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ABSTRACT Despite various attempts to treat severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2)-infected patients with COVID-19 convalescent plasmas, neither appropriate
approach nor clinical utility has been established. We examined the efficacy of administration
of highly neutralizing COVID-19 convalescent plasma (hn-plasmas) and such plasma-derived
IgG administration using the Syrian hamster COVID-19 model. Two hn-plasmas, which
were in the best 1% of 340 neutralizing activity-determined convalescent plasmas, were
intraperitoneally administered to SARS-CoV-2-infected hamsters, resulting in a significant
reduction of viral titers in lungs by up to 32-fold compared to the viral titers in hamsters
receiving control nonneutralizing plasma, while with two moderately neutralizing plasmas
(mn-plasmas) administered, viral titer reduction was by up to 6-fold. IgG fractions purified
from the two hn-plasmas also reduced viral titers in lungs more than those from the two
mn-plasmas. The severity of lung lesions seen in hamsters receiving hn-plasmas was mini-
mal to moderate as assessed using microcomputerized tomography, which histological
examination confirmed. Western blotting revealed that all four COVID-19 convalescent
plasmas variably contained antibodies against SARS-CoV-2 components, including the
receptor-binding domain and S1 domain. The present data strongly suggest that admin-
istering potent neutralizing activity-confirmed COVID-19 convalescent plasmas would be
efficacious in treating patients with COVID-19.

IMPORTANCE Convalescent plasmas obtained from patients who recovered from a specific
infection have been used as agents to treat other patients infected with the very pathogen.
To treat using convalescent plasmas, despite that more than 10 randomized controlled clini-
cal trials have been conducted and more than 100 studies are currently ongoing, the effects
of convalescent plasma against COVID-19 remained uncertain. On the other hand, certain
COVID-19 vaccines have been shown to reduce the clinical COVID-19 onset by 94 to 95%,
for which the elicited SARS-CoV-2-neutralizing antibodies are apparently directly responsible.
Here, we demonstrate that highly neutralizing effect-confirmed convalescent plasmas signifi-
cantly reduce the viral titers in the lung of SARS-CoV-2-infected Syrian hamsters and block
the development of virally induced lung lesions. The present data provide a proof of con-
cept that the presence of highly neutralizing antibody in COVID-19 convalescent plasmas is
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directly responsible for the reduction of viral replication and support the use of highly
neutralizing antibody-containing plasmas in COVID-19 therapy with convalescent plasmas.

KEYWORDS COVID-19, SARS-CoV-2, convalescent plasma therapy, Syrian hamster
COVID-19 model

More than a year had passed since the World Health Organization (WHO) declared
a state of emergency, but the pandemic of the novel coronavirus (severe acute

respiratory syndrome coronavirus 2 [SARS-CoV-2]) disease (COVID-19) is still spreading
worldwide (1, 2). More than 215 million people have been infected, and more than 4.5
million lives have been lost as of 1 September 2021 (https://covid19.who.int/); COVID-
19 is continuously posing the most serious public health and socioeconomic problem
globally in this century (3). Vaccination is one of the most effective prophylactic health
measures (4, 5) and is considered one of the most promising key strategies for curbing
the current pandemic (6). Multiple COVID-19 vaccines, such as mRNA vaccines, BNT162b2
(7) and mRNA-1273 (8), and an adenovirus vector, ChAdOx1 nCoV-19/AZD1222 (9) and
Ad26.COV2.S (10), are presently available in the United States, the European Union, and
other parts of the world. Different classes of vaccines, such as inactivated COVID-19 vac-
cines, BBIBP-CorV (11), and CoronaVac (12), have now been approved for use by the WHO.
Also, a recombinant protein nanoparticle vaccine, NVX-CoV2373 (13); a virus-like particle
vaccine, plant-based VLP (14); a DNA vaccine, ZyCoV-D (15); and more than 130 vaccine
candidates are currently under development (https://covid19.trackvaccines.org/). Yet how
long the observed efficacy of vaccines lasts and whether such vaccines are effective in
treating already-infected individuals remain to be determined (16). In addition, the spread
of SARS-CoV-2 variants, which resist the efficacy of certain vaccines throughout the world,
has been of great concern (17, 18).

Moreover, in terms of disease management, remdesivir (19), dexamethasone (20),
baricitinib (21), and the interleukin 6 (IL-6) pathway inhibitors (e.g., tocilizumab) (22)
are the only recommended agents for severely ill patients with COVID-19, although the
efficacy of such agents is limited (23, 24). In terms of passive neutralizing activity treat-
ment, not all monoclonal antibodies active against SARS-CoV-2 have proven to be clini-
cally beneficial. Although bamlanivimab reportedly accelerated the natural decline in viral
load in outpatients with COVID-19 (25), no benefit was demonstrated in a randomized
controlled trial with the antibody in hospitalized patients (26), and the distribution of bam-
lanivimab and etesevimab together and etesevimab alone was paused in June 2021 in the
United States. On the other hand, combination therapy with two potently SARS-CoV-2-
neutralizing monoclonal antibodies, casirivimab and imdevimab, was reported to reduce
28-day mortality among patients in an open-labeled randomized trial (27) and has been
authorized by the U.S. Food and Drug Administration for emergency use. Another investi-
gational SARS-CoV-2-neutralizing monoclonal antibody, sotrovimab, has also been shown
to be effective and is now available for emergency use for those at risk for progression to
severe COVID-19 (28). Although a limited number of agents with known or putative antivi-
ral or immunomodulating effects have been proposed for treating COVID-19, such agents,
in many cases, have insufficient evidence of in vitro anti-SARS-CoV-2 activity or clinical ben-
efit (29). In this regard, certain SARS-CoV-2-specific experimental agents have been
reported, such as inhibitors of main protease (Mpro) (30–33) and RNA-dependent RNA po-
lymerase (34) of the virus. However, it would take a few years and more likely longer until
such virus-specific therapeutics become available in the clinical setting, although it is
stressed that both effective vaccines and antiviral therapeutics are required for halting and
possibly ending the current pandemic. In this regard, immunotherapies for certain cancers
and autoimmune disorders are relatively well established (35); however, there are only a
few immunotherapies for infectious diseases which were shown to be efficacious. The effi-
cacy of plasma infusions of SARS-CoV-1-convalescent plasma is controversial mainly
because most clinical trials were not controlled or randomized (36). Moreover, in many
clinical trials, plasmas administered were not examined for their titers of neutralizing
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antibodies contained. Of note, fatality/clinical outcomes among those with COVID-19
receiving convalescent plasma whose titers of anti-SARS-CoV-2 receptor-binding domain
(RBD) antibodies have been reportedly lower than in those receiving no plasma (37, 38),
especially when such plasmas were administered early after the onset. The outcomes of
those receiving high-titer anti-SARS-CoV-2-RBD or anti-SARS-CoV-2-spike antibodies early
after the onset have also been shown to be favorable (37).

