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Abstract

Disease modeling with induced pluripotent stem cells (iPSCs) is
creating an abundance of phenotypic information that has become
difficult to follow and interpret. Here, we report a systematic
analysis of research practices and reporting bias in neurological
disease models from 93 published articles. We find heterogeneity
in current research practices and a reporting bias toward certain
diseases. Moreover, we identified 663 CNS cell-derived phenotypes
from 243 patients and 214 controls, which varied by mutation type
and developmental stage in vitro. We clustered these phenotypes
into a taxonomy and characterized these phenotype–genotype
relationships to generate a phenogenetic map that revealed novel
correlations among previously unrelated genes. We also find that
alterations in patient-derived molecular profiles associated with
cellular phenotypes, and dysregulated genes show predominant
expression in brain regions with pathology. Last, we developed the
iPS cell phenogenetic map project atlas (iPhemap), an open
submission, online database to continually catalog disease pheno-
types. Overall, our findings offer new insights into the phenogenet-
ics of iPSC-derived models while our web tool provides a platform
for researchers to query and deposit phenotypic information of
neurological diseases.
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Introduction

Deep phenotyping complex human diseases has become increas-

ingly refined by our growing repertoire of molecular, genomic, and

computational tools, allowing for precise insights into the specific

biology of disease phenotypes and their underlying relationships

with genes, or phenogenetics. Despite these recent strides in optimal

data acquisition, the functions and phenotypic expression of most

genes are not currently known. Animal models have been used for

the deep phenotyping of complex neurological diseases (Imitola

et al, 2004; Sheen et al, 2004; Esposito et al, 2008); however, there

are inherent limitations since animals lack important cells and func-

tions that are present only in humans. The practice of in vitro neuro-

logical disease modeling with patient-derived cells (Kosik, 2015;

Orack et al, 2015) has enabled researchers to overcome these

evolutionary boundaries, thereby creating a renaissance of human

biology in vitro.

Obtaining patient-derived cells from induced pluripotent stem

cells (iPSCs) has provided the neuroscience field with the prospect

of generating cellular models that directly recapitulate the cellular

and molecular basis of human disease. In these neurological iPSC

models, especially from diseases due to somatic mutations, patient-

derived cells are compared to normal controls to detect abnormal

cellular characteristics, including differences in proliferation, dif-

ferentiation, overall cellular integrity, and function, as well as

molecular differences. Thus far, hundreds of patient-derived cells

have been generated, including neurons, neural stem cells (NSCs),

astrocytes, and oligodendrocytes and revealed hundreds of disease

phenotypes. However, as this large number of iPSC-derived pheno-

types continues to grow, it will be more challenging for researchers

in the field to track these phenogenetic relationships. Thus, docu-

menting the state and progress of this field will be increasingly
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important to reduce redundant work and highlight common, avoid-

able pitfalls.

Synthesizing this knowledge will also be critical in the search for

novel molecular mechanisms of devastating human diseases, espe-

cially in sporadic neurological diseases. Moreover, as the develop-

ment of therapeutic approaches by industry and researchers

requires a robust understanding of a targetable pathomechanism, it

will be highly advantageous to establish and catalog the overall

characteristics of these phenotypes, their degree of interconnectiv-

ity, their reproducibility, and the relationship among phenotypes

and genetic mutations, especially as drugs that target phenotypes

observed across multiple mutations of a disease will be most desir-

able. Therefore, the clinical and translational utility of these pheno-

types will depend upon their characterization, reproducibility, and

implementation. Currently, there is no such repository outlining all

the reported iPSC-derived neurological disease phenotypes thus far.

Hence, a comprehensive database of human CNS cellular pheno-

types and an organizing principle of the observed phenotypes and

correlated genes are required.

Here, we perform a systematic analysis of current field practices

and present a meta-analysis of iPSC-derived CNS cellular pheno-

types from neurological diseases. We used manual data mining to

extract disease phenotype data of mutant cells from the published

studies and combined them to make a field synopsis phenogenetic

map. We performed an extensive literature mining and systematic

analysis of 663 experimentally observed phenotypes from 71 dif-

ferent gene mutations in 31 adult and pediatric neurological disor-

ders. We synthesized this accrued information into an online

knowledge base, The iPS cell phenogenetic map project atlas

(iPhemap), that can be searched for curated information on pheno-

types found in human iPSC models of neurological diseases and

continually updated as new phenotypic information is generated.

Our publicly available map of cellular and molecular phenotypes

associated with iPSCs demonstrates novel functional relationships

among phenotypes and disease-promoting genes. The hundreds of

iPSC-derived phenotype–gene relationships catalogued in this study

may inform future experimentation to increase reproducibility and

rigor of using iPSCs in understanding disease mechanisms and guide

high-throughput screening to identify novel compounds to treat

neurological diseases.

Results

Heterogeneity of methodologies and reporting in neurological
disease models with human iPSCs

We included a total of 93 studies out of more than 110 studies initi-

ally screened, from which we collected data on phenotypes and

genotypes, encompassing 31 neurological diseases that span the

pediatric to adult population with a total of 71 gene mutations. We

established stringent criteria for the types of studies included in our

meta-analysis. These criteria can be found in the flowchart in

Fig EV1 and Materials and Methods. The details of the studies are

outlined in tabular form in Appendix Table S1 and include 16 cate-

gories of pertinent information.

First, we determined that 67% of the studies focused on the

investigation of neurodegenerative diseases and within this disease

group, we found that diseases with well-characterized somatic

mutations were more frequently reported, including Parkinson’s

disease (29%), amyotrophic lateral sclerosis (ALS) (18%), Hunting-

ton’s disease (16%), Alzheimer’s disease (11%), frontotemporal

dementia (FTD) (10%), and spinal muscular atrophy (SMA) (8%),

Comparably, we noticed that a large number of the articles model-

ing neurodevelopmental diseases (30%) studied Rett syndrome

(18%) (Fig 1A).

Next, we focused on the reporting of methods employed by

each respective study to examine the homogeneity of reporting

and field standards. We examined methods that enrich the robust-

ness and reproducibility of a phenotype. For instance, only a small

number of studies utilized isogenic lines, which are considered to

be a rigorous control where the mutations of patient cells are

corrected, n = 18, or have submitted gene expression profiles to

the Gene Expression Omnibus (GEO) database, n = 24, while more

than half of the studies used at least more than one control and

disease patient line, n = 49. Of note, only four studies utilized all

four of these methodologies (Fig 1B). Differences in the utilization

of these methodologies were observed across all journal types and

impact factors, demonstrating that there is no established standard

for the reporting of methods nor a defined minimal number of cell

lines.

We then analyzed whether there was a common level of similar-

ity in the description of their experimental procedures. Within the

93 studies examined, we identified seven types of categorical meth-

ods that were consistently used and we deemed them as the mini-

mal information about iPSC experiments (MiPSCE). Methodology

describing how a disease mutation was validated, such as with real-

time PCR, showed the most variability among studies; it was

reported in 52.7% of studies. Moreover, the inclusion of clinical

information of patients, methods describing isolation of primary

fibroblasts, or third-party cell repository information was provided

in 63.4% of analyzed studies. In contrast, the other five categories

were more consistently included, for instance, the methods for gene

delivery were reported in all studies, while the details describing cell

culture maintenance and procedures of iPSC generation were found

in 86 and 87% of studies. Furthermore, the procedures for differen-

tiating iPSCs to other cell types and for performing phenotypic

assays were made available in 88 and 96% of studies, respectively

(Fig 1C). Complete descriptions of the MiPSCE can be found in the

Materials and Methods.

