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through Regulating PI3K/AKT/mTOR Pathway in
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Abstract: 4-hydroxyderricin (4-HD), as a natural flavonoid compound derived from Angelica keiskei,
has largely unknown inhibition and mechanisms on liver cancer. Herein, we investigated the
inhibitory effects of 4-HD on hepatocellular carcinoma (HCC) cells and clarified the potential mech-
anisms by exploring apoptosis and cell cycle arrest mediated via the PI3K/AKT/mTOR signaling
pathway. Our results show that 4-HD treatment dramatically decreased the survival rate and activities
of HepG2 and Huh7 cells. The protein expressions of apoptosis-related genes significantly increased,
while those related to the cell cycle were decreased by 4-HD. 4-HD also down-regulated PI3K, p-PI3K,
p-AKT, and p-mTOR protein expression. Moreover, PI3K inhibitor (LY294002) enhanced the promot-
ing effect of 4-HD on apoptosis and cell cycle arrest in HCC cells. Consequently, we demonstrate
that 4-HD can suppress the proliferation of HCC cells by promoting the PI3K/AKT/mTOR signaling
pathway mediated apoptosis and cell cycle arrest.

Keywords: Angelica keiskei; chalcone; anti-tumor; mechanism; apoptosis; cell cycle

1. Introduction

Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related
death and is currently the sixth most diagnosed cancer worldwide. The global incidence
varies with geographic location, but is generally higher in East Asia and Africa [1,2].
To date, chemotherapy is still the most frequently used and effective way to cure HCC.
Currently, numerous first-line treatment drugs, such as sorafenib, donafenib, anlotinib, and
lenvatinib have been utilized for the clinical treatment of HCC [3]. Although side effects of
targeted chemotherapeutic agents are rare, there have been several cases of acquired skin
perforation [4]. More seriously, HCC patients usually develop tolerance to chemotherapy
drugs due to the intrinsic resistance or the acquired resistance [5]. Hence, developing
notable anti-HCC ingredients derived from natural products is of great significance, and
among which, plant flavonoids have been continuously attractive to researchers globally so
far [6]. Studies have also shown that flavonoids exhibit good tolerance and efficacy against
a variety of tumors, including liver cancer [7].

Nowadays, the regulation of apoptosis and cell cycle has attracted much attention for
the treatment of cancers, such as HCC. Apoptosis, also called programmed cell death, plays
a prominent role in a diversity of physiological and pathological processes [8]. Existing
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studies have found that apoptosis pathways include mitochondrial pathways, endoplasmic
reticulum pathways, and death receptor pathways [9]. Mitochondrial apoptosis pathways
are the most common, where the abnormal expression of Bcl-2 family proteins, cytochrome
c, and caspases may occur [10]. Moreover, apoptosis is recognized as one of the valid
strategies for tumor suppression, which involves a variety of morphological changes and
cell signal transduction pathways [11]. The cell cycle is closely related to DNA repli-
cation and cell proliferation, including four phases of G0/G1, S, G2, and M. Cell cycle
activities are usually regulated by cyclins (CCNs), cycle-dependent kinases (CDKs), and
cyclin-dependent kinase inhibitors (CKIs) to maintain the activities of normal cell [12].
Abnormal expressions of these cell cycle factors can lead to uncontrolled cell prolifera-
tion and promote the occurrence of carcinogenesis [13]. It is well documented that more
than 90% of human cancers are related to the accelerated G1 phase due to the abnormal
expression of CCNs, CDKs, and CKIs [1,14]. Increasing evidence suggests that abnormal
activation of the phosphatidylinositol-3-kinase (PI3K), AKT, and mammalian target of
rapamycin (mTOR) pathway is a frequent event in numerous malignant tumors, including
prostate cancer [15], gastrointestinal cancer [16], breast cancer [17], non-small cell lung
cancer [18], acute myeloid leukemia [19], and liver cancer [20]. Recently, the activation of
the PI3K/AKT/mTOR signaling pathway was found to be closely related to the regulation
of apoptosis and cell cycle arrest in human endometrial cancer cells [21] and HCC [22].
A new report also showed that the natural flavonoid pectolinarigenin could induce cell
apoptosis and G2/M phase cell cycle arrest of HCC by regulating the PI3K/AKT/mTOR
pathway [23].