Imai and his colleagues have recently reported that SARS-CoV-2 efficiently replicates in
the lungs of Syrian hamsters and causes severe pathological lung lesions that share char-
acteristics with lung lesions in patients with COVID-19 (39). Here, we examined the efficacy
of neutralizing activity-confirmed COVID-19 convalescent plasmas and such plasma-
derived IgG fractions by employing the SARS-CoV-2-exposed transmembrane protease ser-
ine subtype 2 (TMPRSS2)-overexpressing VeroE6 (VeroE6TMPRSS2) cells (30) and Syrian ham-
ster model. The present data strongly suggest that the treatment of COVID-19 patients
using highly neutralizing activity-confirmed convalescent plasmas would efficiently block
the development of COVID-19-associated lung lesions.

RESULTS
COVID-19 convalescent plasma-derived IgG fractions block SARS-CoV-2 infection

in vitro.We have previously examined the presence and temporal changes of the neu-
tralizing activity of IgG fractions from 43 COVID-19 convalescent plasmas using cell-
based assays (40). In the current study, we chose 2 highly neutralizing plasma (hn-
plasma) samples and IgG fractions from donor 043 (D43) and D84, which were in the
best 1.4 and 0.5% of 340 neutralizing activity-determined convalescent plasmas,
respectively, and 2 moderately neutralizing plasma (mn-plasma) samples and IgG frac-
tions from D73 and D91, which showed the top 40.5 and 20.9% neutralizing activity in
the 340 convalescent plasmas, respectively, and we confirmed their activity to block
the cytopathic effect (CPE) of a SARS-CoV-2 strain (SARS-CoV-205-2N) using VeroE6TMPRSS

cells and the methyl thiazolyl tetrazolium (MTT) method (30, 40). Figure 1 shows that
all the four representative COVID-19 convalescent plasmas and IgG samples signifi-
cantly blocked the CPE of SARS-CoV-205-2N. D43 and D84 plasmas were highly potent
against the virus, with 50% inhibitory concentration (IC50) 6 standard deviation (SD)
values of 1,400 6 240-fold and 1,100 6 60-fold, respectively, while D73 and D91 samples
showed relatively moderate activity, with IC50 6 SD values of 2206 30 and 4006 90-fold,
respectively (Fig. 1a and Table 1). IgG fractions purified from D43 and D84 plasmas also
exerted potent activity, with IC50 6 SD values of 9.26 1.3 and 9.86 2.7mg/ml, respectively,
while those from D73 and D91 showed moderate activity, with IC50 6 SD values of
47.96 9.0 and 24.96 3.1mg/ml, respectively (Fig. 1b and Table 1). A plasma sample from
a healthy and quantitative RNA-PCR (qRNA-PCR)- and enzyme-linked immunosorbent
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FIG 1 Antiviral activity of convalescent plasma and purified IgG. VeroE6TMPRSS2 cells were exposed to SARS-CoV-205-2N

with or without various concentrations of diluted plasma (a) or purified IgG (b). Note that highly neutralizing plasma
(hn-plasma), D43 and D84, were highly potent, while moderately neutralizing plasma (mn-plasma), D73 and D91,
were relatively moderately active against the virus. A plasma sample from a healthy and qRNA-PCR- and ELISA-
confirmed SARS-CoV-2-uninfected individual and its IgG fraction failed to show significant CPE-blocking activity.
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assay (ELISA)-confirmed SARS-CoV-2-uninfected individual and its IgG fraction failed to
show significant CPE-blocking activity (Fig. 1 and Table 1). We have also quantified the
amounts of SARS-CoV-2-S1-binding antibodies in each plasma sample by using D84
plasma as a reference (100%), employing a commercially available ELISA kit. D43, D73, and
D91 contained 140, 34, and 57% of IgG relative to D84 plasma, respectively (Table 1),
showing that the amounts of S1-binding antibodies contained in plasma samples were
roughly proportionate to the blocking effects of each plasma and IgG fraction, although it
is of note that the presence of greater amounts of S1-binding antibodies in plasma does
not necessarily predict the presence of greater levels of neutralizing activity (40). Taken to-
gether, these data show that all the plasma samples used were highly or moderately active
in blocking the infectivity and replication of SARS-CoV-2 and that the IgG fractions isolated
from plasmas were largely responsible for the activity of plasmas to block the infectivity
and CPE of the virus.