Taxonomy and clustering of 663 iPS cellular phenotypic traits
from human iPSC-derived CNS cell types

Due to the fact that there is striking heterogeneity in the reporting

of experiments among the 93 independent studies, it may be

argued that based on the lack of uniformity, an analysis of the

resulting phenotypes is premature. However, we posit that the

collection and analysis of phenotypes culled by curation are

required to determine the true state of the field and its limitations.

Thus, we performed a comprehensive meta-analysis of phenotypes

from iPSC-derived CNS cell types from all 93 studies. First, we

extracted all the phenotypes, and in order to maintain the fidelity

of what was reported, we used the same semantic description to

avoid introducing interpretation bias. The manual curation resulted

in 663 distinct cellular phenotypes reported from 71 gene
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mutations. The goal of iPSC disease modeling is to capture relevant

pathological processes by classifying phenotypic traits observed

in vitro. Therefore, we conceived a taxonomy and grouped all the

observed iPSC-derived phenotypes, including the principles and

definitions that underlie such classification (Appendix Table S2 and

Fig EV2). We used exclusive terminology to group the extracted

phenotypic information and defined iPS cellular phenotypic traits

(iCPTs), as the distinct phenotypic characteristics of patient-derived

cells that are under the genetic influence of the inherited somatic

mutation, present in all progeny of the iPSC-derived CNS cell types.

These iCPTs were grouped into a set of nine clusters, where each

category has its own distinctive definition, comprising all 663

phenotypes, including the following: decreased cellular processes

and products (37%), increased cellular processes and products

(35%), impairment of expected cellular functions (5%), increased

susceptibility to chemical exposure (5%), presence of abnormal

cellular structures (6%), accumulation of molecules (5%),

decreased susceptibility to chemical exposure (2%), rescue/recov-

ery from disease phenotypes after chemical treatment (4%), and

absence of expected normal phenotypes (1%) (Figs 2A and EV2).

Overall, the 663 phenotypes were associated with 42 independent

genes, which were mapped by their distinct phenotypic clusters to

the human genome (Fig 2B).

Phenotypic clusters of distinct patient-derived cells

Within neurological diseases, cells other than neurons may be

altered, which can be generated in vitro to model non-neuronal

cellular mechanisms that contribute to neurodegeneration. For

instance, in ALS, investigation of patient-derived astrocytes has

revealed that the accumulation of abnormal proteins in the mutant

astrocytes can be toxic to neurons (Di Giorgio et al, 2007). In our

A

B C

Figure 1. Diversity of methods utilized to model neurological diseases using patient-derived iPSCs.

A Pie charts illustrating the percentage distribution of disease groups and specific diseases.
B Venn diagram showing unique and shared experimental techniques among the examined articles.
C Minimal information about iPSC experiments (MiPSCE). Percentage of studies with or without the information for each category is depicted by color. Complete

descriptions of the categories can be found in Materials and Methods. SMA, spinal muscular atrophy; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal
dementia.
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A

B

Figure 2. Distribution of phenotype clusters and ideogram of iPSC phenotype–genotype associations.

A Taxonomy of classes from 663 iPSC-derived cellular phenotypes.
B Chromosomal maps illustrating the locations of the 42 mappable loci involved in this study. Locus label colors are indicative of the phenotype class observed for each

respective locus. These colors were used in the succeeding figures.
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analysis, patient-derived cells are comprised of neurons, oligoden-

drocytes, astrocytes, NSCs, and iPSCs. To gain insight into how the

different patient-derived cell types and phenotype clusters are

related, we formulated their relationships in a distribution and

Circos plot (Fig 3). In comparison with neurons, which exhibit all

phenotype classes, the distribution plot revealed that other cells like

iPSCs, NSCs, and astrocytes lack the presence of phenotype classes

such as “rescue/recovery from disease phenotypes after chemical

treatment,” observed mostly in neurons. Rather, the phenotype

classes, “increased” and “decreased cellular processes and prod-

ucts” comprise the majority of phenotypes reported in the patient-

derived CNS cells, excluding oligodendrocytes (Fig 3A and

Appendix Table S3). In the Circos plot, which allows for visualiza-

tion of the distributions of phenotypic clusters within each patient-

derived CNS cell type and vice versa, the neuronal phenotype

ribbons are greatest on account of the large number of experiments

that reported phenotypes observed in patient-derived neurons

(Fig 3B). However, given the small number of studies that modeled

patient-derived glial cells, the smaller ribbons and absence of certain

phenotypic clusters may be an artifact of field practices, opposed to

the true state of these diseased cells. Therefore, to normalize our

phenotypic findings by cell type, we compared the total number of

phenotypes observed in a given cell type to the total number of

studies studying that particular cell type. We found that oligoden-

drocytes had a slightly higher number of phenotypes by studies,

followed by neurons (Fig 3C).

Phenotype and genetic mutation correlates during in vitro
differentiation of iPSCs

Next, we generated a heatmap displaying the relationships between

specific in vitro cellular developmental stages of patient-derived

cells (i.e., from iPSCs to neurons) and genetic mutations in 31

neurological diseases (Appendix Fig S1 and Table S4). To display

the trend of our raw heatmap, we quantified the numbers of pheno-

types by the types of diseases and cells included in our analysis

(Fig 4A). Notably, we observed a disparity in the emergence of

reported disease phenotypes between neurodegenerative and

neurodevelopmental disorders. In neurodegenerative disorders like

Parkinson’s, Alzheimer’s, and ALS, phenotypes were chiefly identi-

fied at the neuronal stage, with the exception of one iPS cell line

with a mutation in PSEN1 and one line with mutant FUS (Fig 4B–F).

Indeed, the majority of studies investigated iPSCs compared to

neurons, but failed to find phenotypes in Parkinson’s disease (PD),

Alzheimer’s disease (AD), and ALS iPSCs (Nguyen et al, 2011; Yagi

et al, 2011; Liu et al, 2012; Sanchez-Danes et al, 2012; Chen et al,

2014; Muratore et al, 2014; Sanders et al, 2014; Schondorf et al,

2014). The lack of observed phenotypes shows that some, if not all,

of the phenotypic outcomes in these diseases occur after differentia-

tion into specific cell types. This phenotypic behavior in vitro may

model the pathological presentation seen in the human brain, when

disease begins in mature neurons and astrocytes that builds up over

time. Surprisingly though, this developmental disparity was not

present in all neurodegenerative diseases as studies modeling Hunt-

ington’s detected phenotypes in iPSCs (Jeon et al, 2012; Guo et al,

2013), which may suggest an early developmental component that

is clinically unappreciable (Fig 4G). In contrast, both iPSCs and

mature cell types derived from patients with mutations in genes

linked to neurodevelopmental disorders, like DMPK, ERCC6, and

MECP2, were altered and exhibited phenotypic abnormalities

(Fig 4B–G). Mutations in neurodevelopmental diseases may affect

early stages of differentiation, perhaps due to a more pleotropic role

of the mutated gene, leading to a severe dysregulated molecular

network, cellular phenotypes, and consequently an early clinical

phenotype as seen in Menkes and Pompe disease (Marsden, 2005;

Tumer & Moller, 2010).

We also attempted to further analyze if certain mutations show

more phenotypes in specific neuronal populations (Hu & Zhang,

2009; Liu et al, 2013). We first examined neurons by the type of

neurotransmitter they utilize and found that only eleven studies

reported such neuronal phenotypes. Despite this limitation, we

noted that the majority of phenotypes observed in dopaminergic

neurons were from PD-associated mutations, n = 22, while GABAer-

gic and glutamatergic phenotypes varied among diseases. Likewise,

we gathered that only two studies reported phenotypes in region-

specific neurons, including forebrain and midbrain neurons. This

analysis, while clearly limited by its small sample size, points to the

opportunity for future studies to investigate how particular subpop-

ulations of CNS cell types contribute to disease pathology.

