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A B S T R A C T   

Full conversion of glucose and xylose from lignocellulosic hydrolysates is required for obtaining a high ethanol 
yield. However, glucose and xylose share flux in the pentose phosphate pathway (PPP) and glycolysis pathway 
(EMP), with glucose having a competitive advantage in the shared metabolic pathways. In this work, we knocked 
down ZWF1 to preclude glucose from entering the PPP. This reduced the [NADPH] level and disturbed growth on 
both glucose or xylose, confirming that the oxidative PPP, which begins with Zwf1p and ultimately leads to CO2 
production, is the primary source of NADPH in both glucose and xylose. Upon glucose depletion, gluconeogenesis 
is necessary to generate glucose-6-phosphate, the substrate of Zwf1p. We re-established the NADPH regeneration 
pathway by replacing the endogenous NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
gene TDH3 with heterogenous NADP + -GAPDH genes GDH, gapB, and GDP1. Among the resulting strains, the 
strain BZP1 (zwf1Δ, tdh3::GDP1) exhibited a similar xylose consumption rate before glucose depletion, but a 1.6- 
fold increased xylose consumption rate following glucose depletion compared to the original strain BSGX001, 
and the ethanol yield for total consumed sugars of BZP1 was 13.5% higher than BSGX001. This suggested that 
using the EMP instead of PPP to generate NADPH reduces the wasteful metabolic cycle and excess CO2 release 
from oxidative PPP. Furthermore, we used a copper-repressing promoter to modulate the expression of ZWF1 and 
optimize the timing of turning off the ZWF1, therefore, to determine the competitive equilibrium between 
glucose-xylose co-metabolism. This strategy allowed fast growth in the early stage of fermentation and low waste 
in the following stages of fermentation.   

1. Background 

Bioethanol has an increasingly critical role in reducing the green-
house effect and enabling energy transitions, especially 2nd generation 
bioethanol produced from lignocellulose, which is a renewable energy 
source [1,2]. Xylose is the second most abundant sugar found in ligno-
cellulosic hydrolysate after glucose [3–5]. Therefore, the full 
co-utilization of glucose and xylose represents a cost-effective approach 
for converting biomass feedstock into bioethanol [6]. Saccharomyces 
cerevisiae is an optimal cell factory due to its robust metabolic capacity 
and high tolerance to inhibitors [7–9]. However, it lacks the initial 

xylose metabolic pathway, and glucose use inhibits xylose utilization 
[10,11]. 

To generate the xylose metabolic pathway in S. cerevisiae strains, 
heterologous xylose isomerase (XI) or xylose reductase (XR) alongside 
xylitol dehydrogenase (XDH) was introduced into the strains to trans-
form xylose to xylulose [12–15]. The XI pathway, involving only one 
isomerization step, is straightforward (Fig. 1). However, cofactor engi-
neering, including altering the coenzyme preference, is necessary to 
resolve cofactor imbalance in the strain metabolizing xylose via the 
XR-XDH pathway, because XR prefers NADPH rather than NADH, while 
XDH only utilizes NAD+ [15,16]. Efficient xylose-utilizing yeasts have 
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been obtained through further metabolic engineering, predominantly 
relying on overexpressing xylulokinase genes and non-oxidative pentose 
phosphate pathway (PPP) genes to elevate the downstream flux [17]. 
Additionally, deletion of the aldose reductase gene GRE3 avoids the 
accumulation of xylitol [15], and adapting evolution in the medium 
using xylose as the lone or primary carbon source to reform the cellular 
regulatory system, thus improving xylose metabolic efficiency [18]. 
Nevertheless, the xylose metabolic capacity of these strains remains 
much lower than glucose [19,20], especially when exposed to 
glucose-xylose co-fermentation. 