Body weight gains in SARS-CoV-2UT-NCGM02-exposed and neutralizing plasma-
receiving Syrian hamsters were significantly greater than those in control plasma-
receiving animals. We have previously demonstrated that SARS-CoV-2 isolates effi-
ciently replicate in the lungs of Syrian hamsters, causing severe pathological lung
lesions (39). Such SARS-CoV-2-infected 7- to 8-month-old hamsters also underwent
substantial weight loss by day 7 postinfection and continued to lose weight for up to
14 days postinfection (39). In the present study, we employed 1-month-old hamsters
and intranasally inoculated them with 103 PFU of a clinically isolated SARS-CoV-2,
SARS-CoV-2UT-NCGM02 (set as day 0). In the 24 h following the inoculation (on day 1),
three hamsters per group were intraperitoneally administered with 2 ml of plasma
from a qRNA-PCR- and-ELISA-confirmed SARS-CoV-2-uninfected healthy individual
(control plasma; see the protocol in Fig. S1 in the supplemental material). As the body
weights of the control plasma-receiving hamsters (n = 3) were followed up every day,
their weights continued to decrease by day 8 following the viral exposure, while the
weights started to gain by day 9 and continued to gain thereafter. However, in ham-
sters that received the hn-plasma samples (D43 and D84), the decrease in body
weights by day 8 was much less than in control plasma-receiving hamsters, and their
body weights started to increase on day 9 and beyond (P values of the temporal
changes in the body weights for the D43- and D84-receiving hamster groups to the
control group were 0.0095 and 0.0092, respectively). One of the D73 plasma-receiving
hamsters (hamster 28) had a significantly greater body weight decrease among the
four D73 plasma-receiving hamsters, and the average body weights became close to
those in the control plasma-receiving hamsters (Fig. 2) (the P value for the D73 plasma-
receiving hamsters compared to four control plasma-receiving hamsters was 0.2025).

SARS-CoV-2UT-NCGM02-exposed and neutralizing plasma-receiving Syrian hamsters
develop less severe pneumonia. SARS-CoV-2-infected Syrian hamsters undergo lung
injuries, which share characteristics with injuries seen in the lungs of SARS-CoV-2-
infected individuals, including severe, bilateral, largely peripherally distributed, multi-
lobular ground-glass opacity (GGO) lesions and lobular consolidations as examined
using microcomputed tomographic (micro-CT) imaging (Fig. 3) (39). In order to exam-
ine the effects of administering neutralizing human plasmas on the development of

TABLE 1 Neutralizing activity of convalescent plasma and purified IgG (mean6 SD)a

Sample Plasma IC50 (fold) Purified IgG IC50 (mg/ml) Anti-S1 IgG (%)
D43 1,4006 240 9.26 1.3 140
D73 2206 30 47.96 9.0 34
D84 1,1006 60 9.86 2.7 100
D91 4006 90 24.96 3.1 57
Healthy donor ,2 .1,000 ,0.3
aNeutralizing activity of COVID-19 convalescent plasmas and their IgG fractions were determined using MTT
assay employing VeroE6TMPRSS2 cells. The relative amounts of anti-SARS-CoV-2-S1-binding antibody were
quantified using anti-SARS-CoV-2-S1 IgG ELISA with serially diluted D84 plasma samples for standardization. All
the convalescent plasma and purified IgG showed various potency of neutralizing activity, while healthy donor
plasma and its purified IgG were inert against SARS-CoV-205-2N. Of note, D43-derived plasma and purified IgG
showed the most potent antiviral activity, with IC50 values of 1,4006 240-fold and 9.26 1.3mg/ml, respectively.
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SARS-CoV-2-induced lung lesions in virus-exposed Syrian hamsters, we employed the in vivo
X-ray micro-CT image capturing in the present study. In all three SARS-CoV-2UT-NCGM02-
exposed hamsters, which intraperitoneally received 2 ml of the control plasma on day 1
postinfection (hamsters 21, 22, and 23), low-level infiltration with GGOs in bilateral lower
lobes appeared by day 4 in both coronal and axial micro-CT thorax images (Fig. S2, open
arrowheads). By day 6, those lesions evolved into a mixed pattern of GGOs, consolidations,
and interlobular septal thickening seen in whole lung. By day 8, such lesions further wors-
ened to show GGOs with consolidations and fibrous stripes in bilateral lung accompanied
with mediastinal emphysema (shown with arrows), traction bronchiectasis, interlobular sep-
tal thickening, and/or cavitations (Fig. S2). Micro-CT scans taken on day 10, however, showed
healing of the lung cavitation and mediastinal emphysema together with reduced GGOs.
Micro-CT scans on day 12 show further healing of the consolidation and GGOs, while multi-
ple focal fibrous stripes remained in the bilateral peripheral field (Fig. S2).

However, in all three hamsters that intraperitoneally received either of the two hn-plasma
samples (hamsters 24, 25, and 26 received 2 ml of D43 plasma, while hamsters 30, 31, and
32 received 2 ml D84 plasma), no such extensive lung lesions developed throughout the 12-
day period of observation, and the difference between the lung images of D43 and D84
plasma-receiving hamsters and those of control plasma-receiving hamsters 21, 22, and 23
on day 8 postinfection (the dorsal lung images of control plasma-receiving hamsters were
taken from Fig. S2) was readily noticeable.

The lung micro-CT scan images of mn-plasma-receiving hamsters (hamsters 27, 28,
and 29 received D73 plasma, while hamsters 33, 34, and 35 received D91 plasma) showed
mixed but moderate GGO lesions and interlobular septal thickening in whole lung; however,
no mediastinal emphysema or traction bronchiectasis was observed except in hamster 28
(Fig. 3a). Coronal micro-CT scan images confirmed the moderate changes in the lung scan
images of those hamsters compared to the lung CT images of the control plasma-receiving
hamsters (Fig. 3b).

D43 plasma administration apparently inhibited the spread of viral infection
from bronchiolar to alveolar regions. On day 4 postinfection (on day 3 post-plasma
administration), histopathological features and virus distribution patterns in the lung
tissues of each hamster were examined. All histopathology and immunohistochemistry