Angelica keiskei Koidzumi (A. keiskei), a traditionally healthy vegetable which is orig-
inally planted in pacific-coast islands in Japan, has been reported to contain varieties of
bioactive compounds, especially chalcones [24]. It was officially recognized by the Na-
tional Health Commission of China as a source of new food ingredients in 2019 after its
introduction in the early 1990s, and its in-depth development and industrialization have
been rapidly heating domestically ever since [25–28]. 4-hydroxyderricin (4-HD), as one of
the most abundant chalcone in A. keiskei, exists in all parts of the plant. It has been proved
to exhibit antibacterial [29], anti-inflammatory [24], antidiabetic [30,31], hypotensive [32],
lipid regulation [32–34], and prevention of muscle atrophy [35] and loss [36], making it a
valuable food-source active compound, which shows the promising potentiality of applica-
tion in formulation or preparation for nutraceutical and functional foods. Specifically, in
the research field of anti-cancer effects, it is reported to show anti-osteosarcoma effect by
inhibiting the activation and differentiation of M2 macrophages [37]. Moreover, another
study demonstrates that 4-HD can suppress melanomatogenesis by targeting BRAF and
PI3K [38]. Currently, the literature relating the inhibitory effect and mechanisms of 4-HD on
liver cancer is limited. Furthermore, no studies have reported the regulating roles of 4-HD
on apoptosis and cell cycle arrest in HCC. Herein, we aimed to study the inhibitory effect
of 4-HD on HCC and clarify the potential mechanisms by exploring PI3K/AKT/mTOR
signaling pathway mediated apoptosis and cell cycle arrest.

2. Materials and Methods
2.1. Materials and Cell Culture

HepG2 and Huh7 of human HCC cell lines were supplied by the Cell Bank of the
Chinese Academy of Sciences (Shanghai, China) [39]. The DMEM medium (Invitrogen,
Carlsbad, CA, USA) supplemented with 10% FBS (Invitrogen, Carlsbad, CA, USA) and 1%
penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA) were employed for cell culture at
37 ◦C in a humidified incubator (5% CO2).

2.2. Cell Counting Kit-8 (CCK-8) Assay

A single-cell suspension was firstly prepared based on digestion of the HepG2 and
Huh7 cells in the logarithmic growth phase with trypsin. It was then counted, seeded into
a 96-well plate at a density of 5 × 103 cells/mL, and placed in an incubator for culture.
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After the cells adhered to the wall, they were treated with 4-HD or 4-HD+LY294002 for
48 h, protected from light, and 10 µL of CCK-8 (Solarbio, Beijing, China) solution was
added to each well without air bubbles. Then the cells were incubated for 30 min. Lastly, a
microplate reader (Thermo Fisher Scientific, Waltham, MA, USA) was employed to read
the absorbance, which was detected at 450 nm [40].

2.3. Wound Healing Assay

HepG2 and Huh7 cells were collected in the logarithmic growth phase and spread
evenly in a six-well plate. When the cell growth density reached 95%, a 10 µL pipette tip
was used to streak the line gently with a straight edge. After slowly washing with PBS,
1% serum-containing medium was added to the 6-well plate. Subsequently, 4-HD or a
mixture of 4-HD and LY294002 was added for 48 h. An inverted phase-contrast microscope
(Olympus, Tokyo, Japan) was used to observe cell migration.

2.4. Transwell Assay

The serum-free medium and Matrigel were diluted at a ratio of 1:8, added vertically
to the upper chamber of the Transwell chamber (Corning, NY, USA), and placed in the
incubator overnight. 2 × 105 cells/mL were added to the upper chamber of the small
chamber, and 4-HD, LY294002 and DMEM medium containing 20% bovine fetal serum
were added to the lower chamber of the small chamber. 4% paraformaldehyde was poured
into the 24-well plate, then the lower chamber was placed on a 24-well plate. Crystal violet
was added to the 24-well plate after the cells were fixed for 30 min. After staining, the
24-well plate was placed under a microscope (Olympus, Tokyo, Japan) for observation.