Xylose utilization is severely reduced by glucose both in the glucose 
stage and after glucose depletion [19,20]. Based on the common meta-
bolic pathways, xylose is phosphorylated to xylulose, where it enters the 
PPP, and then enters the EMP as the intermediate metabolite 
glyceraldehyde-3-phosphate (G3P) and fructose-6-phosphate (F6P). 
While most glucose directly enters EMP, 10%–15% of glucose enters the 
PPP first (Fig. 1) [21]. This means glucose competes with xylose for flux 
throughout both the PPP and EMP. It is theoretically feasible to improve 
glucose and xylose co-fermentation by limiting the metabolic flux 
competition of glucose relative to xylose [22]. One successful approach 
is that Miskovic L et al. reduced the glucose metabolism rate by deleting 
the hexokinase gene HXK2 [23], which reduced the rate of glucose 
phosphorylation, and improved glucose-xylose co-utilization. Similarly, 
blocking the oxidative PPP is another approach, leaving the PPP flux 
entirely to xylose. 

However, the oxidative PPP is the primary source of NADPH, a key 
reducing agent required for general biosynthesis [24]. There are two 
reactions in the oxidative PPP that generate NADPH (Fig. 1). The first is 
the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconolac-
tone (6PGL) catalyzed by glucose-6-phosphate dehydrogenase, 

representing the rate-limiting step of PPP. Second is the conversion of 
6-phosphogluconate (6 PG) to ribulose-5-phosphate, which is catalyzed 
by 6-phosphogluconate dehydrogenase, causing the release of a mole-
cule of CO2. Theoretically, blocking the oxidative PPP may limit the CO2 
emission, which could elevate the ethanol yield. However, constructing 
an efficient NADPH regeneration pathway may be a prerequisite for 
shutting down the PPP, as securing an adequate supply of NADPH is vital 
for the synthetic metabolism of the cell. 

To improve xylose utilization and elevate ethanol yield, the ZWF1 
gene, which encodes glucose 6-phosphate dehydrogenase (G6PDH), was 
deleted from a xylose-utilizing recombinant S. cerevisiae strain BSGX001 
[19]. This significantly decreased cell growth. To secure an adequate 
supply of NADPH, three heterologous NADP+-dependent 
glyceraldehyde-3-phosphate dehydrogenase genes [25–27] were 
respectively expressed in the zwf1Δ strain in the position of the TDH3 
gene, which encodes a NAD+-dependent glyceraldehyde-3-phosphate 
dehydrogenase. Among them, the expression of GDP1 best compen-
sated for the negative effects of ZWF1 deletion with respect to cell 
growth and improved xylose utilization. Then the CTR1 promoter, 
which can be inhibited by Cu2+ [28], was used to modulate the 
expression of ZWF1 in the GDP1 expressing strain. CuSO4 was added to 
the fermentation broth at 8 and 12 h, respectively, to assess whether this 
strategy leads to faster cell growth in the early stage of fermentation and 
improved xylose utilization in subsequent stages, compared to the 
strategy of deleting ZWF1. 

Fig. 1. The pathway of glucose and xylose co-metabolism in S. cerevisiae. 6PGL, 6-phosphogluconolactone; 6 PG, 6-phosphogluconate; G3P, glyceraldehyde-3- 
phosphate; F6P, fructose-6-phosphate; S7P, sedoheptulose-7-phosphate; E4P, erythrose-4-phosphate; 1,3-BPG, 1,3-diphosphoglycerate; DHAP, dihydroxyacetone 
phosphate; XI, xylose isomerase; XR, xylose reductase; XDH, xylitol dehydrogenase; XK, xylulokinase; HXK2, encoding hexokinase; PGI, phosphoglucose isomerase; 
ZWF1, encoding glucose-6-phosphate dehydrogenase; TDH3, encoding glyceraldehyde-3-phosphate dehydrogenase. 
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2. Methods 

2.1. Strain construction 

All S. cerevisiae strains used in this study are listed in Table 1. The 
BSGX001, a xylose utilizing recombinant strain with XI pathway [19], 
was employed as the parental strain. Other S. cerevisiae strains were 
successively derived from BSGX001. All expression and deletion pro-
cedures were controlled by manipulating genomic DNA using homolo-
gous recombination technology. All expression and deletion cassettes of 
transformants were confirmed via sequencing to obtain the target strain. 