FIG 2 Body weight change in SARS-CoV-2-infected Syrian hamsters with plasma transfusion. Syrian
hamsters were intranasally inoculated with 103 PFU of clinically isolated SARS-CoV-2 (SARS-CoV-2UT-NCGM02).
In 24 h following the inoculation, hamsters were intraperitoneally administered with 2 ml of convalescent
plasma or a qRNA-PCR- and-ELISA-confirmed SARS-CoV-2-uninfected healthy individual-derived control
plasma, and the body weight was monitored daily for 15 days. The mean relative value from the previral
exposure baseline and SD values are shown. All the hamsters lost their weight by day 8 following the
viral exposure, while the weights started to gain by day 9 and continued to gain thereafter. P values of
the body weight change in D43-, D73-, D84-, and D91-receiving hamster groups compared to the control
group were 0.0095, 0.2025, 0.0092, and 0.01, respectively.
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features obtained are illustrated in Fig. S3. Histopathology of the lung sections of each
animal showed moderate inflammatory cell infiltration consisting of neutrophils, mono-
cytes/macrophages, and lymphocytes around the bronchi and bronchioles. In some
regions, inflammatory cells were detected in the alveoli. However, the degrees of histo-
pathological changes substantially varied among hamsters, and there was no readily sig-
nificant difference among the groups administered with different plasmas (Fig. 4a, c, e, g,
and i and Fig. S3a to e). Then, immunohistochemistry with anti-SARS-CoV-2 antibody
revealed viral antigens in the bronchiole epithelium and viral spreading to the alveolar epi-
thelium surrounding the bronchioles in all the animals except for D43 plasma-receiving
hamsters. Notably, in the D43-receiving animals (Fig. 4d and Fig. S3b), substantially fewer
viral antigens were seen, and the extent of the viral spreading was apparently limited to
bronchial and alveolar epitheliums adjacent to bronchioles regardless of the degrees of
histopathological changes compared to the amounts of viral antigens seen in the lungs of
control plasma- and D73, D84, and D91 plasma-receiving hamsters (Fig. 4b, f, h, and j and
Fig. S3a, c, and d). Moreover, the numbers of viral antigen-positive cells in the alveolar

FIG 3 Micro-CT imaging of the lungs of SARS-CoV-2-infected Syrian hamsters with convalescent plasma transfusion on 8 days
post-viral exposure. Coronal (a) and axial (b) images of the thorax of hamsters receiving the SARS-CoV-2 inoculation and COVID-
19 convalescent plasma i.p. transfusion. (a and b) Control plasma-receiving hamsters (hamsters 21, 22, and 23) developed the
ground-glass opacities (GGOs) with consolidations and fibrosis. However, in all three hamsters receiving hn-plasma (D43 for
hamsters 24, 25, and 26 and D84 for hamsters 30, 31, and 32), no such lung abnormalities were observed throughout the 12 days
of micro-CT imaging in hamsters 24, 25, and 30, and mild to moderate GGO and interlobular septal thickening were focally
observed in hamsters 26, 31, and32. On the other hand, the chest CT images in mn-plasma-receiving hamsters (D73 for hamsters
27, 28, and 29 and D91 for hamsters 33, 34, and 35) showed mixed but moderate GGO lesions and interlobular septal thickening
in whole lung; however, no mediastinal emphysema or traction bronchiectasis were observed except in hamster 28. Open
arrowheads and arrows point to GGOs and mediastinal emphysema, respectively.
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regions also appeared less in the lung of D43 plasma-receiving hamsters (Fig. 4d and Fig.
S3b) than in the control plasma-receiving and D73, D84, or D91 plasma-receiving animals
(Fig. 4b, f, h, and j and Fig. 3a, c, and d).

Neutralizing activity-confirmed plasmas significantly suppressed the replication
of SARS-CoV-2 in the lung of hamsters. All the neutralizing activity-confirmed COVID-
19 convalescent plasma samples (D43, D73, D84, and D91 plasmas) mitigated the body
weight reduction and SARS-CoV-2-induced lung lesions (Fig. 2 and 3; Fig. S2); however,
the histopathological examination and immunostaining method largely failed to

FIG 4 Pathological examination of the hamsters treated with plasma. Representative images of
histopathology and immunohistochemistry on the lung sections of hamsters treated with control or
each plasma on day 1 postinfection are shown. Hematoxylin and eosin (H&E) staining of the lung
sections obtained from the control animals (a) and plasma D43- (c), D73- (e), D84- (g), or D91-
treated (i) animals. Immunohistochemistry (IHC) for SARS-CoV-2 antigen detection of the lung
sections obtained from the control animals (b) and plasma D43- (d), D73- (f), D84- (h), or D91-
treated (j) animals. Scale bar, 200 mm.
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detect differences in the presence or spread of the virus between the hamsters receiv-
ing the control plasma and those receiving neutralizing activity-confirmed plasmas
(Fig. 4 and Fig. S3). Thus, we attempted to quantify the amounts of infectious virions in
the lungs of hamsters receiving control plasma or D43, D73, D84, or D91 plasmas. Each
hamster was exposed to the virus on day 0, intraperitoneally administered with 2 ml of
each plasma on day 1, and sacrificed on day 4. Thereafter, each lung was homogenized
and the virus titers in the homogenates were determined employing plaque-forming
assays using VeroE6TMPRSS2 cells. As shown in Fig. 5a, the geometric mean titer for the
hamsters receiving control plasma was 108.5 PFU/g, while the administration of D43
and D91 plasmas had significantly suppressed the replication of SARS-CoV-2UT-NCGM02