2.5. Cell-Cycle Analysis

The cells were firstly cultured for 48 h. Afterwards, the cell cycle was analyzed via the
cell cycle analysis kit (Beyotime, Shanghai, China). Briefly, the collected cells were fixed
with cold ethanol (70%) and kept at 4 ◦C overnight. DNA was stained with propidium
iodide (PI, 0.05 mg/mL) and RNase (2.0 mg/mL). Then, the pretreated cells were placed
on the FACScan flow cytometer (BD Biosciences, San Jose, CA, USA) for cell cycle analysis.
The cell percentages in G0/G1, S and G2/M phases were calculated by the Cell Lab Quanta
SC software (BD Biosciences, San Jose, CA, USA).

2.6. Apoptosis Analysis

An Annexin V-FITC apoptosis detection kit (Sigma-Aldrich, USA) was utilized for the
evaluation of the effect of 4-HD treatment on cell apoptosis via flow cytometry. HepG2
and Huh7 cells were prepared into a single cell suspension. Then it was seeded in a 6-well
plate (2 × 105 cells/mL) and treated with 4-HD or LY294002 for 48 h. Subsequently, the
cells were digested, centrifuged, mixed with Annexin V-FITC, and then the solution of PI
staining was added. Then the cells were incubated for 15 min and kept from light at room
temperature. Finally, the cell apoptosis was detected by flow cytometry.

2.7. TUNEL Assay

TUNEL assays were implemented according to the kit manufacturer’s protocol (Ab-
cam, USA). The HCC cells were incubated in a 48-well plate for 48 h, and then fixed by
4% paraformaldehyde. After that, 0.1% TritonX-100 was added to the 48-well plate. 3%
H2O2 was used to block the cells, then Tunel reaction buffer was added, and the cells were
incubated in the 37 ◦C incubator in the dark for 60 min. A confocal fluorescence microscope
(Nikon, Tokyo, Japan) was employed to observe the cell morphology.

2.8. Immunofluorescence Staining

Cells were seeded on clean glass slides and treated with 4-HD or 4-HD+LY294002
for 48 h. 4% paraformaldehyde was used to fix the cells and TritonX-100 was added in
0.3% PBS to permeabilize the cells at room temperature. The following primary antibodies
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were used: anti-p-AKT (Abcam, Cambridge, UK). PBS contains 5% BSA was used to
dilute the antibodies, and after washing, Cy3-conjugated goat anti-mouse IgG (Beyotime,
Shanghai, China) was utilized to incubate the cells at room temperature for 1 h. Lastly, it
was determined by a fluorescence microscope (Nikon, Tokyo, Japan).

2.9. Western Blotting Analysis

Western blot was performed via the standard methods. HepG2 and Huh7 cells were
placed in a 6-well plate with a density of 5 × 105 cells and incubated at 37 ◦C for 24 h.
The total protein of each treatment group was extracted with lysis buffer containing 1%
phenylmethanesulfonyl fluoride (PMSF). After separated, the proteins were then trans-
ferred to PVDF membranes (Solarbio, Beijing, China). The following primary antibodies
were used for Western blot analysis: PI3K p85 (ABclonal A4992), Bax (ABclonal A19684),
Bcl-2 (ABclonal A0208), cleaved caspase-3 (WL02348), CDK1/CDC2 (WL02373), cyclin B1
(WL01760), GAPDH (ab8245), AKT (#4685S), p-AKT (#4060S), p-PI3K p85 (#4228), m-TOR
(#2983), p-mTOR (#5536), caspase-3 (#9662), caspase-9 (#9508S), cytochrome c (#11940T),
PARP (#9532S), cyclin D1 (#2978P), CDK4 (#12790S), and CDK6 (#13331S). The antibodies
and all secondary antibodies were supplied by CST (Danvers, MA, USA) and the mem-
branes were visualized by BM Chemiluminescence Western Blotting Kit (Sigma-Aldrich,
Schnelldoff, Germany). All the experiments were repeated three times.

2.10. Statistical Analysis

The results are presented as the standard error of mean±mean, and one-way analysis
of variance (ANOVA) was employed to evaluate the data. Duncan’s multiple range test
was performed to compare the differences among the groups via the SPSS software (version
22.0), and statistical significance was represented by p < 0.05 [41]. Each experiment was
repeated at least three times.