To delete ZWF1 (NC_001146.8), the natMX6 cassette was amplified 
out of the Cas9-NAT plasmid [29]. Two homologous arms, ZWF1up 
(− 208 to 5 bp) and ZWF1down (1524–1776 bp), were amplified from the 
BSGX001 genomic DNA and fused with the natMX6 cassette using 
overlap extension PCR. The resulting fragment ZWF1up-natMX6-ZWF1-
down was transformed into BSGX001, and the correct transformant was 
named BZ. To replace TDH3 (CP046087.1), which encodes 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in the strain BZ 
with other GAPDHs, a KanMX4 cassette was amplified from the pUG 6 
plasmid [30]. The codon-optimized genes for GAPDH from Spinacia 
oleracea (GDH, NW_018932882.1) and Kluyveromyces lactis (GDP1, 
NC_006042.1) were artificially synthesized, while the gapB gene 
(NC_000964.3) was cloned from the genomic DNA of Bacillus subtilis. 
Two homologous arms, TDH3up (− 188 to − 1 bp) and TDH3down 
(999–1198 bp), were amplified from the BSGX001 genomic DNA. These 
were subsequently fused with the KanMX4 cassette and the various 
GAPDH genes using overlap extension PCR. The fragments 
TDH3up-GDH-KanMX4-TDH3down, TDH3up-gapB-KanMX4-TDH3down, and 
TDH3up-GDP1-KanMX4-TDH3down were individually transformed into 
the BZ strain. The correct transformants were named BZH, BZB, and 
BZP1, respectively. 

The fragment TDH3up-GDP1-KanMX4-TDH3down was also trans-
formed into BSGX001 to obtain the strain BP1. The CTR1 promoter, 
ZWF1up (− 736 to − 526 bp), and ZWF1down (0–214 bp) were amplified 
out of the BSGX001 genomic DNA, and then fused with the natMX6 
cassette through overlap extension PCR. The resulting fragment, 
ZWF1up-natMX6-PCTR1-ZWF1down, was transformed into the strain BP1 to 
replace the original promoter of ZWF1 with the CTR1 promoter. The 
transformant carrying the genotype of tdh3::GDP1-loxP-KanMX4-loxP; 
PZWF1-ZWF1::PCTR1-ZWF1-nat was named BP1R1. 

2.2. Media and culture conditions 

BSGX001 was cultured at 30 ◦C in synthetic complete dropout uracil 
(SC-Ura) medium [1.7 g L− 1 yeast nitrogen base, 5 g L− 1 ammonium 
sulfate, and 0.77 g L− 1 CSM-Ura (Sunrise Science Products, USA)] sup-
plemented with 20 g L− 1 glucose as the carbon source. The derived 
strains were also cultured in SC-Ura supplemented with 20 g L− 1 

glucose, but G418 (Genview, China) (200 mg L− 1 in liquid medium and 
600 mg L− 1 in solid medium) and nourseothricin (Gold Biotechnology, 
USA) (100 mg L− 1 in liquid medium and 200 mg L− 1 in solid medium) 
were supplemented as necessary. The fermentation medium YNB (pH 
5.5) was composed of 1.7 g L− 1 yeast nitrogen base and 5 g L− 1 

ammonium sulfate, 20 g L− 1 glucose, and 20 g L− 1 xylose were used as 
the carbon source. To turn off the CTR1 promoter, 300 μM CuSO4 was 
included in the fermentation broth at the designated time. 