Next, we examined the frequency of phenotypes observed in

disease-associated mutations. Increased oxidative stress in neurons

was the most observed in vitro phenotype across different muta-

tions, followed by accumulation of a-synuclein and increased

excitability in neurons (Fig 4H). Conversely, we quantified the

number of phenotypes by genes and found that LRKK2, n = 62,

HTT, n = 56, and APP, n = 53, exhibited the highest number of

distinctive reported phenotypes, followed by MAPT, GBA1, and

SMN1. (Fig 4I). However, a caveat of this finding is that these genes

with many phenotypes may be a product of being more frequently

investigated.

Network biology analysis of relationships between phenotypes
and genes

To further study the association between phenotypes and geno-

types, we applied network biology to determine associations

between genes and iPSC-derived phenotypes. We computed the

degree of association among genes and the collected iCPTs and

demonstrated that this network exhibited properties consistent with

a scale-free network by fitting a power law to the node degree, topo-

logical coefficient, and neighbor connectivity distributions, which

exhibited significant P-values (Appendix Fig S2). Next, we generated

a phenogenetic map based on the network analysis. Phenotypes are

color-coded according to their pathological category and numbered

based on the 663 distinct phenotypes (Fig 5 and Appendix Table S5).

Consistent with the expectation of network biology, a majority of

the genes show few phenotypes, but a few genes behave as “hubs”

showing a high degree of connectivity to many phenotypes. In

addition, multiple phenotypes connect distinct hubs of genes that

may belong to the same or different diseases (Fig 5). Other gene

and phenotype sub-networks are not connected and remain separate

from the highly overlapping network. The complete map is depicted

in Appendix Fig S3.

In this analysis, we found 73 phenotypes expressed across 27

different gene loci (Fig 5). These genetic associations are based

upon the similar occurrence of observed phenotypes in more than
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one gene, and we refer to them as overlapping phenotypes. We

observed 55 overlapping phenotypes between genes in neurons

alone (Appendix Table S6). Several overlapping neuronal

phenotypes were singular to a disease, such as an increase in

a-synuclein, which was shared by all Parkinson mutations, while

increased oxidative stress, in contrast, overlapped with multiple

A B

C

Figure 3. Phenotypic classes by patient-derived cell type from 663 annotated phenotypes and phenotype: paper metric.

A Distribution of the phenotype classes within each CNS cell type with total number of phenotypes listed above each respective column.
B Circos plot of phenotype classes by cell type and vice versa is depicted by connecting ribbons, with the width of each band proportional to the percent composition

and the top-most ribbons highlighted. The neuronal ribbons (blue) were found to connect to and be largest for almost every phenotypic class. The outer track
indicates the numeric percentage of phenotypic classes comprising each cell type.

C Metric of total phenotypes per cell type with respect to the total number of studies that investigated that particular cell type.
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diseases and mutations. (Appendix Table S6). The phenotypes

spanning multiple diseases revealed novel associations, such as

decreased neurite outgrowth in neurons, associated with mutations

in HTT, SMN1, and LRRK2, which have not been related previously.

Another new association was increased excitability in neurons,

correlating with disease-causing mutations in C9ORF72, SCN1A,

TDP-43, and SMN1. (Appendix Table S6). Overlapping phenotypes

were also found in other patient-derived cell types. For instance,

astrocytes and NSCs were found to show correlation between

intranuclear RNA foci in cells carrying genetic defects in DMPK and

C9ORF72 (Appendix Tables S7 and S8). In oligodendrocytes, the

overlapping phenotypes were metabolic alterations associated with

Leukodystrophy mutations (Appendix Table S9). Notably, no over-

lapping phenotypes were seen in iPSCs.

We also studied phenotypes that were most associated with gene

mutations responsible for a specific disease or concordant pheno-

types. For example, in Alzheimer’s disease, we noted that all associ-

ated genes (APP, PSEN1, and PSEN2) were reported to show an

increase in Ab in neurons (Fig EV3A). In addition, we detected one

AD-linked gene, APP, to be most concordant with an AD cell line

derived from a sporadic-diseased patient with no known mutation,

or “Sporadic” in Fig EV3A and Appendix Table S10, the only

sporadic line included in our analysis of iPSCs with somatic muta-

tions. The two genotypes show seventeen phenotypes spanning

multiple cell types, such as increased levels of ER stress in astrocytes

and increased levels of binding protein (BiP) in neurons, suggesting

that even sporadic disease may share phenotypic alterations with

the genetic-driven disease. Moreover, we observed that some genes,

such as LRRK2 and PINK1, both linked to PD, share more concor-

dant phenotypes, n = 10, than other PD-associated genes

(Fig EV3B). The phenogenetic network not only provides new infor-

mation, but solidifies previously established genetic associations

based on disease types, as shown by the multiple connections

between the PINK1 and LRRK2 loci (Figs 5 and EV3, and

Appendix Fig S3).

Phenotype and gene ontology comparison

Gene ontology is defined as the functional annotation of phenotypes

from individual genes that help to determine their function

(Ashburner et al, 2000). We investigated the novelty of our pheno-

type–gene associations and observed a number of phenotypes

already established in gene ontology databases. For example, TDP

inclusions (P = 9.33 × 10�14) in our study corresponded to forma-

tion of cytoplasmic inclusions (P = 6.02 × 10�4) in gene ontology

(Table 1 and Fig EV4). However, there are a significant number of

associations, n = 15, that were novel, suggesting that our analysis is

expanding the phenotype ontology pool for these human mutations,

which could lead to an enrichment of the gene ontology for these

genes in the context of human iPS cell models.

Phenogenetic relationship between molecular and cellular
phenotypes in patient-derived cells

We were interested in establishing relationships between molecu-

lar and cellular phenotypes and determining if the in vitro develop-

mental phenotypic disparity between neurodegenerative and

neurodevelopmental disorders would be preserved at the molecu-

lar level, since altered gene expression may be the substrate for

cellular alterations. Although the purpose of this analysis was not

to imply causality, this correlation is nonetheless important to

demonstrate how molecular phenotypes can be used as a tool to

inform future cellular phenotype assays, especially considering

that analysis of cellular phenotypes may be technically challenging

and impacted by experimental noise. We made use of the GEO

where studies deposited transcriptome data. The analysis was

limited by the small number of studies that had published expres-

sion data, n = 24, and from these, only 10 studies fulfilled our

inclusion criteria. The full details of our criteria can be found in

the Materials and Methods section. Briefly, it is required that such

an analysis was not published in the original study and the expres-

sion data from at least three patient-derived and three control cells

were available (Appendix Table S1). We then performed the

functional analysis of molecular profiles and displayed the data in

treemaps.

First, we examined iPSCs containing mutations linked to

neurodegenerative disorders. For example, iPSCs containing LRRK2

mutations show some minor abnormalities in their gene expression

profile as we documented STRN3, a gene involved in dopamine

receptor signaling, to be most upregulated (Osterhout et al, 2015).

These subtle changes correlated with the absence of reported cellu-

lar phenotypes (Appendix Fig S4B). Similarly, iPSCs with SNCA

mutations show slight downregulation of genes and of molecular

pathways, like dopamine signaling, but lacked any reported cellular

phenotypes (Appendix Figs S4C and D, and S5A and B). These anal-

yses reveal minor alterations in genes and pathways in cells without

observed cellular phenotypes.