3. Results
3.1. Subsection
3.1.1. 4-HD Inhibited the Proliferation and Metastasis of HepG2 and Huh7

The CCK-8 assay was employed to explore the effects of 4-HD on the cell viability of
human HCC cells HepG2 and Huh7. As shown in Figure 1A,B, different concentrations
of 4-HD (0, 5, 10, 20, 30, 40, 50, 80, and 100 µM) were selected and incubated with HepG2
and Huh7 cells for 24 h and 48 h, respectively. When the concentration of 4-HD was above
40 µM, the cell viability of the two types of HCC cells was significantly decreased after 24 h
incubation (p < 0.05 for all) (Figure 1A). When the incubation was prolonged to 48 h, the
cell viability was remarkably decreased by 4-HD with a concentration higher than 20 µM
(p < 0.01 for all) (Figure 1B). A notable dose-dependent manner was observed.

The wound-healing assay was implemented to observe the migration effect of 4-HD
on HCC cells. As shown in Figure 1C,D, the wound healing of HepG2 and Huh7 cells was
markedly reduced after co-incubation with 20 µM and 40 µM of 4-HD for 48 h (p < 0.001
for all), compared with the control group, suggesting that 4-HD can effectively inhibit
the migration process of HepG2 and Huh7. Subsequently, the Transwell experiment was
employed to record the number of HepG2 and Huh7 cells passing through the Transwell
chamber after 48 h of exposure to different concentrations of 4-HD. As seen in Figure 1E,F,
the number of lower chambers was decreased when the concentration of 4-HD was raised
(p < 0.001 for all). And obviously, 4-HD inhibited the invasion ability of HepG2 and Huh7
in a dose-dependent manner. Combining the results of wound healing and Transwell
experiments, it can be inferred that 4-HD can significantly restrain the migration and
invasion of HepG2 and Huh7.
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cells and Huh7 cells treated with 4-HD (0–100 µM) after 24 h or 48 h by CCK-8 assay; (C,D) Evaluation of effects for 4-HD
on cell migration by wound healing assay; (E,F) Assessment of effects for 4HD-treated cell invasion by Transwell assay.
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.1.2. 4-HD Induced Apoptosis and Cell Cycle Arrest in HepG2 and Huh7 Cells
4-HD Induced Apoptosis in HepG2 and Huh7 Cells

To further evaluate the pro-apoptosis effects of 4-HD on HepG2 and Huh7 cells,
TUNEL and flow cytometry were successively performed. As shown in Figure 2A,B, the
number of positive cells in the 4-HD treatment group was increased in a dose-dependent
manner (p < 0.01 for all), compared with the control group. It can be observed from
Figure 2C,D that, as the concentrations of 4-HD went up, the rate of apoptosis exhibited an
upward trend (p < 0.05 for all). Furthermore, Western blot experiments were employed to
explore the mechanism of 4-HD-induced apoptosis of HepG2 and Huh7 cells. As seen in
Figure 2E,F, the expressions of cytochrome c, cleaved caspase-3, cleaved caspase-9, cleaved
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PARP, and Bax proteins were up-regulated as the concentrations of 4-HD rose, while the
expressions of pro-caspase-3, pro-caspase-9, PARP, and Bcl-2 proteins were remarkably
down-regulated (p < 0.05 for all). These results indicate that 4-HD can promote HepG2 and
Huh7 cells apoptosis by activating the mitochondrial apoptosis pathway.Figure 2. 

 
  

Figure 2. Effects of 4-HD on apoptosis of HepG2 and Huh7 cells. (A,B) TUNEL (green) and DAPI (blue) double-positive
cells were elevated after treatment with various concentrations of 4-HD (magnification, 400×); (C,D) Cells were treated
with 4-HD for 48 h, stained with annexin V-FITC/PI, and then analyzed by flow cytometry; (E,F) The effects of 4-HD on the
expressions of Bax, Bcl-2, cytochrome c, caspase-9, caspase-3 and PARP proteins were evaluated via Western blot. Relative
expressions of the proteins were normalized to GAPDH. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