with viral titers of down to 107.0 (P = 0.0003) and 107.7 (P = 0.037) PFU/g, respectively,
while the reductions by D73 and D84 plasmas were not statistically significant (P . 0.05;
Fig. 5a). When IgG fractions isolated from plasmas were intraperitoneally administered to
hamsters, the D43 IgG fraction gave the greatest reduction with a geometric mean infec-
tious viral titer of 107.1 PFU/g compared to the viral titer in the control plasma-receiving
hamsters with a geometric mean titer of 108.4 PFU/g, while D91, D84, and D73 IgG fractions
gave mean titers of 107.7 (P = 0.015), 107.8 (P = 0.037), and 108.0 (P . 0.05) PFU/g, respec-
tively (Fig. 5b). It has recently been reported that the systemic monoclonal human-neutral-
izing antibody administration in Syrian hamsters effectively blocks the SARS-CoV-2 infec-
tion in lung but not in nasal turbinate (41). In this regard, we also determined the viral titer
in nasal turbinate tissues in the convalescent plasma-administered SARS-CoV-2-infected
Syrian hamsters. As shown in Fig. 5c, the geometric mean viral titer for the hamsters
receiving control plasma was 107.9 PFU/g, while the administration of D84 and D91 plas-
mas had significantly more deeply suppressed the replication of SARS-CoV-2UT-NCGM02 with
viral titers of 107.0 (P = 0.010) and 107.2 (P = 0.037) PFU/g, respectively, while the reductions
by D43 and D73 plasmas were not statistically significant (P . 0.05) (Fig. 5c). On the other
hand, when the IgG fraction was administered to hamsters, the geometric mean viral titers
in nasal turbinate in D43, D73, D84, and D91 IgG-receiving hamsters were 107.1, 107.4, 107.5,
and 107.5 PFU/g, respectively, which were not statistically significant compared to the val-
ues in the control IgG-receiving hamsters (P . 0.05) (Fig. 5d). The complete failure of puri-
fied IgG fractions to block the replication of the virus in nasal turbinate tissues (Fig. 5d), de-
spite that viral replication was blocked by plasma administered (Fig. 5c), may have
resulted from the administration of relatively fewer amounts of purified IgG than the
amounts of plasma administered. In fact, as shown in Table S2, the equivalent amounts of
plasma are all less than the amounts of purified IgG amounts administered by 10% to
30%. Considering that the same amounts of purified IgG effectively blocked the rep-
lication of the virus in the lung (Fig. 5b), the present data are in line with the find-
ings by Zhou et al. (41) and Haagmans et al. (42) that SARS-CoV-2 replication is
more susceptible to the SARS-CoV-2-blocking effect of monoclonal antibodies or
convalescent plasma samples in lungs than in nasal turbinate.

In an attempt to see the effects of administering IgG fractions isolated from neutralizing
human plasmas on the development of lung lesions in virus-exposed animals, we con-
ducted an additional histopathological and immunostaining study. Since we had failed at
identifying the difference in the histopathological findings among lungs of hamsters
receiving various plasmas, we examined the lung in one hamster which had the lowest in-
fectious viral titer among each group (n = 4) in this additional study. Representative
images of the immunostained lung sections of hamsters showed that the infected cells are
observed from the terminal bronchioles into the alveolar region in animals treated with
control plasma IgG, IgG from D73, D84, and D91 plasmas; however, the number of infected
cells was much less in the terminal bronchioles and alveolar regions in the hamster receiv-
ing IgG fraction from D43 plasma (Fig. S4), corroborating the histopathological and immu-
nostaining observations in hamsters receiving plasmas (Fig. 4).

COVID-19 convalescent plasmas variably contain antibodies that specifically
bind to viral components.We finally attempted to determine which antibodies within
the four convalescent D43, D73, D84, and D91 plasma samples bind to SARS-CoV-2
components using the Jess capillary-based Western blotting system. The four viral
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components (RBD, S1, S2, and nucleocapsid [NC]) are covalently fixed to the capillary, and the
presence of human IgG specifically bound to each viral component in the capillary is detected
by exposing the capillary to horseradish peroxidase (HRP)-conjugated anti-human IgG and iri-
descent light elicited by luminol mediated by HRP. Figure 6a illustrates that each of the plasma
contained IgG antibodies reactive with viral components, showing that the amounts and the
ratios of each viral component-specific antibodies were substantially varied. Among the four
convalescent plasma tested, D43, one of the two hn-plasmas, contained the largest
amounts of anti-RBD, anti-S1, and anti-NC IgG, while D84 contained the largest amount of
anti-S2 and anti-whole-spike IgG (Fig. 6b). Interestingly, the two mn-plasmas contained
low levels of anti-RBD, anti-S1, anti-whole-spike, and anti-NC IgG.

DISCUSSION

Chan et al. reported that SARS-CoV-2 produces severe lung lesions in Syrian hamsters, as in
humans, at least in part because the amino acid sequences of angiotensin-converting enzyme
2 (ACE-2) that interact with the RBD of SARS-CoV-2-S1 are in high identity and target cells in

FIG 5 Neutralizing activity of convalescent plasma in the lungs and nasal turbinate of SARS-CoV-2-infected Syrian hamsters with
plasma transfusion. Syrian hamsters were intranasally inoculated with 103 PFU of clinically isolated SARS-CoV-2 (SARS-CoV-2UT-NCGM02). In
24 h following inoculation, hamsters were intraperitoneally administered with 2 ml of plasma (a and c) or plasma-derived purified IgG
(b and d). Four Syrian hamsters per group were sacrificed on 4 days post-viral exposure (3 days post-plasma transfusion), and the virus
titers in the lungs (a and b) and nasal turbinate (c and d) were determined by employing VeroE6TMPRSS2 cells. The geometric mean titer
and SD values are shown.
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both hamsters and humans are effectively infected with the same virus (43). Chan et al. also
demonstrated that convalescent-phase sera from SARS-CoV-2-infected hamsters effectively
reduced the replication of the virus in SARS-CoV-2-inoculated animals as assessed by qRNA-
PCR and immunohistochemistry (43). Further, Haagmans et al. reported that the administra-
tion of neutralizing activity-confirmed human convalescent plasma (hn-plasma) or SARS-CoV-
2-neutralizing human monoclonal antibody effectively protected Syrian hamsters from the
occurrence of SARS-CoV-2-induced lung lesions when the animals were prophylactically (24 h

