilized to benchmark the model.
Consequently, proteins in the TEST114 set share below
30% sequence identity with the chains in the TRAINING
data set. The TRAINING data set includes 2033, 5146 and
24290 disordered residues (from 14, 49 and 188 proteins, re-
spectively) that are annotated with the RNA-, DNA- and
protein-binding, respectively. TEST114 has 1271, 1420 and
6940 disordered residues (from 7, 13 and 60 proteins, respec-
tively) with the RNA-, DNA- and protein-binding annota-
tions, respectively.

We also considered proteins that were recently deposited
in DisProt, between releases v5.6 and v6.01, to build the sec-
ond test data set. We collected 36 proteins that constitute
the TEST36 data set with 322, 948 and 2752 residues with
the annotations of RNA-, DNA- and protein-binding, re-
spectively. Supplementary Table S1 summarizes these three
data sets. A given residue can be annotated with multiple
functions and thus the total number of disordered residues
annotated with a given function may be different than the

sum of its functional subclasses. The three data sets are pro-
vided at http://biomine.ece.ualberta.ca/DisoRDPbind/.

We designed DisoRDPbind using cross-validation on the
TRAINING data set, which was divided into the cross val-
idation folds per sequence, i.e. entire sequences were placed
into different folds. Moreover, we ensured that proteins in
different cross validation folds share low (<30%) similarity
by clustering with CD-HIT as described above.

Assessment on the benchmark data sets

DisoRDPbind outputs real values that quantify propen-
sity of each residue in the input protein sequence to par-
ticipate in the DNA-, RNA- and protein-binding mediated
by the intrinsic disorder. We assessed the predictive qual-
ity of these propensities using the receiver operating char-
acteristic (ROC) curves. For each value of propensity p (be-
tween 0 and 1), the residues with propensity ≥ p are set as
positives (binding), and all other residues are set as nega-
tives (non-binding). For example, when predicting the dis-
ordered RNA-biding residues, the annotated RNA-biding
residues (in a given data sets) are assumed as positives and
all other annotated residues including the remaining disor-
dered residues and all ordered residues are assumed as neg-
atives. We computed the TP-rate = TP/(TP + FN) and the
FP-rate = FP/(FP + TN) and used the area under the ROC
curve (AUC) to quantify the predictive quality. TP (TN) is
the number of true positives (negative), i.e. the number of
correctly predicted positives (negatives), and FP (FN) de-
notes false positives (negatives), i.e. the number of nega-
tives (positives) that were incorrectly predicted as positives
(negatives). The TRAINING, TEST114 and TEST36 data
sets are unbalanced and on average (over the three types
of binding) about 9.2%, 6.9% and 10.1% of residues are
annotated as binding, respectively. Thus, we reported the
TP-rate at the FP-rate of 0.1 to assess the binary predic-
tions (binding versus non-binding residue) of DisoRDP-
bind. This value quantifies fraction of correctly predicted
binding residues when the fraction of incorrectly predicted
non-binding residues is 0.1, which is similar to the number
of positives. TP-rate at the FP-rate of 0.1 ranges from 0 to
1, where higher value (must be greater than 0.1 to improve
over random prediction) implies better binary prediction.

We evaluated statistical significance of the differences in
the AUC values between each considered predictor and Dis-
oRDPbind. This assessment aims to investigate whether the
results on a given data set are not biased by a subset of
proteins by measuring if the predictive quality is consistent
over different subsets of the data set. To accomplish that, we
sampled the test data sets to accommodate for differences in
predictive quality based on use of different benchmark data
sets. Specifically, we randomly selected half of proteins from
the TEST114 or TEST36 data set 10 times. Next, we com-
pared AUC values of DisoRDPbind to a given considered
method over the resulting 10 random subsets of each test
data set. If the corresponding vectors of AUC values are
normal, as tested using the Anderson–Darling test (33) test
at the 0.05 significance, then we utilized t-test; otherwise we
used the non-parametric Wilcoxon rank sum test (34). The
differences with P-value < 0.05 are assumed statistically sig-
nificant.
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Figure 1. Architecture of DisoRDPbind.

We also quantified the FP-rates on the non-binding re-
gions for each binding type using the larger test data set,
TEST114. We considered two types of the non-binding re-
gions: disordered regions that have another functional an-
notation besides the ‘unknown’ and the currently tested
RNA-, DNA-, or protein-binding annotations; and regions
that are not annotated as disordered (i.e. ordered regions
and the regions with no annotations in DisProt). For each
type, we selected the non-binding regions at random to
match their number and length with the number and sizes of
the positive (disordered RNA-, DNA, or protein-binding)
regions.