In contrast to the PD-linked genes, iPSCs derived from

patients with FXN, HTT, and ERCC6 mutations were significantly

altered at both the molecular and cellular levels (Appendix Figs

S4E–J and S5C–D). For instance, iPSCs derived from patients

with ERCC6 mutations show many changes to their gene

▸Figure 4. Quantification of phenotypes by genes and developmental stage.

A Schematic diagram depicting developmental timeline of iPSC-derived cells included in analysis.
B–F Percent distribution plots of (B) iPSC, (C) NSC, (D) astrocyte, (E) oligodendrocyte, and (F) neuronal phenotypes reported for genes linked to neurodegenerative,

neurodevelopmental, or other (psychiatric and viral-induced) disorders. Each data point represents a specific disease. One-way analysis of variance (ANOVA) with
Bonferroni multiple comparisons tests was performed (NDeg, n = 13; NDev, n = 15; Other, n = 3). Data are expressed as mean percentage � s.e.m., *P < 0.05,
**P < 0.01.

G Distribution of phenotypes by pluripotent, progenitor, and postmitotic cell type for Alzheimer’s disease (AD), Parkinson’s (PD), Huntington’s disease (HD), and Rett
syndrome. Two-way ANOVA with Tukey’s multiple comparisons test was performed. *P < 0.05.

H Quantification of number of genes observed by phenotype.
I Quantification of observed phenotypes per gene.
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expression, such as to CYP26A1 and CXCR4, which both are

involved in the migration of progenitors in the developing brain

(Stumm et al, 2003) (Appendix Fig S4G and H). Comparable to

the observed molecular phenotypes, these cells show a great

number of cellular phenotypes, which although is not causative,

implies an association between alterations in molecular and

cellular phenotypes.

We then determined the association between molecular and

cellular phenotypes in neural cells to determine if genes linked to

neurodevelopment and neurodegeneration would both show

marked molecular abnormalities, reflecting the presence of their

many cellular phenotypes. Indeed, we observed that NSCs with

LRRK2 mutations displayed abnormal molecular phenotypes,

exhibiting upregulation of genes associated with apoptosis and nitric

oxide processes (Appendix Figs S6 and S7). Finally, neurons from

patients with SNCA, SMN1, and DISC1 mutations show altered

expression of genes involved with chromatin, survival, and genome

stability (Fig 6A–E). For instance, neurons from schizophrenia

patients with mutated DISC1, which is thought to have a neurode-

velopmental dimension to its pathology (Walsh et al, 2008), show

downregulation of metabolic pathways and LAMA2, a gene in

which de novo mutations have been identified in cases of sporadic

schizophrenia (Xu et al, 2012) (Fig 6D and Appendix Fig S8). Unlike

iPSCs from patients with neurodegenerative disorders, these mature

cells exhibited an increased number of cellular phenotypes that

correspond to the altered genes and pathways, further suggesting

that these molecular changes may be the substrate of cellular

phenotypes and maintain this developmental stage disparity

(Appendix Fig S3 and Fig 4).

Spatiotemporal localization of in vitro dysregulated gene
expression in the human brain

Next, we asked if transcriptional dysregulation seen in vitro corre-

sponded to a spatial and temporal expression patterning in the

human brain, which could indicate that dysregulated gene networks

observed within patient-derived cells in vitro correlate with a correct

spatiotemporal localization of gene expression seen in vivo during

the disease. Using the Allen Brain Atlas, we examined the expres-

sion pattern of the top 191 most dysregulated genes in diseased iPS-

derived cells compared to controls from the available GEO datasets

(Appendix Table S11). We performed a cluster analysis with the

Figure 5. A network view of overlapping phenogenetic associations.

The network view was built by combining genetic and phenotypic associations. Diamond nodes represent gene loci and are labeled in red while elliptical nodes indicate
phenotypes, which are colored by their phenotypic class as described by Fig EV2. Each phenotypic node is represented by a distinct number and, for identification purposes,
can be found in Appendix Table S10. The full version of this network, generated through an identical method of analysis, is included in Appendix Fig S3.
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hypothesis that the dysregulated gene networks of iPS-derived CNS

cells in vitro belong to discrete areas of the brain associated with the

pathology of the disease where endogenous CNS cells reside.

First, we focused on dysregulated genes from iPSCs. For exam-

ple, the adult brain heatmap of iPSCs with FXN mutations shows

increased expression in the myelencephalon and pons, two brain

regions affected in patients (Koeppen & Mazurkiewicz, 2013) with

Friedreich’s ataxia (Appendix Fig S9C). Likewise, in the adult brain

heatmap of iPSCs with mutated SNCA, a majority of the genes are

highly expressed in regions associated with Parkinson’s pathology,

like the globus pallidus (Hardman & Halliday, 1999) (Appendix

Fig S9F).

To determine if this localization was maintained in differentiated

progeny, we next studied NSCs with mutant LRRK2 and observed

increased expression of dysregulated genes in the cerebellum (Seidel

et al, 2017), mesencephalon, and myelencephalon (Qamhawi et al,

2015), where significant PD pathology is observed, particularly in

the substantia nigra pars compacta, in the prenatal and adult brain

heatmaps. Interestingly, this dysregulated gene expression localizes

in the late months and years of the developmental transcriptome,

consistent with the degenerative component of Parkinson’s

pathology (Fig 7A–C). Last, we examined the localization of gene

expression from patient-derived neurons with mutant DISC1. In line

with the neurodevelopmental model of schizophrenia, the dysregu-

lated genes are highly expressed in the cortex and SVZ of the prena-

tal brain and during the weeks of postconception, suggesting the

involvement of this gene in neural progenitors and the microarchi-

tecture of the brain. Similarly, in the adult human brain, there is

high gene expression in the CA1 region of the hippocampus, where

disease pathology is found (Schobel et al, 2009) (Fig 8A–C). Alto-

gether, these data suggest that the neuropathological behavior of

these dysregulated networks is faithfully encoded in patient-derived

cells in vitro, spanning from iPSCs to neurons.

A web database for the phenogenetic map from iPSC-derived
cellular phenotypes

To provide this information to the scientific community, we

designed a web platform: www.iPhemap.org that will make the

curated collection of phenotypes available to the public (Web

Resources EV1). This web platform has a user-friendly interface that

can be searched for all reported cellular phenotypes, in addition to

Table 1. Association of phenotype ontology and gene ontology.

Phenotype ontology term Gene P-value Gene ontology functional annotation P-value

SMN protein SMN1 5.50 × 10�15 Absent Absent

Ab protein PSEN1 6.66 × 10�14 Absent Absent

Interferons UNC-93-B 9.33 × 10�14 Absent Absent

TDP inclusions TDP-43 9.63 × 10�14 Formation of cytoplasmic inclusions 6.02 × 10�4

Neurofilaments SOD1 4.79 × 10�10 Formation of neurofilament inclusions 1.09 × 10�4

Caspase-4 APP 4.79 × 10�10 Absent Absent

RNA foci C9ORF72 1.12 × 10�9 Absent Absent

Motor neurons SOD1 3.31 × 10�9 Neurodegeneration of motor neurons 3.28 × 10�4

Glutamatergic neurons MeCP2 3.47 × 10�9 Absent Absent

Binding immunoglobin protein APP 1.35 × 10�7 Absent Absent

Cellular autophagy NPC1 3.23 × 10�7 Autophagy 1.66 × 10�2

Glutathione PINK1 4.50 × 10�7 Absent Absent

ATP levels HTT 5.17 × 10�7 Depletion of ATP 2.74 × 10�4

Mitochondrial membrane PINK1 5.69 × 10�7 Function of mitochondria 7.66 × 10�4

Tau filaments APP 2.75 × 10�6 Generation of tau filament 1.09 × 10�4

Nuclear morphology LRRK2 1.16 × 10�5 Organization of nuclear envelope 4.38 × 10�4