4-HD Induced Cell Cycle Arrest in HCC Cells

Cells can be divided into the G0/G1, S, and G2/M phases according to the DNA
content and detected by flow cytometry. Herein, the effects of 4-HD on the cell cycle of
HepG2 and Huh7 cells were investigated. After PI staining, the cells in different cell cycles
were distinguished according to the fluorescence intensity. As shown in Figure 3A,B,E,F,
the proportion of HepG2 cells in the G2/M phase was increased with the elevation of
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4-HD concentrations. However, the proportion of Huh7 cells in the G0/G1 phase was
surprisingly increased as well, suggesting that 4-HD can block HepG2 cells in the G2/M
phase and Huh7 cells in the G0/G1 phase (p < 0.01 for all).

Figure 3. 
 

 

  
Figure 3. The effect of 4-HD on HCC cell cycle distribution. (A,B) Phase distribution of HepG2 treated with 4-HD for 48 h
by flow cytometry analysis; (C,D) The effects of 4-HD on the expression of Cyclin B1 and CDK1/CDC2 in HepG2 cells
were evaluated by Western blot; (E,F) Phase distribution of Huh7 treated with 4-HD for 48 h by flow cytometry analysis;
(G,H) The effects of 4-HD on the expressions of Cyclin D1, CDK4 and CDK6 in Huh7 cells were evaluated by Western blot.
Relative expressions of the proteins were normalized to GAPDH. ** p < 0.01, *** p < 0.001, **** p < 0.0001.

HepG2 and Huh7 cells were respectively incubated with 4-HD at concentrations of
20 µM and 40 µM for 48 h, and the proteins were extracted. As displayed in Figure 3C,D,G,H,
the relative protein expressions of cyclin B1 and CDK1/CDC2 were determined. In HepG2
cells, the levels of cyclin B1 and CDK1/CDC2 were declined with the increasing concentra-
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tions of 4-HD, while in Huh7 cells, the expressions of cyclin D1, CDK4, and CDK6 were
dramatically down-regulated. It can be inferred that 4-HD can induce HepG2 cells arrest at
the G2/M phase and Huh7 cells arrest at the G0/G1 phase (p < 0.01 for all).

3.1.3. 4-HD Regulated the PI3K/AKT/mTOR Pathway

To investigate that 4-HD regulates the PI3K/AKT/mTOR pathway, the protein expres-
sions of genes related to the pathway were detected. It can be observed from Figure 4A,B
that, as the concentration of 4-HD raised, the expressions of PI3K, p-PI3K, p-AKT, and
p-mTOR proteins were down-regulated, while the expressions of AKT and mTOR proteins
were up-regulated (p < 0.05 for all). Moreover, the same results were obtained in the
immunofluorescence experiment, as shown in Figure 4C, indicating that 4-HD can inhibit
the phosphorylation of AKT.

In order to confirm whether 4-HD governed the PI3K/AKT/mTOR axis, PI3K inhibitor
LY294002 was selected, Western blot analysis and immunofluorescence experiments were
performed to detect related proteins. Figure 4D,E shows that the expressions of p-PI3K, p-
AKT, and p-mTOR proteins in the 4-HD+LY294002 group were notably decreased compared
with the 4-HD group (p < 0.05 for all). As seen in Figure 4F from immunofluorescence
results, the expressions of p-AKT gradually were decreased, compared with the control
group. What’s more, the inhibitory effect of p-AKT was enhanced by LY294002+4HD group.

Then, aiming to validate whether the PI3K/AKT/mTOR signaling pathway was
involved in 4-HD inhibiting the migration and invasion of HCC cells, LY294002 was
incubated with HepG2 cells, followed by wound healing and Transwell experiments. It
can be observed from Figure 4G,H that the wound healing width of 4-HD and LY294002
combined treatment group was markedly higher than that of LY294002 alone treatment
group, indicating that LY294002 combined treatment can enhance the inhibition of cell
migration (p < 0.05 for all). As noticed in Figure 4I,J, the number of HepG2 cells that
invaded the lower chamber in the 4-HD and LY294002 combination group was eminently
lower than that in the 4-HD group (p < 0.01 for all). It can be inferred from these results
that 4-HD can inhibit the proliferation and metastasis of HCC cells by regulating the
PI3K/AKT/mTOR pathway.