Architecture of DisoRDPbind

Figure 1 shows the architecture of DisoRDPbind. Our
method is based on a runtime efficient multi-layered de-
sign which is in line with a recent observation that spe-
cialized predictors with multiple inputs designed for spe-
cific functions are required (23). DisoRDPbind computes
predictions in four steps. In step 1, a given input protein
sequence is represented using a variety of physiochemical
properties of amino acids (AAs), predicted intrinsic disor-
der and secondary structure, estimated value of sequence
complexity, and the AA composition. In step 2, a set of 11, 7
and 7 numerical features (values) are generated from this in-
formation for the prediction of RNA-, DNA- and protein-
binding residues, respectively. We considered a large number
of features and performed empirical feature selection to ob-
tain these small feature sets. In step 3, the selected features
are inputted into three logistic regression models to predict
the propensity score for each residues in the input sequence
to participate in the disordered RNA-, DNA- and protein-
binding. Inclusion of alignment was shown to be helpful in
prediction of the PPIs including disordered proteins (35).
Therefore, in step 4 we transfer the annotations of RNA-
, DNA- and protein-binding based on sequence alignment
generated by BLAST (36) using annotated chains in the cor-

responding training data set. These annotations are merged
with the propensity scores generated by the regression to
generate the final predictions.

Feature extraction and selection

Several physicochemical properties of AAs, such as hy-
drophobicity, solvent accessibility, charge and free energy
were successfully used to predict proteins with long dis-
ordered regions (37), disordered protein-binding residues
(26) and RNA- and DNA-binding residues annotated us-
ing crystal structures (38,39). We utilized a wide range of
AA indices that quantify various physicochemical prop-
erties of AAs. However, these AA indices may be redun-
dant to each other or irrelevant to our prediction. Thus,
we empirically selected a subset of non-redundant and rele-
vant indices using the TRAINING data set. The original
list of 531 amino acid (AA) indices from the version 9.1
of the AAindex database (40) was reduced to 159 indices
that are predictive and dissimilar with each other (see Sup-
plementary Materials for details). We considered the AA
composition, sequence complexity and secondary structure
based on the observations that IDRs are enriched in cer-
tain AAs (41), have low sequence complexity (42), and are
biased in their secondary structure (43,44). Inclusion of pu-
tative disorder was shown to improve accuracy of predic-
tion of functions related to signaling and molecular recog-
nition (45) and was successfully utilized to predict disor-
dered protein-peptide binding (26). To assure that DisoR-
DPbind is runtime-efficient we utilized disorder prediction
generated by the fast IUPred method (46). We used three
versions of IUPred that predict long and short disordered
regions and globular domains.

The prediction for each residue in a given input chain uses
information about the residue itself and its neighbors. We
extracted information from a sliding window of size ws that
is centered on the predicted residue to calculate features that
are used as the inputs into the regression model. The use of
the sliding window to calculate the features was inspired by
previous related method (26,47). For the residues at the C
or N-terminus of the sequence we reduce the window size
on one side so it does not extend outside of the chain. We
empirically derive the value of window size ws for each pre-
dicted function based on the size of the corresponding bind-
ing regions in the TRAINING data set. We set ws to the
value of 20th centile of the length of a given type of IDR,
which translates into 55, 21 and 33 for the prediction of the
disordered RNA-, DNA- and protein-binding residues, re-
spectively. Motivated by recent work (26), we aggregate val-
ues of the numerical vectors to generate features by calcu-
lating the difference between an average value of the near
neighbors, i.e. (ws-1)/2 residues in the middle of the slid-
ing window, and remote neighbors, i.e. (ws-1)/4 residues at
each termini of the sliding window. We utilize this aggrega-
tion to contrast the values calculated using positions in the
chain that are close to the predicted residue against the val-
ues associated with residues in a wider neighborhood in a
sequence. Detailed description of the features is given in the
Supplementary Materials.

Some of the considered 398 features are redundant
and/or irrelevant to the prediction of disordered RNA-,
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DNA- protein-binding residues. Thus, we performed empir-
ical feature selection for each of the predicted functions in
two steps that remove the irrelevant features (features that
have poor predictive quality) and redundant features (corre-
lated with other features). Details can be found in the Sup-
plementary Materials. As a result, we selected 11, 7 and 7
features for the prediction of the disordered RNA-, DNA-
and protein-binding residues, respectively. Only 17 AA in-
dices are used to calculate the resulting selected features.