FIG 6 Characteristics of the anti-SARS-CoV-2 IgG in convalescent plasma against multiple viral components. The anti-SARS-CoV-2 IgG in
each COVID-19 convalescent plasma reactive against SARS-CoV-2 viral components (RBD, S1, S2, whole spike, and nucleocapsid [NC])
was detected using the Simple Western Jess system. (a) Western blotting image obtained with the Jess system and the immunoreactive
signals for the presence of viral components bound by anti-SARS-CoV-2 IgG by using Simple Western Jess System. All four COVID-19
convalescent plasmas contained the SARS-CoV-2-specific IgG. (b) Quantification of IgG levels in four COVID-19 convalescent plasmas. D43
and D84 plasma samples had large amounts of anti-RBD IgG, while D73 and D91 had much lower amounts of anti-RBD IgG. The same
trend was seen in the amounts of anti-S1 and anti-whole-spike IgGs. On the other hand, the D43 sample had a smaller amount of anti-
S2 IgG than D84. D43 had a much larger amount of anti-NC IgG than D73, D84, and D91.
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prior to the viral inoculation) treated, while the diluted hn-plasma failed to show such protec-
tive effects (42). In the present study, we extended the observations by groups, including
Chan et al. and Haagmans et al., and demonstrated that hn-plasmas reduced the severity of
lung lesions in SARS-CoV-2-exposed Syrian hamsters even when such plasmas were given to
the animals 24 h after the inoculation compared to those receiving a nonneutralizing (control)
plasma or moderately neutralizing plasmas (mn-plasmas) as assessed with micro-CT-captured
images (Fig. S2 in the supplemental material and Fig. 3) and the presence of SARS-CoV-2-
infected cells in the lung (Fig. 4 and Fig. S3 and S4). In fact, there is a growing body of litera-
ture that convalescent plasma therapy is not beneficial when started in the late stage of the
disease (44), and early transfusion (within 3 days of hospital administration) of hn-plasma rep-
resents the optimal use for the highest efficacy of the treatment (45).

Moreover, hn-plasmas induced a significant reduction of viral titers in the lungs of
SARS-CoV-2-exposed Syrian hamsters compared to those receiving control plasma or
mn-plasmas (Fig. 5a). IgG fractions purified from hn-plasmas also substantially reduced
viral titers in the lungs of hamsters (Fig. 5b). In the current study, although the adminis-
tration of hn-convalescent plasma significantly suppressed the development of lung
lesions and viral replication in lung, it was less effective in blocking viral replication in
nasal turbinate (Fig. 5). In this regard, it was thought that SARS-CoV-2 replication is
more susceptible to the neutralization by monoclonal antibodies or convalescent
plasma samples in lungs than in nasal turbinate (41, 42). It is also possible that the
innate immune responses triggered by SARS-CoV-2 are tissue specific and differ between
lung tissues and nasal mucosa. In this regard, the administration of convalescent plasma,
but not purified IgG, may contribute to limited immune response in the upper respiratory
tract. In fact, when human primary nasal turbinate and lung tissues/cells were exposed to
SARS-CoV-2 ex vivo, robust antiviral and inflammatory innate immune responses report-
edly occurred in nasal mucosa but not in lung tissues, suggesting limited innate immune
response to SARS-CoV-2 in the lung (46). These data strongly suggest that administering
hn-COVID-19 convalescent plasmas would be efficacious in treating patients with COVID-
19, and mn-plasmas are unlikely to be effective in treating COVID-19 patients. The data
also suggest that the IgG fractions largely contribute to the antiviral activity of hn-plasma,
although other immune responses, such as CD8-positive (CD81) killer T-cell and Fc effector
functions, may contribute to protection, and their relative importance in protection against
COVID-19 is to be investigated (47, 48). We believe that the experimental conditions we
employed in the current study are very close to the clinical situations in the case of SARS-
CoV-2 infection. We also demonstrated that the IgG fraction purified from convalescent
plasma is largely responsible for the observed protective effect of the convalescent plasmas.

Several recent clinical studies suggest that neutralizing antibodies are generally suf-
ficient to confer protection against the SARS-CoV-2 infection and that the protection
against COVID-19 development is largely explained by SARS-CoV-2-neutralizing anti-
body responses, leaving less room for impact of T cells on correlation. Yet the efficacy
of infusions of COVID-19 convalescent plasma has been controversial, mainly because
most clinical trials were not well controlled or randomized (36). However, the failure of
most COVID-19 convalescent plasma infusion studies to prove to be efficacious is likely
due to the conditions in which the plasmas used were not confirmed to contain high
titers of neutralizing activity before transfusion. In fact, a few studies where only conva-
lescent plasma whose levels of anti-SARS-CoV-2-RBD antibodies were confirmed to be
high have produced favorable clinical results (37, 38).

It is noteworthy that even in the well-planned clinical studies where high titers of
neutralizing antibodies were used, a number of such clinical studies employed differ-
ent ways and means to express neutralizing activity, such as 50% neutralization titers,
reciprocal neutralizing antibody titers, and IC50 log10 geometric mean titers. Moreover,
such clinical studies have used different cells and viral strains in quantifying neutraliz-
ing activity of plasmas. Thus, establishing an “international unit” or “international
standard” is being thought to be needed to compare across various studies and to cali-
brate the strength of neutralization with a reference human convalescent-phase sera
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panel. Establishing such a standard should improve the correlation between the levels
of neutralization activity and resulting clinical efficacy (49).

In our previous study (40), to possibly calibrate the neutralizing activity of COVID-19
convalescent plasmas with the neutralizing activity of plasmas determined in other
studies, we used neutralizing unit per milligram protein of IgG derived from such
COVID-19 convalescent plasmas. In the present study, from among 340 COVID-19 con-
valescent plasma samples we have examined for their neutralizing activity using SARS-
CoV-205-2N that was isolated in Tokyo in March 2020 and VeroE6TMPRSS (2) cells as target
cells as previously described (40), we chose four plasmas as references of SARS-CoV-2-
neutralizing plasmas. The four plasma samples D43, D73, D84, and D91 were in the top
1.4%, 40.5%, 0.5%, and 20.9% of 340 COVID-19 convalescent plasma samples, respec-
tively. It is of note that approximately 60% of convalescent plasmas have low or no sig-
nificant neutralizing activity, as we mentioned in our previous report (40). The reason
why potently neutralizing D43 most effectively blocked the infection and replication of
the virus in hamsters, while the comparably neutralizing D84 was less effective in
doing so in hamsters, is not clear. One possibility is that convalescent plasmas contain
polyclonal neutralizing antibodies and their constituents may substantially vary from
one convalescent plasma to another (50, 51). Thus, even if a plasma sample exerts
potent neutralizing activity in a cell-based assay, its neutralizing activity may not be
directly well reproduced in the bodies of hamsters where the virus may unevenly infect
and replicate so that the efficacy may vary depending on the constituents of polyclonal
neutralizing antibodies. Also, the virus used in the cell-based assays differed from the
virus used for the animal study: the virus we used in the present cell-based assays was
SARS-CoV-205-2N (PANGO lineage B), but the virus we used for inoculation of the ani-
mals was SARS-CoV-2UT-NCGM02 (PANGO lineage A).