Neural rosettes ATP7A 7.51 × 10�5 Absent Absent

GABAergic neurons SCN1A 7.51 × 10�5 Absent Absent

Lamin LRRK2 1.35 × 10�4 Absent Absent

Ab protein APP 1.85 × 10�4 Aggregation of amyloid fibrils 5.47 × 10�5

Alpha-Synuclein SNCA 2.06 × 10�4 Absent Absent

Increased susceptibility to chemical exposure LRRK2 4.13 × 10�4 Absent Absent

Caspase-3 activation LRRK2 4.57 × 10�4 Absent Absent

Cellular autophagy GBA1 1.90 × 10�3 Absent Absent

Motor neurons SMN1 2.85 × 10�3 Loss of motor neurons 2.74 × 10�4

Table comparing phenotype ontologies and gene ontology functional annotations with respective P-values. If the phenotype ontology was not reported in the
current gene ontology, it was termed “Absent”.
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molecular phenotypes when available (Web Resources EV1).

iPhemap will be continually updated by the database’s curators with

the goal of maintaining all the phenotypes reported from iPSC

models of neurological diseases.

Discussion

The field of iPS modeling of neurological diseases is a nascent field

that continues to evolve with improved and novel methodologies,

which introduces variation to practices and techniques among the

field. One might argue that a field synopsis is premature given the

early state of the iPSC field; however, we posit that due to lack

of homogeneity, a systematic assessment of the practices and

accumulated knowledge of phenotypes in this field are necessary.

Here, we report a systematic analysis of the correlation of 663

neuronal phenotypes with genotypic data from 243 patients and 214

controls, creating a public repository that catalogs current CNS

cellular phenotypes in the field of patient-derived models of

neurodegenerative and neurodevelopmental disease (http://www.

iPhemap.org). Our analysis provides a taxonomy of phenotypes

from patient-derived iPSC models of neurological diseases and their

distribution by developmental stage. The network we generated not

only shows overlapping phenotypes and the degree of association

between cellular and molecular phenotypes, but also illustrates

opportunities to develop better phenogenetics of iPSC-derived cells

associated with human pathology. Our web resource provides a tool

for cataloging the phenogenetic correlations of human neurological

A B

C E

D

Figure 6. Phenogenetic correlation of neurons in neurodegenerative and neurodevelopmental disorders.
Representative treemaps of genes linked to neurodegenerative and neurodevelopmental diseases show significant molecular alterations at the neuronal level, reflecting the
presence of reported cellular phenotypes and therefore high phenogenetic correlation.

A Downregulated functional annotation of neurons with mutant SMN1.
B, C (B) Downregulated and (C) upregulated functional annotations of neurons with mutated SNCA show decreased expression of SUV39H1, a regulator of neuronal

survival (Liu et al, 2005), and upregulation of AGPS, a gene involved in lipid biosynthesis (Brites et al, 2004), respectively.
D, E Neurons containing DISC1 mutations show (D) downregulation of genes associated with neurogenesis, like OTX2 (Puelles et al, 2004), and (E) upregulation of gene

expression, including NEDD4L, related to neurotransmission (Laedermann et al, 2013).
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A

B

C

Figure 7. Spatial and temporal expression patterning of dysregulated genes from NSCs in vivo.

A–C Heatmaps show localization of dysregulated gene expression from NSCs with mutant LRRK2 in the (A) developing cortex (CP) and progenitor zones (IZ, SVZ) of the
prenatal human brain, (B) temporal expression predominates in the brain during the late months of development through the years of adulthood, and (C) spatial
gene expression in the adult human brain localizes to the mesencephalon (Mes), myencephalon (My), and cerebellum (Cb). CP, Cortical plate; Cx, Cortex; CxN,
Subcortical Nuclei; Die, Diencephalon; HPC, Hippocampal Formation; HTS, Hindbrain transient structures; IZ, Intermediate zone; Met, Metencephalon; Mos.,
Months; MZ, Marginal zone; SG, Subpial granular zone; SP, Subplate zone; SS, Sulci and spaces; SVZ, Subventricular zone; WM, White Matter.
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C

Figure 8. Spatial and temporal expression patterning of dysregulated genes from neurons in vivo.

A–C Heatmaps show localization of dysregulated gene expression from neurons with mutations in DISC1 in the (A) developing cortex (CP, SP) and progenitor zones
(SVZ) of the prenatal human brain, (B) temporal expression predominates in the early and late weeks of postconception brain during development, and (C) spatial
gene expression in the adult human brain localizes to the subcortical nuclei (CxN). CP, Cortical plate; HTS, Hindbrain transient structures; IZ, Intermediate zone;
Mos, Months; MZ, Marginal zone; SG, Subpial granular zone; SP, Subplate zone; SS, Sulci and spaces; SVZ, Subventricular zone.
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diseases modeled by iPSCs and a platform to track the relevant,

novel CNS cellular phenotypes to improve upon existing phenotypic

assays for drug development and to better understand human

disease pathogenesis.

The present analysis includes work that fulfilled stringent inclu-

sion criteria and highlights the need for a set of criteria of repro-

ducible, minimal information for reporting iPS cell models, given

the experimental noise imposed by lack of standardized protocols in

the field (Brennand et al, 2015).

The need for minimal information about iPSC experiments
(MiPSCE) in neurology

One hurdle for modeling neurological diseases with iPSCs is the

use of the molecular and cellular phenotypes obtained from these

cells as reproducible and scalable metrics to discover pathways

in the dish for therapeutic purpose. Our analysis has proven that

there are phenotypic differences between patient-derived CNS cell

types compared to controls, which can be reproducible, espe-

cially the most frequently assessed. From the 93 primary studies

generating iPSCs included in our analysis, 35% were conducted

with three or more patient cell lines, 42% with two lines, and

23% were done with only one line. Likewise, the number of cell

lines derived from each patient varied markedly as well, all

supporting the need for minimal standards in the reporting of

iPSCs models.

To further develop the phenogenetics of iPSC-derived cell types,

experiments must test the sensitivity and specificity of cellular

phenotypes for a particular cell and disease to assess the minimal

number of patients and cell lines needed to reach definitive conclu-

sions. These efforts cannot be realistically undertaken by a single

laboratory and may need the efforts of consortia and scientific asso-

ciations in stem cell research. We do anticipate though, that as

several iPS cell banks continue to grow, laboratories will have

increased access to cell lines, enabling the majority of future experi-

ments to make use of more than one diseased and control line to

increase the robustness of their findings. In our analysis, we

observed a lack of uniformity in not only the methodology utilized,

such as differences in cell culture conditions, but also in the report-

ing of iPSC differentiation experiments, including the documentation

of fate, yield, and purity of the derived cell types. The future inclu-

sion of such data from differentiated cultures may help address the

need for a standard set of criteria to define a given cell type, perhaps

with thresholds of purity defined by marked expression and physio-

logical measures, which would increase the reliability of comparing

reported phenotypes, for it is unclear whether these differences can

affect the phenotypes and gene expression of the derived cells

(Fig 1). As such, the establishment of standards will improve

reproducibility and standardize methodologies among different

laboratories.