Prediction model

Logistic regression is a probabilistic classification algorithm
that was extensively used in related efforts including predic-
tion of intrinsic disorder (6) and the ordered protein-RNA/-
DNA/-protein interactions that were annotated using crys-
tal structures (48–51). The popularity, short runtime and
ability to provide the real-valued propensity motivated se-
lection of this model. The regression coefficients for the se-
lected features were estimated by using the ridge estimator
based on the TRAINING data set for each of the three
types of binding. The three real-valued scores that corre-
spond to the predicted propensity of a given AA to partic-
ipate in the disordered DNA-, RNA- and protein-binding
that are outputted by the regression are merged with the
outputs generated using sequence alignment with BLAST.

We used sequence alignment to transfer annotations of
DNA-, RNA- and protein-binding from the TRAINING
data set (or a training fold in case of the cross validation
on the TRAINING data set). For a given query chain, the
annotations are transferred (copied) for the similar posi-
tions in the alignment with the most similar sequence that
has sufficiently high similarity quantified with the e-value.
We chose 0.1 as the e-value cut-off, i.e. if the e-value < 0.1
then the aligned sequence(s) is regarded as sufficiently simi-
lar and the annotations are copied. This cut-off was chosen
based on 4-fold cross validation on the TRAINING data
set to maximize the average (over the predictions of the dis-
ordered RNA-, DNA- and protein-binding residues) ratio
between TP-rate and FP-rate; use of ratio is motivated by
the imbalanced nature of our data sets. Supplementary Fig-
ure S1 reveals that ratio for the e-value = 0.1 is the best. This
ratio is higher than for the other e-values and the chosen e-
value is lowest among comparable results (we secure similar
ratio for the e-value = 1). During the transfer of annota-
tions we set all the residues that are aligned to the binding
residues to value of 1 and the remaining residues to 0. Con-
sequently, the annotations transferred using BLAST are bi-
nary.

Empirical results where we transferred the annotations
using alignment with BLAST on the 4-fold cross valida-
tion on the TRAINING data set with the e-value cut-off
of 0.1 show that BLAST nearly perfectly predicts nega-
tives (i.e. TN/N > 99%) and captures a small number of
true positives (i.e. TP-rate < 5%). This conservative pre-
diction (small number of high quality predictions of bind-
ing residues) is merged with the prediction from the regres-
sion as follows. If a given residue is annotated with a given
disordered function by the alignment then its propensity
score is set to (1+pi)/2, where pi is the propensity score
produced by the regression model and i denotes a particu-

lar function: disordered DNA-, RNA- or protein-binding;
otherwise we use the prediction generated by the regres-
sion model. This increases values of the propensities gener-
ated by the regression for residues that were also predicted
as binding by the alignment. The AUCs of the model that
combines regression with BLAST on the 4-fold cross vali-
dation on the TRAINING data set (i.e. only the sequences
from the training folds in the cross-validation are used to
build the regression model and as the data set for the align-
ment) are 0.75, 0.7 and 0.63 for the prediction of the disor-
dered RNA-, protein- and DNA-binding residues. The final
model that is available as the webserver and which we as-
sessed on the two test data set combines the results of the re-
gression model built on the TRAINING data set and align-
ment with BLAST against the proteins from the TRAIN-
ING data set.

Whole proteome data sets

We used complete proteomes of four popular eukaryotic
model organisms collected from release 2013 04 of the
UniProt database (52) to apply and evaluate DisoRDPbind
on the genomic scale. We removed protein fragments based
on the term ‘Fragment’ in the subsection ‘Sequence sta-
tus’. The resulting proteomes include 42426, 33181, 25159
and 19656 proteins for H. sapiens, M. musculus, C. elegans
and D. melanogaster, respectively. We compared our predic-
tions against the known DNA and RNA-binding proteins
in these proteomes that were annotated based on several
large databases including gene ontology (GO) terms (53) in
UniProt, RBPDB (54) for the RNA-binding proteins, and
animalTFDB (55) for the DNA-binding proteins. Consid-
ering the hierarchical structure of GO, we defined the RNA
(DNA) binding by collecting the GO term RNA (DNA)
binding itself and all of its children connected by ‘is a’ rela-
tion. We collected 3298 RNA-binding proteins (GO RNA)
and 7880 DNA-binding proteins (GO DNA) across these
four proteomes. By mapping accession number of proteins
from UniProt into RBPDB and animalTFDB resources,
we obtained annotations of 1014 RNA-binding and 4089
DNA-binding proteins, respectively, over the four organ-
isms. Moreover, we also extracted 1870 and 803 curated
RNA- and DNA-binding proteins, respectively, in H. sapi-
ens and M. musculus from recent literature (56–58). We de-
noted these two data sets as DB RNA and DB DNA, re-
spectively.