One limitation of the current study is that only one SARS-CoV-2 strain (SARS-CoV-
205-2N) was employed in our cell-based assays, and the results obtained here may not
predict the efficacy in individuals infected with other SARS-CoV-2 strains, in particular,
SARS-CoV-2 variants recently isolated (52–55), which may escape neutralizing antibod-
ies in plasmas used in the present study (56) or may replicate more efficiently than pre-
viously isolated SARS-CoV-2 strains such as SARS-CoV-205-2N (57). The two viral strains,
SARS-CoV-2UT-NCGM02 and SARS-CoV-205-2N, used in the current study were isolated from
each of two COVID-19 patients in February and March 2020, respectively. We have
determined the sequences of these two strains: SARS-CoV-2UT-NCGM02 was of the PANGO
lineage A, while SARS-CoV-205-2N was of the PANGO lineage B. As for the viruses that
infected the four individuals in early 2020, no variants of concern (VOCs) or variants of in-
terest (VOIs) had been reported in Tokyo or elsewhere. However, since Global Initiative on
Sharing All Influenza Data (GISAID) clade G variants that carry the spike-G614 mutation
had been isolated in March 2020 and had become the major variant in Japan by April
2020 (58), some of the patients may have been infected with the spike-G614-carrying var-
iants rather than with the wild-type, spike-D614-carrying virus.

The other limitation of the current study is the lack of cytokine/chemokine or pro-
longed period profile analysis. We previously reported that while the neutralizing activ-
ity of convalescent plasmas in patients with COVID-19 often wanes in a time-depend-
ent manner, the amounts of anti-SARS-CoV-2-S1-binding IgG titer persist longer (40).
However, unlike in humans, although Syrian hamsters infected with SARS-CoV-2 were
reported to show a marked increase in cytokine/chemokine mRNA levels, especially in
the acute phase of infection (2 to 4 days postinfection) (43), they generally completely
recovered from the infection around day 8 following inoculation and beyond, despite
that they develop significant pneumonia, probably indicating that the cytokine/che-
mokine storm would be less severe and less destructive than in humans.

As of this writing, no potent antiviral agents active against SARS-CoV-2 are available
for the use of animal models. In this regard, the present study, for the first time, dem-
onstrates that, even 1 day after the inoculation of SARS-CoV-2 to hamsters, highly neu-
tralizing convalescent human plasmas and their IgG fractions effectively prevent the
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occurrence of pneumonia and block viral replication in the lung. Based on the present
data, we have started randomized clinical trials in February 2021 in which only highly
neutralizing plasmas are administered to patients with SARS-CoV-2 infection at early
stages of the disease. Also, it is of note that when promising small-molecule com-
pounds are developed, the current hamster model in which treatment is begun follow-
ing the establishment of SARS-CoV-2 infection should serve as one of the most suitable
methods for determination of the efficacy of potential antiviral agents. In conclusion,
the present data strongly suggest that administering hn-COVID-19 convalescent plas-
mas should be efficacious in treating patients with COVID-19, but potent neutralizing
activity has to be confirmed before administering such convalescent plasmas.

MATERIALS ANDMETHODS
Patients. Four patients were enrolled in the present work who were diagnosed with COVID-19 in

February to May 2020 and agreed to participate in the clinical studies (approval numbers NCGM-G-
003472 and NCGM-G-003536) to donate convalescent plasmas (40). These four donors were recruited
from other medical institutions when they were discharged from those institutions, where no isolation
of SARS-CoV-2 strains was attempted. Donated plasmas were stored at 220°C until use.

Cells, viruses, and IgG purification. TMPRSS2-overexpressing VeroE6 (VeroE6TMPRSS2) cells (RRID
CVCL_YQ49) were obtained from the Japanese Collection of Research Bioresources (JCRB) Cell Bank
(Osaka, Japan). VeroE6TMPRSS2 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 10% fetal bovine serum, 100 mg/ml penicillin, 100 mg/ml kanamycin, and 1 mg/ml G418
under humidified atmosphere containing 5% CO2 at 37°C. The two SARS-CoV-2 strains, SARS-CoV-2UT-NCGM02

(PANGO lineage A, GISAID accession ID EPI_ISL_418809) (39) and SARS-CoV-205-2N (PANGO lineage B) (40)
were isolated in February and March 2020, respectively, in Tokyo, Japan, as previously described. IgG frac-
tions were purified from convalescent plasma at Immuno-Biological Laboratories (Gunma, Japan) by using
rProtein A Sepharose Fast Flow (Cytiva, Marlborough, MA) and eluted in phosphate-buffered saline (PBS).
The IgG fractions were stored at280°C until use.

Antiviral assays. The SARS-CoV-2-neutralizing activity of donated plasma and purified IgG was
determined as previously described (30, 40, 59). In brief, VeroE6TMPRSS2 cells were seeded in 96-well flat
microtiter culture plates at the density of 1 � 104 cells/well. On the following day, the virus (SARS-CoV-
205-2N) was mixed to the various concentrations of the plasma or purified IgG fractions and incubated for
20 min at 37°C. The preincubated mixture was inoculated to the cells at a multiplicity of infection (MOI)
of 0.01. The cells were cultured for 3 days, and the number of viable cells in each well was measured
using Cell Counting Kit-8 (Dojindo, Kumamoto, Japan). The potency of SARS-CoV-2 inhibition by plasma
or purified IgG was determined based on its inhibitory effect on virally induced cytopathicity in
VeroE6TMPRSS2 cells. The amounts of SARS-CoV-2-S1-binding antibodies in each plasma sample were
determined by using anti-SARS-CoV-2 ELISA (IgG) (Euroimmun, Lübeck, Germany). The total human IgG
concentration was determined by using Human IgG ELISA Kit (Abcam, Cambridge, UK).