We extracted seven categories that comprise the minimal infor-

mation we found useful throughout curation and suggest their adap-

tation for future iPSC studies (Fig 1). Based on our analysis, we

have established this minimal information that should be included

in all future studies, which also integrates prior efforts to homoge-

nize iPSC field practices (Luong et al, 2011) (Materials and Methods

and Appendix Table S12). In addition to our suggested MiPSCE, we

have proposed that future work in the iPSC field will leverage

big-data techniques in a community wide effort to establish reliable

and comparable datasets, allowing for researchers to draw conclu-

sions of the phenogenetic nature from multiple iPSC lines (Del Sol

et al, 2017).

In general, improved measures of phenotypic assays and stan-

dardizing culture conditions in iPSC experiments would enhance

phenotype analyses of human cells, a strategy that has been

successful in the phenogenetics of Caenorhabditis elegans and

Arabidopsis thaliana (Kuromori et al, 2006; Atwell et al, 2010).

In the future, by accumulating more phenotypes in mutated cells

from human neurological diseases, we can build more complete

phenogenetic maps. This is crucial as our current early pheno-

genetic map contains an unavoidable, inherent bias toward

diseases and mutations that were more frequently investigated in

the literature. Furthermore, there may be a bias in which pheno-

types were probed for due to assays that were better adapted for

use in iPSCs or phenotypes that have previously been reported

in animal, postmortem, and primary cell culture studies (Fig 1A).

This potential bias may have influenced our current set of over-

lapping phenotypes as investigators may have been more

inclined to test for phenotypes based on prior work, thereby

diminishing the potential for phenotypes to link genes from dif-

ferent diseases. Therefore, expanding which phenotypes are

tested for, outside the scope of past studies, will further enrich

phenogenetic analyses.

Utility and limitation of the atlas and translational challenges of
the iPSC phenotype field

Our phenogenetic map is limited to neurological diseases caused by

somatic mutations; thus, it should be considered an early effort that

will be enriched and refined by additional work of the field as

evidenced by the evolution of other mapping efforts (Kuromori

et al, 2006; Atwell et al, 2010), such as the inclusion of complex

genetic disorders caused by copy number variants (CNVs), single

nucleotide polymorphisms (SNPs), and other low-penetrance muta-

tions. It will be very difficult to anticipate if in vitro patient-derived

models will ever replace other models of neurological diseases;

however, human iPS modeling could have practical translational

utility. For instance, the identification of overlapping phenotypes

among diseases that are thought to have distinct pathologies would

reveal mutually, disrupted cellular processes that may be responsive

to similar therapies, indicating that a single phenotype can be used

as a potential biomarker, an “inter-disease biomarker,” for diverse

in vitro models of neurological diseases. Furthermore, the elucida-

tion of concordant phenotypes within a specific disease would allow

for the anticipation of disease phenotypes in a patient when the

specific genetic mutation is unknown. These concordant phenotypes

may be used to create phenotypic assays to detect a particular

disease in vitro, as an “intra-disease biomarker”. For example, the

increase in Ab observed in all of the mutations linked to Alzheimer’s

disease can also be seen in late onset Alzheimer’s disease (LOAD)

and while this finding may not be surprising, it does, however,

demonstrate that concordant iPSC phenotypes are robust tools for

studying disease. Comparably, an increase in a-synuclein, reported
in the majority of the mutations linked to Parkinson’s disease, could

be utilized as a predictive phenotype signature in the sporadic

disease-induced cells.
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One critical question in iPSC modeling is if it is more relevant to

replicate findings to increase the sensitivity or specificity of in vitro

phenotypes as biomarkers or to find novel phenotypes with

unknown specificity. Although costly, confirming the presence of

disease-specific phenotypes in multiple cell lines with distinct

genomes will reduce the contributions of experimental noise and

limit the effect of spurious variation expressed by a single line. It is

impractical for a single group to undertake such a prospective analy-

sis, rather a concerted effort through a consortium may have the

necessary resources. Additionally, the continued practice of our

retrospective assessment of phenogenetic “level of evidence,”

defined as the number of cell lines with different mutations in a

gene expressing a particular phenotype, may also help in validating

disease-specific phenotypes (Appendix Table S10). Moreover, inves-

tigation of the relationships between sporadic and existing muta-

tion-induced phenotypes can help to reveal important mechanistic

information about sporadic diseases, especially when the intrinsic

neuronal mutation has yet to be established, like in multiple sclero-

sis (Douvaras et al, 2014; Orack et al, 2015), or in diseases where

CNVs provide a modest risk factor for susceptibility, like autism, or

mental disorders, like schizophrenia (Brennand et al, 2011; Wen

et al, 2014; Srikanth et al, 2015).

Our analysis and taxonomy serve as a potential resource for

tracking the most relevant cellular and molecular phenotypes in

modeling neurological diseases using iPSCs and could inform future

strategies to regulate pathways altered at the cellular level in vivo

through pharmacological targeting of disease-associated traits. More

importantly, a catalog of the ever-increasing number of mutant

phenotypes into a new taxonomy of iPSC-derived phenotypes will

aid future large-scale phenotype analysis in neurological disorders

by correlating multilayer -omics information from the clinical, radio-

logical, cellular, and molecular data of patients. Our analysis will

Figure 9. Novel principles of phenogenetic correlations of iPSC-derived cellular phenotypes derived from patients included in our meta-analysis of iPSC
models of neurological disorders.
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also be useful as we build novel algorithms to determine the robust-

ness of iPSC results, including factors such as power, validation,

and replication by independent assays, which over time can reject

spurious phenotypes from the less optimally designed experiments.

The future of using patient-derived neural cells should aim to

develop and study the iPSC phenotypes that are relevant for human

neurological diseases. Therefore, the further refinement and replica-

tion of induced neural disease phenotypes are critical for modeling

the spectrum of neurological diseases.

Conclusions

In summary, we examined the current iPSC field practices of

modeling neurological diseases and carried out a comprehensive

analysis of the phenogenetic relationships of patient-derived cellu-

lar models of neurological diseases and catalogued them in the

iPhemap database. Although the results obtained in our analysis

are retrospective, our findings illustrate the presence of diverse

practices within the field. We posit that a retrospective analysis,

like a mid-term examination, now 10 years after the discovery of

iPSCs, is needed to improve the reproducibility of the field, espe-

cially as we are now investigating the role of genetic variation, such

as SNPs, in genomewide association studies (GWAS) (Sweet, 2017)

of in vitro iPSC phenotypes using multiple patients. Importantly,

we identify areas of opportunity to improve the reproducibility of

experimental results and to increase the translational utility of

models. Finally, we propose, for the first time, a set of principles

for the phenogenetic analysis of in vitro models of human diseases

with iPSCs (Fig 9), which may be expanded and revised with future

work (Movie EV1).

Materials and Methods

Methods summary

We examined a total of 93 iPSC studies in modeling neurological

diseases including neurodegenerative and neurodevelopmental

disorders that fulfilled the inclusion and exclusion criteria. The

inclusion criteria were as follows: (i) Studies that used iPSCs

derived from human patients to investigate cellular phenotypes

caused by neurological diseases. (ii) Studies that specify disease

and gene mutation of all iPSCs and any additional differentiated

cells under investigation. (iii) Studies that specify type of control

cells lines utilized. (iv) Studies that describe phenotypic differences

in comparison with their respective control cells. The exclusion

criteria were as follows: (i) Studies that used non-iPSC-derived cells

as controls, such as embryonic stem cells. (ii) Studies that intro-

duced disease mutations into otherwise healthy iPSCs. (iii) Studies

that used iPSC-derived cells with low-penetrance mutations, like

CNVs or SNPs. (iv) Studies that only reported gene expression pro-

files, including microRNAs. (v) Studies that modeled iPSC-derived

organoids. We first analyzed the experimental methodologies of

these studies and then documented all of the phenotypes from

diseased iPSC-derived cells, which we organized into nine distinct

phenotypic categories. From this, we generated a Circos plot and

ideogram to illustrate the phenotype-category relationships. More-

over, to further explore the associations between our 663

phenotypes and examined genes, we generated a phenogenetic map

and conducted statistical analyses, to discover new phenogenetic

associations. In addition to the cellular phenotypes, we also

conducted analysis of microarray data on eleven of the studies to

elucidate molecular phenotypes, associated with transcriptional

dysregulation. Following our meta-analysis, we developed an online

web tool, titled iPhemap, which is a curated repository of iPSC

disease phenotypes and allows users access and to submit potential

data to our phenogenetic database.