We utilized the latest integrated database of PPI net-
works, mentha (59), for the assessment of the prediction
of the disordered protein-binding regions on the genomic
scale. We mapped proteins from UniProt into mentha and
obtained an average of 21.4, 6.7, 5.2 and 7.3 interactions per
protein for the 14547, 8006, 5005 and 8096 proteins from
H. sapiens, M. musculus, C. elegans and D. melanogaster,
respectively. Finally, we collected eukaryotic linear motifs
(ELMs), short regions and perform regulatory functions
via PPIs (60), to assess whether they are predicted by our
method. ELMs from H. sapiens and M. musculus were ex-
tracted from the ELM database (60); we removed entries
tagged as ‘false positive’ and those that were not verified ex-
perimentally. Consequently, we collected 1448 ELMs from
952 proteins over H. sapiens and M. musculus proteomes.
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For convenience, we use the source database name to
represent the corresponding subset of proteins selected for
the four organisms. Supplementary Table S2 summarizes
the eight data sets: GO RNA, GO DNA, RBPDB, ani-
malTFDB, DB RNA, DB DNA, mentha and ELM. We
also predicted intrinsic disorder on these data sets using
consensus of five methods and computed the disorder con-
tent (fraction of disordered residues) for each species and
protein; see details in the Supplementary Materials and
summary of results in the Supplementary Table S2.

Assessment at the whole proteome level

Since proteins in the whole proteome data sets are anno-
tated with a given function per sequence, we define the dis-
ordered RNA-, DNA- and protein-binding proteins pre-
dicted by DisoRDPbind from our residue-level predictions
as follows. First, we binarized the predicted propensities us-
ing the default cut-off of 0.5. We assume a given protein as
the disordered RNA-, DNA- and/or protein-binding pro-
tein if it has at least one predicted disordered RNA-, DNA-
and/or protein-binding regions composed of at least 4 con-
secutive residues, respectively. This is consistent with prior
works that assume that IDRs include at least 4 consecutive
disordered residues (30,31).

To evaluate prediction of the disordered RNA-binding
(DNA-binding) proteins for a given organism we calcu-
lated overlap between the set of the predicted disordered
RNA-binding (DNA-binding) proteins and the proteins
from RNA-binding data sets: GO RNA, RBPDB and
DB RNA (from the DNA-binding data sets: GO DNA,
animalTFDB and DB DNA). We assessed statistical sig-
nificance of this overlap by comparing it to an overlap
with a randomly generated set of proteins. First, we se-
lected at random half of the predicted RNA-binding (DNA-
binding) proteins 10 times and estimated their overlap with
the GO RNA, RBPDB and DB RNA (GO DNA, ani-
malTFDB, or DB DNA). Next, we selected at random the
same number of proteins, when compared to the number
of predicted RNA-binding (DNA-binding) proteins, from a
given complete proteome 10 times and computed their over-
lap with the same RNA-binding (DNA-binding) data sets.
We compared the ten corresponding values of overlap to
find whether the overlap of our predictions is significantly
higher than a baseline defined based on overlap with the
random set of proteins. If both vectors of the overlap val-
ues are normal, as tested using Anderson–Darling test at
the 0.05 significance, then we utilized t-test; otherwise we
used the non-parametric Wilcoxon rank sum test. The dif-
ferences with P-value < 0.05 are assumed statistically sig-
nificant.

Moreover, the novel RNA-binding (DNA-binding) pro-
teins predicted by DisoRDPbind that do not overlap
with the known RNA-binding (DNA-binding) proteins
from GO RNA, RBPDB and DB RNA (GO DNA, ani-
malTFDB and DB DNA) were further analyzed. We inves-
tigated their cellular localization based on the GO annota-
tions. Our aim was to find out whether their localizations
are similar to the localizations that are significantly asso-
ciated with the known RNA-binding (DNA-binding) pro-
teins. We found that 72%, 57%, 44% and 32% proteins from