Experimental infection of Syrian hamsters. All of the animal infection experiments were con-
ducted as previously described (39). In brief, 1-year-old male Syrian hamsters (Japan SLC Inc., Shizuoka,
Japan) were enrolled. Hamsters were intranasally inoculated with 103 PFU (in 100ml) of SARS-CoV-2UT-NCGM02

under ketamine-xylazine anesthesia. On the following day, 2 ml of convalescent plasma (experiments 1 and
2) or purified IgG (experiment 3) were intraperitoneally (i.p.) transfused to each Syrian hamster (Fig. S1 in the
supplemental material). The total dosage and the dosage per body weight of human IgG in 2 ml plasma are
shown in Table S1. The total amounts of human IgG in purified IgG fraction transfused to hamsters and
plasma equivalent are shown in Table S2. The hamsters were monitored until the designated endpoint of
the experiments.

For experiment 1, to monitor the body weight change and the micro-CT image, three hamsters per
group were enrolled. The daily body weight was monitored for 15 days, and micro-CT imaging was con-
ducted on days 0, 4, 6, 8, 10, and 12 postinfection. The body weight was compared with the preinfection
baseline, and the relative values were calculated. The changes in the body weights from the baseline of
each hamster treated with plasma were compared, and P values were calculated. In experiments 2
(plasma administered i.p.) and 3 (purified IgG fraction administered i.p.) in order to determine the in vivo
antiviral activity of the convalescent plasma or purified IgG, four hamsters per group were enrolled.
Hamsters were sacrificed on the fourth day postinfection, and lungs were collected for histological ex-
amination and viral titration (Fig. S1). The viral titer in the lungs was determined by means of plaque
assays in VeroE6TMPRSS2 cells. All experiments with hamsters were performed in accordance with the
Science Council of Japan’s Guidelines for Proper Conduct of Animal Experiments. The protocol was
approved by the Animal Experiment Committee of the Institute of Medical Science, the University of
Tokyo (approval number PA19-75).

Micro-CT imaging. The chest CT images of the SARS-CoV-2-infected hamsters were captured as pre-
viously described using an in vivo micro-CT scanner (CosmoScan FX; Rigaku Corporation, Japan) until
12 days postinfection under ketamine-xylazine anesthesia. The imaging was conducted under the fol-
lowing conditions: 2 min at 90 kV, 88 mA, field of view (FOV) of 45 mm, and pixel size of 90.0 mm. After
scanning, the lung images were reconstructed by using the CosmoScan Database software (Rigaku
Corporation) and analyzed as per the manufacturer’s instructions.
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Pathological examination. Excised animal tissues were fixed in 10% buffered formalin and proc-
essed for paraffin embedding. The paraffin blocks were cut into 3-mm-thick sections and then mounted
on silane-coated glass slides. One section from each tissue sample was stained using a standard hema-
toxylin and eosin procedure; another was processed for immunohistochemistry. After deparaffinization,
antigens were activated (121°C, 10 min) with Target Retrieval Solution, pH 6.0 (Dako Cytomation,
Glostrup, Denmark), and endogenous HRP was inactivated by hydroperoxide treatment. The sections
were treated with 5% normal goat serum for 30 min at room temperature and incubated with rabbit
monoclonal anti-SARS-CoV nucleoprotein antibody (Sino Biological, Beijing, China) at 4°C overnight.
Specific antigen-antibody reactions were visualized by means of 3,39-diaminobenzidine tetrahydrochlor-
ide staining using the Dako Envision system (Dako Cytomation).

Detection and quantification of anti-SARS-CoV-2 IgG bound to viral components. The amounts
of anti-SARS-CoV-2 IgG antibodies reactive with SARS-CoV-2 viral components in convalescent plasma were
determined using the capillary electrophoresis Simple Western Jess apparatus and the SARS-CoV-2 Multi-
Antigen Serology Module (Protein Simple, San Jose, CA) according to the manufacturer’s instructions. In brief,
various recombinant viral components (RBD [200 mg/ml], NC [5 mg/ml], S1 [20 mg/ml], S2 [20 mg/ml], and
whole spike [20 mg/ml]) were covalently fixed with UV irradiation to a 12-230 kDa Jess & Wes Separation
Module (Protein Simple) capillaries. The immobilized viral components were then exposed to each of 30-fold
diluted convalescent plasma samplesf (primary antibodies). Subsequently, the antibodies bound to the viral
components were probed with HRP-conjugated anti-human IgG (secondary antibody). The presence of
human IgG in the module was detected by iridescent light produced by luminol reagent being mediated by
HRP. The signal intensity was quantified and plotted as a peak graph in the analysis software, Compass for
SW ver. 5.0.1 (Protein Simple), and visualized as a virtual Western blot-like image, which is similar to tradi-
tional Western blot images.

Statistical analysis. For the comparison of the temporal changes in body weights of hamsters
receiving control and convalescent plasma (control, D43, D73, D84, and D91), the changes in the body
weights relative to the body weight before viral exposure were modeled with quartic functions. This is
because each curve has a minimum around the middle of the postinfection days and high values at
both edges. Therefore, the number of parameters determined is five, and the function was fitted to the
data by use of the nonlinear least-squares method, which was performed by the Levenberg-Marquardt
algorithm. The F statistics for the comparisons of two curves of the body weight changes were calcu-
lated, and the P values were derived (60). The distribution of the residuals was tested and found to be
consistent with normality. Because of the nonlinearity of the model, the P values are only approximate.
For the viral titer in lung, each convalescent plasma receiving group was compared with the healthy do-
nor plasma receiving group using Dunnett's test by using JMP Pro 15.0.0 (SAS Institute, Cary, NC).

SUPPLEMENTAL MATERIAL
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