Search strategy and meta-analysis

We began our search through the published iPSC articles by utiliz-

ing PubMed and specific pertinent keywords. Our initial search

employed the following keywords: neurodegenerative, disease,

human iPSCs, and iPSCs. This resulted in a large return of articles,

n = 36. Next, we conducted a narrower search, which consequently

expanded our candidate article number to 52. This second search

introduced common neurodegenerative diseases and their gene

mutations (i.e., Parkinson’s and LRRK2) with the words iPSC and

human iPSC to better address the desired article content by our

search terms.

Through our close reading of these reports, we discovered 25

additional articles for consideration. We then established a list of

quality control criteria for our meta-analysis, including: (i) Articles

that used iPSCs derived from human patients to investigate cellular

phenotypes caused by neurological diseases. (ii) The disease and

gene mutation of all iPSCs and any additional differentiated cells

under investigation are clearly stated in the article. (iii) Diseased

iPSCs and/or differentiated cells under investigation are compared

against control cells lines of the appropriate cell type. (iv) Diseased

cells under investigation exhibited phenotypic differences in

comparison with their respective control cells. In addition to the

inclusion criteria, we formulated specific exclusion criteria: (i) Arti-

cles that used non-iPSC-derived cells as controls, such as embryonic

stem cells. (ii) Articles that introduced disease mutations into other-

wise healthy iPSCs. (iii) Articles that used iPSC-derived cells with

low-penetrance mutations, like CNVs or SNPs. (iv) Articles that only

reported gene expression profiles, including microRNAs. (v) Articles

that modeled iPSC-derived organoids. To expand our analysis across

the entire field of neurological disease and update our bevy of

papers with those recently published, we performed a final search,

which returned 36 additional articles, thus increasing our total to

113 papers.

However, upon further examination, we omitted twenty candi-

dates from our original compilation of 113 as they failed to meet our

requirements. We then analyzed these 93 articles to document

disease-specific phenotypes in iPSC-derived cells that were different

in comparison with their control lines. Our analysis included studies

with 32.2% of manuscripts being published in journals of impact

factor (IF) of 5–10, 17.2% in 10–20 IF, and 26.9% of more than 20

IF. To document the pertinent information from our meta-analysis,

we recorded all observed phenotypes, with the same lexicon anno-

tated in the papers, gene alterations, and corresponding disease

names from the accepted papers. Moreover, to organize the large

number of phenotypes, we established nine separate phenotypic

categories. These categories served to highlight phenotypic patterns

throughout diseases. Upon completion of this initial analysis and
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organization, we curated the 93 accepted articles three different

times by three separate investigators to ensure accurate phenotypic

extraction had been conducted.

Minimal information categories

Despite our inclusion and exclusion criteria, the examined 93 arti-

cles contained heterogeneity within their provided methods. Even

with comprehensive descriptions and extensive information

provided, discrepancies across our group of articles remained.

Within the articles, seven categories consistently arose and make up

the minimal information which we propose should be provided in

all future studies (Appendix Table S12). The seven categories and

their prominence are as follows:

Clinical information of patients and primary fibroblast isolation (63.4%)

The isolation of primary patient fibroblasts from diseased patients

is necessary for all studies in the iPSC field. In accordance with

the papers, we analyzed general clinical information of patients

from which the fibroblasts (or other cell type that needs to be

specified) are taken should be provided, including information

such as age, gender, disease under investigation, and age when

disease appeared, if known. If fibroblasts, or iPSCs, are received

from a third-party cell repository, the name of the distributor

from which the cells were received as well as the line and or

patient number should be provided in the article as well for refer-

ence.

Generation of iPSCs (87.1%)

With the existence of several different ways to drive cells toward

pluripotency, the procedure by which each iPS cell was induced

should be provided. This includes any manipulation of the primary

cell line to reach the expression of pluripotent genes (i.e., retroviral

infection procedures and confirmation of gene expression), as well

as quality control methodologies for ensuring pluripotency has been

achieved, like teratoma formation.

Detailed cell culture/maintenance information (86.0%)

The environment and medium on which the iPSCs and any differen-

tiated cells were cultured and maintained on should be provided in

order to allow researchers access to all information pertaining to the

growth and upkeep of the cells being studied.

Detailed differentiation of iPSCs to any cell type (88.2%)

The process by which any cell type is derived from the existing

iPSCs should be stated clearly in each article to provide accurate

details as to how it was achieved. This should include the medium

the cells are placed on as well as the different culture conditions to

obtain mature cells, genes, or markers used by the researchers to

properly confirm the identity of the cells after they underwent dif-

ferentiation. The purity of the iPSC-derived progeny cultures,

defined by differentiation markers and other physiologic measures,

should also be included.

Validation of the mutation being studied (52.7%)

The gene mutation being studied by the researchers should be

already stated in the paper with the disease it pertains to in the

isolation of the fibroblast, but researchers should also provide the

means by which they confirmed the retention of the cells’ mutation

after iPSC generation and/or differentiation into other cell types

used for their study.

Gene delivery methods for cells if used (100% of papers utilizing

gene editing)

Papers should continue to provide all information regarding the

alteration in genes, including already mutated genes, to create a

secondary control line or any line that may be used as a comparison

with the diseased lines. This includes processes such as lentiviral

infections, episomal plasmids, TALEN mediation recombination,

and zinc finger nucleases.

Procedures of assays/specific phenotypic search methods (95.7%)

These procedures suggested would contain any type of test

performed on the iPSCs and differentiated cells in the study to

determine a phenotype to be specific to the disease or not specific

to the disease. This includes procedures used to measure protein

levels as well as procedures used to view disrupted cellular struc-

tures, these should include numbers of technical and biological

replicates.

Assumption of the phenogenetic model

After the curation and extraction of all relevant phenotypes, we

formulated a phenogenetic model. Our model posits that by using

highly curated phenotypic information from patient-derived cells

with somatic mutations, we can build a phenogenetic correlation for

each phenotype and genotype using the following relationship:

Phenotype (pi) is a function of genotype (gi) plus an environmental

component (ei).

pi ¼ fðgiÞ þ ei

i: individual patient-derived cell; gi: genotype of i; pi: Quantitative

phenotype of i cell: Cellular phenotypic trait (CPT); ei: Environmen-

tal contribution to pi.

The environmental component was excluded for two reasons:

(i) It is not possible with the data obtained to measure the influ-

ence of the culture environment. In addition, since the analysis is

not on individual cells, but a group of cells, this could equalize

the potential effects of the in vitro cell culture environment,

although we are aware that the culture environment could influ-

ence cellular phenotypes, given the myriad of protocols for iPS

cell generation reported. (ii) The assumption of our model, based

on the results from patient-derived cells with pathogenic muta-

tions, is that the cellular phenotypes obtained from these cells

may represent highly disruptive alterations in a cellular network,

as supported by the hundreds of abnormal phenotypes observed

that suggest some mutant phenotypes may supersede any varia-

tion induced by culture environment. Rather, these phenotypes

are caused by highly pathogenic and penetrant mutations with a

high degree of causality, more than what may be seen in iPSC

models derived from cells with smaller, discrete CNV or SNP,

which we excluded from our analysis. Therefore, the equation was

simplified to:

pi ¼ fðgiÞ
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i: individual patient-derived cell; gi: genotype of i; pi: Quantitative

phenotype of i cell: Cellular phenotypic trait (CPT).