M. musculus, H. sapiens, D. melanogaster and C. elegans
are annotated with GO annotations of cellular component
(i.e. localization), respectively (Supplementary Table S2).
Thus, we performed this analysis in M. musculus due to the
low coverage of these annotations in the other organisms.
We first determined the cellular localizations that are sig-
nificantly associated with the known RNA-binding (DNA-
binding) proteins. Specifically, we selected at random half of
the known RNA-binding (DNA-binding) proteins 10 times
and quantified their cellular localizations by computing a
fraction of proteins with each of these annotations. Next,
we selected at random the same number of proteins from
the entire M. musculus proteome 10 times and quantified
their cellular localizations in the same way. We assessed sig-
nificance of the differences between the corresponding two
vectors of fractions (for the ‘known’ and ‘random’ proteins)
by following the above mentioned procedure to assess the
overlap. This resulted in a list of cellular localizations that
are significantly associated with the known RNA-binding
(DNA-binding) proteins. Next, we investigated the signifi-
cance of an overlap between these localizations and the lo-
calizations of novel RNA-binding (DNA-binding) proteins
predicted by DisoRDPbind, following the above mentioned
procedure to assess the overlap. We removed the localiza-
tions with low counts, i.e. less than 2% of the total count of
all localization annotations in a given protein set, to avoid
spurious measurements. We assert that our predictions are
accurate if this overlap is statistically significant with P-
value < 0.05.

Since most proteins interact with other protein(s), we
cannot directly validate the prediction of protein-binding
using the abovementioned procedure. However, we use the
observation that hub proteins are enriched in IDRs (12,61).
Therefore, we investigated relation between the promiscuity
of a given protein (number of its proteins partners in the cor-
responding PPI network) and the number of its predicted
disordered protein-binding regions to assess the predictive
quality of DisoRDPbind at the whole proteome level. This
relation was quantified with the Pearson Correlation Co-
efficient (PCC) between the average number of partners
for proteins with a given number of predicted disordered
protein-binding regions and this number of regions. We as-
sert that our predictions of disordered protein-binding re-
gions are likely correct if the PCC value is relatively high and
positive. We analyzed statistical significance of this PCC
value by comparing it to a PCC value obtained using the
average number of partners for a set of proteins with ran-
domized number of the predicted regions. First, we selected
at random half of the proteins for each number of predicted
disordered protein-binding regions in the mentha data set
10 times and computed the PCC between the number of
their predicted regions and their average promiscuity de-
fined in mentha. We repeated the computation of PCC 10
times using randomly selected sets of proteins of the same
size as the number of proteins with a given number of pre-
dicted regions and correlating this ‘randomized’ number
of regions with their average actual promiscuity extracted
from mentha. Finally, we computed statistical significance
of the difference between these two vectors of 10 PCC val-
ues using the procedure described to assess the overlap for
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the prediction of the disordered RNA- and DNA-binding
proteins.

RESULTS AND DISCUSSIONS

Comparative evaluation of DisoRDPbind

Since there are no other methods that predict disordered
RNA- and DNA-binding residues, we empirically com-
pared predictive quality of DisoRDPbind with representa-
tive (latest and accurate) sequence-based methods that pre-
dict ordered RNA- and DNA-binding; selection of these
methods is explained in the Supplementary Materials and
in Supplementary Table S3. They include BindN+ (62) and
RNABindR 2.0 (38) for the RNA-binding, and BindN+
and DNABR (63) for the DNA-binding. We also compared
with the three predictors of the disordered protein–protein
interacting residues: MoRFpred (26), DISOPRED3 (27)
and ANCHOR (24); we did not include PepBindPred (25)
due to the relatively long runtime required for the molecular
dynamics simulations used by this method.

Figure 2A summarizes results on two benchmark data
sets, TEST114 and TEST36. DisoRDPbind obtains the
area under the ROC curve (AUC) values ranging between
0.62 and 0.72, depending on the benchmark data sets and
the predicted function. These AUCs are higher across pre-
dictions of DNA-, RNA- and protein-binding residues on
both benchmark sets when compared with the other meth-
ods; the improvements are statistically significant at P-value
< 0.05. Moreover, the ROC curves of DisoRDPbind are
above the ROC curves of the other methods on both data
sets (Supplementary Figure S2). The lower predictive per-
formance of the other DNA- and RNA-binding predictors
can be explained by their focus on the structured interac-
tions. MoRFpred predict only short binding regions (up to
25 residues) used in recognition, as opposed to DisoRDP-
bind that also predicts longer protein binding regions.