2.3. NADPH/NADP+ assay 

NADPH and NADP+ were isolated from yeast cells and examined 
using a Coenzyme II NADP(H) Content Assay Kit (Solarbio, BC1105, 
Beijing, China). The A570 nm of the reaction solution was determined 
using a Synergy™ HT MultiDetection Microplate Reader (Bio-Tek In-
struments Inc., Vermont, USA). Protein quantification was conducted 
using the Enhanced BCA Protein Assay Kit (Beyotime, P0010, Shanghai, 
China) according to the manufacturer’s directions. The yeast cells were 
grown in a YNB medium supplemented with 20 g L− 1 glucose and 20 g 
L− 1 xylose as carbon sources, and samples were taken at 16 h and 36 h. 

2.4. Batch fermentation 

A single colony was incubated in SC-Ura medium containing 20 g L− 1 

glucose, and cultured overnight. It was transferred to a 100-mL shaken 
flask containing 20 mL of fresh medium, with an initial OD600 of 
approximately 1.0. After 12 h of incubation at 30 ◦C and 200 rpm 
shaking, the cells were harvested and rinsed once with fermentation 
medium, and then inoculated into a 200-mL shaken flask containing 40 
mL of fermentation medium, at an initial OD600 of approximately 0.5. A 
rubber stopper plug with a syringe needle generated the oxygen-limited 
condition. The fermentation was conducted at 30 ◦C and shaking at 200 
rpm for 72 h. CuSO4 was added to the fermentation broth as required. 

2.5. Quantitative analysis 

Cell growth was monitored by measuring the density (OD600) of the 
culture using a UV–visible spectrophotometer (Eppendorf Bio-
Photometer D30, Germany). The concentrations of glucose, xylose, 
glycerol, acetate, and ethanol were characterized using HPLC (Shi-
madzu, Japan) alongside an Aminex HPX-87H ion exchange column 
(300 × 7.8 mm) (BioRad, Hercules, USA) at 45 ◦C, and a refractive index 
detector RID-10A (Shimadzu, Japan). The mobile phase consisted of 5 
mM H2SO4 with a flow rate of 0.6 mL min− 1 [31]. The maximum specific 
growth rates are the linear regression coefficients of the ln OD600 versus 
time throughout the exponential growth phase. The specific con-
sumption/production rates of glucose, xylose, glycerol, acetate, and 
ethanol were determined as previously described [32]. 

2.6. Quantitative real-time PCR (qRT-PCR) 

Quantitative real-time PCR was utilized to detect the transcriptional 
level of ZWF1. Total RNA was extracted using Trizol reagent. cDNA 
synthesis was performed using a ReverTra Ace™ qPCR RT Master Mix 
with gRNA Remover (TOYOBO, Japan). The qPCR was conducted using 
a LightCycle PCR System (Roche Molecular Biochemicals, USA) and 
SYBR Green Realtime PCR Master Mix (TOYOBO, Japan). Three parallel 
tests were performed on each sample. Actin was used as the reference 
gene, and the data were analyzed based on the 2− ΔΔCT method [33]. 

3. Results 

3.1. Construction of an alternative NADPH regeneration pathway in a 
xylose utilization S. cerevisiae 

Glucose and xylose compete for the total flux in the non-oxidative 

Table 1 
S. cerevisiae strains used in this study.  

Name Description Source 

BSGX001 CEN.PK 113-5D derivative; XK, gre3::PPP, cox4Δ, AEa, 
pJX7 

[19] 

BZ BSGX001 derivative; zwf1:: natMX6 This 
study 

BZH BZ derivative; tdh3::GDH-loxP-KanMX4-loxP This 
study 

BZB BZ derivative; tdh3::gapB-loxP-KanMX4-loxP This 
study 

BZP1 BZ derivative; tdh3::GDP1-loxP-KanMX4-loxP This 
study 

BP1 BSGX001 derivative; tdh3::GDP1-loxP-KanMX4-loxP This 
study 

BP1R1 BSGX001 derivative; tdh3::GDP1-loxP-KanMX4-loxP; 
PZWF1-ZWF1::PCTR1-ZWF1-nat 