Circos plot generation

To showcase the phenotype-category and phenotype-cell type rela-

tionship, we organized the related data in a Circos plot. We initially

gathered the proportional data for the number of phenotypes within

each of our nine categories along with the number of observed

phenotypes for each cellular type. From these proportions, we calcu-

lated numerical values, which were organized into a table

(Appendix Table S3). We then uploaded this table into the Circos

plot generator at circos.ca. http://mkweb.bcgsc.ca/tableviewer/visu

alize/ (Krzywinski et al, 2009). We predominantly employed the

default settings for this program except for several small changes:

small ribbons on top of large, color by column, order by column

first, normalization of ribbon sizes, and light gray transparency (3)

of Q1, Q2, and Q3. The software denoted the percentages and

proportions of each cell type to the respective phenotypic category,

which resulted in a more robust display of the data collected.

Ideogram generation

In order to display the location of each gene paired with its pheno-

typic categories, we sought to generate an ideogram. By identifying

the phenotypic categories observed for each gene, we utilized the

PhenoGram program: http://visualization.ritchielab.psu.edu/phe

nograms/plot to produce the desired ideogram (Wolfe et al, 2013).

We used the default settings of this program, which included the

use of the human genome and human cytobands.

Developmental stage and phenotype analysis

Using the phenotypes and genes recorded for each cell type in the

heatmap (Appendix Fig S1), the percent of reported phenotypes for

each patient-derived CNS was manually extracted. GraphPad Prism

Software was then utilized to generate the plots depicting phenotype

distributions of diseases by cell type, phenotype by gene, and gene

by phenotype (Fig 4). One-way analysis of variance (ANOVA) with

Bonferonni multiple comparisons tests (Fig 4B–F) and two-way

ANOVA with Tukey’s multiple comparisons test (Fig 4G) were

performed.

Network generation

From the data provided by our meta-analysis, we elucidated the

overlapping phenotypes, which we recorded in addition to pheno-

types only expressed by a single locus. To generate a network, we

formatted our relationship data into a table of source nodes (loci)

and their target nodes (observed phenotypes). We then uploaded

our processed data table to generate a network of nodes and edges

through the Cytoscape application. By doing this, we generated

edges when a locus expressed a phenotype, which indirectly

connected genes through an overlapping phenotype (Shannon et al,

2003). We then colored each phenotype node based upon its corre-

sponding phenotypic category.

We dictated the layout of our network by employing a force-

directed paradigm, which utilizes an algorithm to position nodes

based on a physics simulation of spring-like forces to generate an

aesthetically pleasing layout. From our overarching network, we

generated more nuanced networks to showcase only the overlap-

ping phenogenetic network and specific disease-phenogenetic

networks for genes associated with PD and AD.

Statistical analysis of network

To illustrate that our generated network followed a power-law

distribution, the node degree distribution graph was fitted with a

power-law curve by the Network Analyzer application of Cytoscape

and returned the equation y = 53.358x�1.160 for the fitted curve,

including the following statistical parameters: R2 = 0.717 and

r = 0.922. Furthermore, to statistically illustrate that all of the scat-

ter plots followed a power-law distribution; we converted the axes

of the all of the scatter plots to a logarithmic scale. Then, we

performed linear regression analyses to calculate the P-value of each

respective plot. As mentioned above, through our conversion of

these axes into a logarithmic scale, the significant P-values demon-

strated that our data follow a power-law distribution, which is typi-

cal of biological networks. To conduct all of the aforementioned

statistical tests, we utilized the R statistical computing software

(Assenov et al, 2008; RC Team, 2010).

Ontology methods

We conducted functional annotation analyses with respect to the

phenotypes involved in iPhemap. We calculated the phenotypic

enrichment for each gene utilizing a Fisher’s exact test, which

compared the number of phenotypic observations with those

directly observed by a particular gene, thus determining whether or

not a particular phenotypic annotation was more significant for a

gene. To account for the number of individual hypothesis tests

conducted, we performed a Benjamini–Hochberg multiple compar-

isons test for all P-values to control for false discovery rate. We then

termed the significant relationships established from our phenotype

to gene approach as phenotype ontology.

We further analyzed the genes involved in these significant

phenotypic relationships through the more common approach of

gene ontology. We entered these genes into a gene ontology data-

base to observe which functional annotations were statistically

significant. Furthermore, we compared the related gene ontology

functional annotation P-values with the P-values generated through

our aforementioned phenotype ontology. To denote phenotypic

ontologies that failed to share a corresponding functional annotation

from the genome ontology, we termed them as “Absent”. Thus,

these phenotypic ontologies can be considered novel for each gene.

Treemap and pathway generation

We also examined each of the accepted 93 articles in an attempt to

determine if microarray analysis or another type of transcriptome

profiling had been conducted, made publicly available as a GEO

dataset. If so, which was the case for 24 studies, we next determined

whether or not the microarray was conducted between the control

and mutated iPSC-derived cells. This resulted in 22 candidate arti-

cles, but to ensure reproducibility of results, we inspected their

protocols to determine if at least three samples of each control and
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patient line had been utilized, which resulted in 18 papers that ful-

filled this requirement. Furthermore, we required that the available

GEO datasets were compatible with the GEO2R web-based interface

or the GEOquery R package, thereby reducing our candidate pool to

13 papers. Last, we returned to the original text of each manuscript

to ensure that a similar analysis had not been previously performed,

which further diminished our pool to 10 studies. From these 10

studies, we processed the available molecular profile data through

the GEO to identify dysregulated genes.

However, for some studies the transcriptome analysis resulted in

a large number of unrelated differentially expressed genes. There-

fore, we established specific parameters for these results (P < 0.05

and FC > �2) to narrow the scope of this analysis, which dimin-

ished the pool of studies to nine. To determine the associated molec-

ular phenotypes and pathways, we entered the dysregulated genes

into IPA. We then instituted further parameters to highlight the most

pertinent molecular phenotypes and pathways, which include

considering the functional annotations and pathways from the most

significantly dysregulated gene network and establishing a statistical

parameter of P < 0.001. Additionally, we exported the tables of

functional annotation and pathway data provided by IPA to

construct the assortment of pathway figures and treemaps by using

the R treemap package (Tennekes, 2014) with the twenty most

significant molecular phenotypes according to P-value.

Heatmap generation

We also utilized the differentially expressed genes gleaned from

our prior analysis of studies with publicly available microarray

data that met our aforementioned criteria (see Treemap and path-

way generation) to determine if the temporal and spatial expres-

sion of dysregulated genes correlated with typical disease

pathology. To accomplish this, we made use of the Allen Brain

Atlas, specifically the Allen Human Brain Atlas (Hawrylycz et al,

2012) and the BrainSpan Atlas of the Developing Human Brain

(Miller et al, 2014). With the differentially expressed genes as

input, we searched each respective database with default parame-

ters to generate heatmap data for the temporal expression of

genes in the developmental transcriptome, and spatial expression

in the prenatal and adult human brain. Finally, we made use of

Morpheus, a web-based matrix visualization software, to perform

clustering analyses and generate heatmap images (https://softwa

re.broadinstitute.org/morpheus/).

Expanded View for this article is available online.
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