The average, over the two benchmark sets, TP-rate (frac-
tion of correctly predicted binding residues) of DisoRDP-
bind computed at the FP-rate (fraction of incorrectly pre-
dicted non-binding residues) of 0.1 equals 0.27, 0.25 and
0.24 for the prediction of the DNA-, protein- and RNA-
binding residues, respectively (Supplementary Figure S2).
This means that the TP-rate is between 2.4 and 2.7 times
higher than the corresponding FP-rate. DisoRDPbind se-
cures TP-rate of 0.4 at the average, over the two bench-
mark data sets, FP-rate of 0.19, 0.21 and 0.23 for the pro-
tein, DNA and RNA-binding, respectively. Inclusion of
the alignment into DisoRDPbind provides only slight im-
provements for the prediction of the disordered DNA- and
protein-binding residues (two right-most sets of bars in Fig-
ure 2A). This demonstrates that most of the predictions are
generated by the regression models. In fact, one average over
the two benchmark sets BLAST finds only 4.3% and 1.1%
of the DNA- and protein-binding residues, and no RNA-
binding residues. This is expected given the low similarity
between our benchmark data sets and the training proteins
that are used to perform alignment. However, these small
improvements are statistically significant, which means that
addition of BLAST provides slight but consistent (over each
test set) increase in the predictive performance. This is fur-
ther supported by the fact that the ROC curves of Dis-

oRDPbind are slightly and consistently above the ROC
curves of DisoRDPbind without BLAST for the prediction
of the disordered DNA- and protein-binding residues on
TEST114 and TEST36 (Supplementary Figure S2).

We assessed predictive performance of DisoRDPbind on
two types of non-binding regions extracted from TEST114:
disordered regions annotated with functions excluding a
binding type that we evaluate, and regions that are not lo-
cated in the annotated disordered regions (Supplementary
Figure S3). We quantified FP-rate values since these are
non-binding regions. DisoRDPbind generates FP-rates of
0.07, 0.09 and 0.11 (0.06, 0.12 and 0.01) for the prediction
of the DNA-, protein- and RNA-binding, respectively, on
the regions that exclude the annotated disordered regions
(disordered regions that exclude the predicted type of bind-
ing). These are acceptable levels of FP-rates given that the
binary predictions of DisoRDPbind were designed to pro-
vide the PF-rate of 0.1 on the TRAINING data set (signif-
icance of this PF-rate is explained in Materials and Meth-
ods). The other methods obtain comparable levels of the
FP-rates, ranging from 0.02 to 0.14 for the prediction of dis-
ordered RNA-binding, 0.01 to 0.14 for the DNA-binding
and 0.05 to 0.12 for the protein-binding.

We also measured Pearson correlation coefficient (PCC)
between predictions of DisoRDPbind and the other con-
sidered methods to investigate their similarity (Figure 2B).
The low PCCs < 0.3 of DisoRDPbind with BindN+ and
with RNABindR reveal that DisoRDPbind’s predictions of
the RNA-binding residues are different from (complemen-
tary to) the predictions from these two methods. The same
is true for the prediction of the DNA-binding residues when
comparing DisoRDPbind with BindN+ and with DNABR.
Moreover, DisoRDPbind’s predictions of the disordered
protein-binding residues are characterized by relatively high
PCC > 0.5 with the outputs of ANCHOR and low cor-
relation with MoRFpred and DISOPRED3. This is also
expected since MoRFpred and DISOPRED3 predict the
short binding regions while both DisoRDPbind and AN-
CHOR predict generic disordered protein-binding regions.
To sum up, DisoRDPbind’s predictions are different from
the outputs of the DNA- and RNA-binding predictions that
are focused on the ordered regions and improve over the ex-
isting predictors of the disordered protein-binding regions.

Evaluation of runtime

We compared runtime of DisoRDPbind with ANCHOR
and with one iteration (j = 1) of PSI-BLAST (36) against the
nr database (Figure 2C). The latter estimates a lower bound
of the runtime of the other predictors, such as BindN+, RN-
ABindR, DNABR, MoRFpred and DISOPRED3, which
use PSI-BLAST. Although DisoRDPbind is slower than
ANCHOR by up to two folds, it provides prediction of the
three considered functions at the same time. DisoRDPbind
is over 150 times faster than the one round of PSI-BLAST.
Depending on the chain length, prediction for one protein
takes between 0.3 s and 1 min using a modern desktop
computer. The runtimes are characterized by a quadratic
increase with the chain size. PCCs between the quadratic
fit and the measured runtime for DisoRDPbind and PSI-
BLAST equal 1 and 0.83, respectively. The total runtime of
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Figure 2. Empirical assessment of the prediction of the disordered RNA-, DNA- and protein-binding residues. (A) predictive performance measured with
AUC calculated per residue and significance of differences in AUC values when comparing DisoRDPbind with other methods on two benchmark data
sets: TEST114 (solid bars) and TEST36 (hollow bars); * means that AUC of a given method is statistically significantly lower than AUC of DisoRDPbind
at P-value < 0.05; statistical significance was assessed over 10 random subsets with half of proteins from a given test set; error bars show the corresponding
standard errors (details in Online Methods). ‘DisoRDP w/o BLAST’ denotes DisoRDPbind without the use of the BLAST-based alignment. (B) PCC
values between the propensity scores generated by the pairs of RNA- (red dots), DNA- (green dots) and protein- (black dots) binding predictors listed
on the x and y-axes; results for the TEST114 and TEST36 data sets are shown above and below the dashed diagonal line, respectively; dot sizes are
proportional to the corresponding PCC value that are shown next to the dots. (C) Relation between length of protein chains (x-axis) and the runtime
(y-axis in the logarithmic scale) computed for proteins from the TEST114 and TEST36 data sets using a modern desktop; we include DisoRDPbind (solid
circles), ANCHOR (hollow triangles), and one iteration of PSI-BLAST (hollow circles); the solid black, solid gray and dotted black lines represent the
quadratic fit for DisoRDPbind, ANCHOR and PSI-BLAST, respectively.