This 
study  
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PPP. To prevent glucose from entering the PPP and improve the 
competitiveness of xylose, as well as decrease the loss of CO2, the ZWF1 
gene encoding the glucose-6-phosphate dehydrogenase (G6PDH), cata-
lyzing the first step (glucose-6-phosphate to 6-phosphogluconolactone) 
of the PPP, was knocked out in the xylose utilizing recombinant strain 
BSGX001 [19]. The resulting strain was named BZ (Table 1). Batch 
fermentation containing 20 g L− 1 glucose or 20 g L− 1 xylose as a carbon 
source indicated that BZ grew weakly (Fig. 2). Since the non-oxidative 
genes of the PPP were overexpressed in BZ, it was anticipated that the 
BZ should smoothly metabolize xylose through the non-oxidative sec-
tion of PPP. As a result, the intermediate metabolites within the 
non-oxidative PPP could be obtained by xylose metabolism. Therefore, 
the weak growth of BZ on xylose suggests that the oxidative PPP is 
essential for BZ’s growth on xylose. Our perspective is that NADPH is 
more likely to be a limiting factor than 6PGL and 6 PG (Fig. 1). 

To generate sufficient NADPH for cell growth in the zwf1Δ strain, 
three heterologous NADP+-dependent glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) genes were expressed in the BZ strain instead of 
the endogenous NAD+-dependent GAPDH gene TDH3, respectively. 
Specifically, GDH (NW_018932882.1) of Spinacia oleracea [25], gapB 
(NC_000964.3) of Bacillus subtilis [26], and GDP1 (NC_006042.1) of 
Kluyveromyces lactis [27] were used, and the resulting strains were 
named BZH, BZB, and BZP1, respectively (Table 1). The results (Fig. 3, 
Table 2, Fig. S1) of batch fermentations using 20 g L− 1 glucose and/or 
20 g L− 1 xylose as a carbon source showed that the expression of all the 
NADP + -dependent GAPDHs restored cell growth to varying extents. In 
the glucose-xylose co-fermentation, maximum specific growth rates 
(μmax) of BZH, BZB, and BZP1 were 0.062 ± 0.001 h− 1, 0.142 ± 0.002 
h− 1, and 0.167 ± 0.002 h− 1, respectively, 36.5%, 73.6%, and 86.5% of 
BSGX001, respectively. However, the μmax of BZ was only 0.026 ± 0.001 
h− 1, which was 13.5% of BSGX001. Consistent with growth, the 
expression of NADP+-dependent GAPDHs rescued glucose utilization, 
and the glucose consumption rates (rglucose) of BZ, BZH, BZB, and BZP1 
were 16.7%, 23.8%, 45.2%, and 82.1% compared to BSGX001, respec-
tively (Table 2). Considering the insufficient NADPH production in the 
BZ strain and the fact that these GAPDH-catalyzed reactions are linked 
to NADPH production, Gdp1 is the optimal choice to supply NADPH in 
the zwf1Δ strain among the three NADP + -dependent GAPDH we have 
tested. 

Xylose metabolism of strains was analyzed across different stages of 
glucose-xylose co-fermentation. First, in the glucose and xylose co- 
utilizing stage, the xylose consumption rates (r1xylose, Table 2) of BZ, 
BZH, and BZB were lower than BSGX001, while the r1xylose of BZP1 and 
BSGX001 were similar. This demonstrated that the lower cell biomass 
caused by ZWF1 deletion negatively affected xylose utilization in the 
initial stage. However, the specific xylose consumption rate (consump-
tion rate per gram of dry cell weight) of BZP1 was 0.19 ± 0.01 g g− 1 