3.1.4. 4-HD Induced Apoptosis and Cycle Arrest of HCC Cells by Regulating the
PI3K/AKT/mTOR Pathway

To further verify whether PI3K/Akt/mTOR signaling pathway is involved in the
process of 4-HD inducing apoptosis and cell cycle arrest of hepatoma cells, as shown in
Figure 5A,B, the proportion of apoptosis in the 4-HD + LY294002 treatment group was
increased, compared with the control group (p < 0.001). As seen in Figure 5C,D, compared
with the 4-HD group, the expressions of cytochrome c, cleaved caspase-3, cleaved caspase-9,
cleaved PARP, and Bax proteins were remarkably elevated in the 4-HD + LY294002 group,
accompanied by the decreasing expressions of pro-caspase-3, pro-caspase-9, PARP and
Bcl-2 proteins (p < 0.05 for all).

The cell cycle distribution of HepG2 was assessed by flow cytometry. As exhibited in
Figure 5E,F, compared with the 4-HD group, the cell proportion at the G0/G1 phase was
declined, while the one at the G2/M phase was increased after combining with LY294002
(p < 0.01 for all). Furthermore, Western blot was performed to verify the expression of
cyclin. As shown in Figure 5G,H, 4-HD+LY294002 treatment significantly down-regulated
the expressions of CDK1/CDC2 and Cyclin B1 proteins (p < 0.05 for all). Combining the
above experimental data, it can be concluded that 4-HD can induce apoptosis and cycle
arrest of HCC cells through the PI3K/AKT/mTOR signaling axis.
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Figure 4. 

 Figure 4. 4-HD inhibited the proliferation and metastasis of HCC cells by regulating the
PI3K/AKT/mTOR signaling pathway. (A,B) Relative proteins expressions of PI3K/AKT/mTOR
pathway in HepG2 cells and Huh7 cells treated with 0 µM, 20 µM, and 40 µM of 4-HD for 48 h;
(C) Immunofluorescence was employed to quantify the expression of p-AKT protein in HepG2 cells
(magnification: 400×); (D,E) Relative proteins expressions of PI3K/AKT/mTOR pathway in HepG2
cells were treated with PBS (control), 4-HD (40 µM 4-HD), LY294002 (10 µM LY294002) and 4-HD
+ LY294002 (40 µM 4-HD + 10 µM LY294002) for 48 h; (F) immunofluorescence was performed to
quantify the expression of p-AKT protein in HepG2 cells treated with LY294002 (magnification:
400×); (G,H) wound healing assay was carried out to conduct the effect of LY294002 on the migration
of HepG2 cells; (I,J) Transwell assay was implemented to detect the effect of LY294002 on the invasion
of HepG2 cells. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 vs. control (0 µM); # p < 0.05,
## p < 0.01, ### p < 0.001, #### p < 0.0001 vs. 40 µM 4-HD.
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Figure 5. 4-HD induced apoptosis and cycle arrest of HCC cells by regulating the PI3K/AKT/mTOR signaling pathway.
(A,B) Cell apoptosis proportion treated with 4-HD+LY294002 was detected by flow cytometry; (C,D) The effects of LY294002
on the expressions of Bax, Bcl-2, cytochrome c, caspase-9 and caspase-3 and PARP in HepG2 cells treated with 4-HD were
evaluated by Western blotting; (E,F) Cell cycle distribution proportion treated with 4-HD+LY294002 was determined by
flow cytometry; (G,H) Effects of LY294002 on the expressions of cyclin B1 and CDK1/CDC2 proteins in HepG2 cells treated
with 4-HD were assessed by Western blotting. Relative expressions of the proteins were normalized to GAPDH. * p < 0.05,
** p < 0.01, *** p < 0.001 vs. control (0 µM); # p < 0.05, ## p < 0.01, ### p < 0.001, #### p < 0.0001 vs. 40 µM 4-HD.
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4. Discussion

4-HD is one of the major natural chalcone isolated from A. keiskei with various func-
tional properties, such as anti-tumor. To our knowledge, this is the first study evaluating
the inhibitory effects of 4-HD on HCC cells. In two typical HCC cell lines, HepG2 and
Huh7, we found 4-HD induced remarkable cell cycle arrest and apoptosis along with
the inhibitory effect on the proliferation and metastasis. What’s more, we proved that
4-HD may promote apoptosis and cell cycle arrest of the HCC cells by modulating the
PI3K/AKT/mTOR signaling pathway.