DisoRDPbind over the complete H. sapiens proteome (42
426 chains) was 45 h, compared to the quadratic fit-based
estimates of 43 h and 261 days for DisoRDPbind and one
round of PSI-BLAST, respectively.

Validation on the whole proteomes

We applied DisoRDPbind to perform predictions for four
complete proteomes: H. sapiens, M. musculus, C. elegans
and D. melanogaster. DisoRDPbind predicted 2769 (2475),
1041 (2231), 722 (1241) and 792 (1140) proteins as the dis-
ordered RNA-binding (DNA-binding) in human, mouse,
worm and fly, respectively. The predicted RNA-binding
(DNA-binding) proteins have on average 32–37% (30–40%)
of disordered residues. This is substantially higher than the
average fraction of disordered residues in these four species
(Supplementary Table S2), which is consistent with prior re-
sults (1). We further assessed these predictions by quanti-
fying an overlap between the disordered RNA- and DNA-
binding proteins predicted by DisoRDPbind and the na-
tive RNA- and DNA-binding proteins from Gene Ontol-
ogy (53) (GO RNA and GO DNA sets), RBPDB(54), an-
imalTFDB(55) (Figure 3A) and binding proteins collected
from recent literature: DB RNA and DB DNA sets (Fig-
ure 3B) (we could not derive a precise and proportional
Venn diagram when considering all four data sets); see de-
tails in Materials and Methods and Supplementary Table
S2. Depending on the organism and the data set, between
11% and 21% of known RNA-binding proteins (i.e. 11–14%

from GO RNA, 16–21% from RBPDB and 12–14% from
DB RNA), and between 20% and 50% of known DNA-
binding proteins (i.e. 20–39% from GO DNA, 38–50% from
animalTFDB and 26–31% from DB DNA) were predicted
by DisoRDPbind. Our analysis (Figure 3C) reveals that
this overlap is between 1.6 and 6.2 higher (depending on
the organism and database) for the RNA-binding and be-
tween 3.5 and 10.6 times higher for the DNA-binding
when compared with the overlap for a random set of the
same number of proteins as we predicted. These differ-
ences are statistically significant and they suggest that our
predictions are plausible. Figure 3A and B show that ma-
jority of the predicted disordered RNA-binding (DNA-
binding) proteins are novel putative binders, i.e. not in-
cluded in GO RNA, RBPDB and DB RNA (GO DNA,
animalTFDB and DB RNA). These novel binders have
much lower levels of functional annotations (43% versus
79% for known binding proteins annotated in GO; see Sup-
plementary Table S4), which motivates our predictions. We
analyze an overlap between the annotations of their cellular
localizations and the cellular localizations that are signifi-
cantly associated with the known binding proteins (see Ma-
terials and Methods for details). We performed this analysis
in M. musculus, which has by far the most complete anno-
tations among the four species for the putative binders (see
Supplementary Table S4). About 50% (57%) of the cellular
localization annotations of the novel putative RNA (DNA)
binders overlap with the localization of the known binders.