Apoptosis is the main way of programmed cell death, which can restrain tumor
cell growth [42]. Drug-induced cell apoptosis is mainly regulated by the mitochondrial
mechanism through caspase activations [43]. Caspase and Bcl-2 family genes play an
important regulatory role in the process of cell apoptosis [44]. Caspase-3 regulates the
entire process of cell apoptosis [45]. Bcl-2 is a membrane protein that inhibits the release
of cytochrome c (Cyto-C) by regulating the permeability of the mitochondrial membrane
and restrains the activation of caspase-3 to exert anti-apoptotic effects [46]. Bax, as a pro-
apoptotic protein, can be suppressed by forming a dimer with Bcl-2, while its activation
destroys the integrity of the mitochondrial membrane. Subsequently, cyto-C is released
from the mitochondrial membrane, which activates caspase-3 and induces mitochondrial
apoptosis [47]. Our results showed that the expressions of pro-apoptotic proteins were up-
regulated while those of anti-apoptotic proteins were down-regulated by 4-HD treatment.
A previous study has shown that 4-HD can induce apoptotic death of HL60 cells through
death receptor-mediated and mitochondrial pathways [48], which is consistent with our
findings that 4-HD induces mitochondrial apoptotic cell death to exert anti-HCC cell
proliferation effects.

The cell cycle is regulated by a protein complex composed of cyclins and cyclin-
dependent kinases (CDK). It has been reported that the abnormal levels of CDK4, CDK6,
and cyclin D1 in various human cancer cells are closely related to the abnormal proliferation
of cancer cells [49,50]. Cell cycle arrest is considered as a potential target for cancer therapy
in numerous malignant cancers [51]. Decrease in cyclin D inhibits growth and induces
cell death in tumors such as esophageal, colon, and pancreatic cancers [52–54]. Many
chemotherapeutic drugs exhibit anti-tumor effects by inducing cell cycle arrest [55]. The
activation of CDK1/CDC2 and cyclin B1 plays a key role in the initial stages of mitosis.
And the existing document indicates that the down-regulation of CDK1/CDC2 and cyclin
B1 is related to the G2/M cycle arrest [56]. In this study, the expressions of cyclin B1 and
CDK1/CDC2 proteins in HepG2 cells treated with 4-HD were down-regulated, while those
of cyclin D1 and CDK4 were down-regulated in Huh7 cells, suggesting that 4-HD can
trigger HepG2 cells arrest at G2/M phase and Huh7 cells arrest at G0/G1 phase.

PI3K/AKT/m-TOR cascade is a signal transduction pathway that regulates cancer
cell growth, proliferation, cell energy, proliferation, senescence, and angiogenesis [57].
Inhibiting the different processes of the PI3K/AKT/m-TOR pathway is a common strat-
egy for the treatment of human malignant tumors [58]. Many bioactive flavonoids, such
as collagen and paclitaxel, have been reported to down-regulate the expressions of pro-
teins such as p-PI3K, p-AKT, and p-mTOR by inhibiting PI3K/AKT/mTOR pathway in
HCC [59,60]. Our study shows that the protein levels of PI3K, p-PI3K, p-AKT, and p-
mTOR were down-regulated following 4-HD treatment, while the expressions of AKT
and mTOR proteins were up-regulated, indicating that the suppression effect of 4-HD on
the PI3K/AKT/mTOR signaling pathway. Moreover, we also co-treated the HCC cells
with both 4-HD and LY294002, an inhibitor of PI3K. Both apoptosis and cycle arrest were
exacerbated in the co-treatment groups. A previous study demonstrated that 4-HD could
promote apoptosis and induces cycle arrest in melanoma by targeting PI3K [32], which
complies with our findings. Collectively, all these results indicated that 4-HD induced
apoptosis and cell cycle arrest of the HCC cells by modulating the PI3K/AKT/mTOR
signaling pathway to inhibit the proliferation of HCC cells (Figure 6).
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