e121 Nucleic Acids Research, 2015, Vol. 43, No. 18 PAGE 8 OF 10

Figure 3. Evaluation of predictions of the disordered RNA-, DNA- and protein-binding in the H. sapiens, M. musculus, C. elegans and D. melanogaster
genomes. (A) Venn diagrams of the overlap between the disordered RNA-binding (DNA-binding) proteins predicted by DisoRDPbind and the known
binding proteins collected from the GO RNA (GO DNA) and RBPDB (animalTFDB) data sets, respectively. (B) Venn diagrams of the overlap between the
disordered RNA-binding (DNA-binding) proteins predicted by DisoRDPbind and the known binding proteins collected from the GO RNA (GO DNA)
and from recently curated RNA-binding (DNA-binding) protein data set DB RNA (DB DNA), respectively. The area of the rectangles corresponds to
40% of size of a given proteome; The counts of proteins in a given data set and intersections of the data sets are given inside the corresponding rectangles;
(C) Median ratio between the actual overlap between the RNA-binding (DNA-binding) proteins predicted by DisoRDPbind and proteins annotated in
the GO RNA, RBPDB and DB RNA (GO DNA, animalTFDB and DB DNA), and the overlap of the proteins from these databases with a randomly
chosen set of proteins. The median ratio is over 10 repetitions with half of the data; error bars are 30% and 70% centiles; the number of chains in a given
database and percentage of overlap with the predictions of DisoRDPbind are given inside the bars; * means that the difference between the two values of
overlap is statistically significant at P-value < 0. 0005. (D) Median ratio (over 10 repetitions with half of the data; error bars are 30% and 70% centiles)
between the actual overlap between the cellular localizations of novel putative RNA (DNA) binders and the localizations that are significantly associated
with the proteins known to bind RNA from GO RNA, RBPDB and DB RNA (known to bind DNA from GO DNA, animalTFDB and DB DNA), and
the overlap in cellular localizations of the proteins from these databases with a randomly chosen set of proteins. This analysis was done in M. musculus
since annotation of localizations in other genomes were not sufficiently complete. The percentage of the overlap with the predictions of DisoRDPbind is
given inside the bars;* denotes that the difference between the two values of overlap is statistically significant at P-value < 0.05. (E) Relation between the
promiscuity of proteins in PPI networks collected from mentha and the number of the disordered protein-binding regions predicted with DisoRDPbind.
The relation was quantified with Pearson correlation coefficient (PCC) that is show inside the bars. Bars shows median ratio (over 10 repetitions with half
of data; error bars are 30% and 70% centiles) in logarithmic scale between these PCC values and the ‘random PCC’ where the promiscuity values were
shuffled; * denotes that the difference between the two values of PCC is statistically significant at P-value < 0.05.

This overlap is significantly higher than the overlap for a
randomly chosen set of proteins, with the increase by 1.35
and 2.15 times for the RNA-binding and DNA-binding, re-
spectively (Figure 3D). This suggests that the novel putative
binders could be correctly predicted.

We also assessed the DisoRDPbind’s prediction of the
disordered protein-binding on the four proteomes. We an-
alyzed relation between the promiscuity of a given pro-

tein, i.e. number of its protein partners in the PPI net-
work collected from the latest integrated database mentha
(59), and the number of its predicted disordered protein-
binding regions (see Materials and Methods for details).
The corresponding PCC values are 0.75, 0.57, 0.83 and 0.75
for the proteins from H. sapiens, M. musculus, C. elegans
and D. melanogaster, respectively (Figure 3D). We assessed
whether this observation is statistically significant by com-
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paring these correlations with the PCCs obtained when us-
ing proteins with randomized number of predicted disor-
dered protein-binding regions (see Materials and Methods
for details). Figure 3D shows that the original correlations
are at least 2.7 times higher than the ‘random’ correlations;
this increase is statistically significant. This suggests that
proteins with more predicted disordered protein-binding re-
gions generally interact with more protein partners, which is
consistent with prior results that hub proteins (that interact
with at least 10 partners) are enriched in disorder compared
to the proteins that interact with one partner (12,61).

We investigate whether the disordered protein-binding re-
gions predicted by DisoRDPbind intersect with the ELMs,
which are intimately involved in the PPIs (60) (see Materi-
als and Methods for details). We assume that they overlap
if at least one residue is located in both of these two regions.
Our analysis shows that 568 and 118 ELMs from H. sapiens
and M.musculus, respectively, are located in the disordered
regions, and 95–97% of them overlap with the disordered
protein-binding regions (see Supplementary Table S2). This
further supports our claim that DisoRDPbind provides ac-
curate predictions of the disordered protein-binding.

CONCLUSIONS

DisoRDPbind offers good predictive performance and
short runtime, which facilitates genome-scale applications.
Its outputs complement predictions of representative meth-
ods that were built using structured DNA- and RNA-
binding residues. Based on the analysis of genome-scale pre-
dictions, our method can be used to find new DNA- and
RNA-binding proteins. Predictions of disordered protein-
binding residues generated by DisoRDPbind are character-
ized by strong correlations, better predictive performance
and higher runtime when compared with the closest AN-
CHOR method. We confirm that promiscuity of proteins
in PPI networks is correlated with the number of their dis-
ordered protein-binding regions and demonstrate that 95%
of ELMs that are located in the disordered regions overlap
with our predictions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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