DCW h− 1, which is 1.2-fold higher than BSGX001 (0.16 ± 0.01 g g− 1 

DCW h− 1), during this phase. This indicated that the deletion of ZWF1, 
thereby dedicating the flux of the PPP exclusively to xylose instead of 
sharing it with glucose, relieved competitive effects of glucose to xylose 
as expected. Furthermore, in the xylose utilizing stage (after glucose 
depletion), the xylose consumption rates (r2xylose, Table 2) of BZB and 
BZP1 were 0.22 ± 0.02 g L− 1 h− 1 and 0.24 ± 0.01 g L− 1 h− 1, respec-
tively, which are 1.5- and 1.6-fold higher than BSGX001 (0.15 ± 0.00 g 
L− 1 h− 1). Moreover, BZB and BZP1 showed higher average ethanol 
production rates and ethanol yields compared to the initial strain 
BSGX001 (Fig. 3, Table 2). This may be because, in BZB and BZP1, all the 
fructose-6-phosphate can be metabolized through the EMP instead of 
partly converting to glucose-6-phosphate and then metabolized through 
the PPP. This reduced the wasteful metabolic cycling and limited CO2 
release, thus increasing the ethanol production rate and yield. 

3.2. Levels of NADPH cofactors in recombinant S. cerevisiae strains 

To uncover the relationship between the available NADPH and the 
xylose utilization capacity, the ratio of [NADPH] and [NADP+] in 
BSGX001, BZ, and BZP1 strains was characterized. Cell samples were 
obtained from the cultures after 16 h and 36 h. For BSGX001 and BZP1, 
the 16-h samples isolated cells in the mid-log phase (glucose-existing 
phase), and the 36-h samples isolated cells in the xylose-utilizing phase 
when glucose had been depleted. For BZ, both the 16- and 36-h samples 
represented slow-growing cells that predominantly utilized glucose 
(Fig. 3). The results (Fig. 4) showed that at 16 h, within the glucose- 
existing phase, the [NADPH]/[NADP+] ratio of BZ was notably lower 
than BSGX001, while the [NADPH]/[NADP+] ratio of BZP1 was only 
slightly lower compared to BSGX001. This suggested that the removal of 
ZWF1 led to an intracellular NADPH shortage, which limited cell 
growth. The expression of GDP1 increased the level of NADPH and 
therefore, supported a high growth rate. 

The [NADPH]/[NADP+] ratio of BSGX001 in the xylose-utilizing 
phase was similar to the glucose-existing phase (Fig. 4). However, the 
cell quantity (OD600) did not increase during the xylose-utilizing phase 
(Fig. 3A). These findings indicated that other issues limited cellular 
growth, so the NADPH generated only needed to meet the requirements 
to maintain fundamental metabolism for BSGX001. For BZP1, the 
[NADPH]/[NADP+] ratio in the xylose-utilizing phase was notably 
lower than in the glucose-existing phase, which may be due to the 
consumption rate of xylose being lower than the consumption rate of 
glucose. Therefore, the EMP flux in the xylose-utilizing phase was lower 
than in the glucose-utilizing phase, and less NADPH was generated via 
the NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase- 
catalyzed reaction. Furthermore, the results also demonstrated that the 
[NADPH]/[NADP+] ratio in BZ after 36 h was significantly higher than 
in other strains. At that time, only a small amount of glucose was 
consumed, and the amount of xylose consumed was even lower. We 

Fig. 2. The growth characteristic of BSGX001 and BZ strains in glucose (A) and xylose (B) fermentation under oxygen-limited condition.  

Y. Qiu et al.                                                                                                                                                                                                                                      



Synthetic and Systems Biotechnology 9 (2024) 269–276

273

suspected that the deletion of ZWF1 decreased the NADPH from PPP. 
Furthermore, this deletion notably decreased precursors for the syn-
thesis of nucleic acids and amino acids, such as ribose-5-phosphate and 

erythrose-4-phosphate. This severely hampered cell growth and meta-
bolism. The low growth and metabolism, accompanied by low NADPH 
consumption, led to the continuous accumulation of NADPH generated 
from other reactions, such as the glyoxylate cycle, which could turn on 
when EMP was almost turned off [34]. 

Fig. 3. The co-fermentation characteristics of recombinant strains BSGX001 ( ), BZ ( ), BZH ( ), BZB ( ), BZP1 ( ). The growth curves (A), glucose con-
sumption (B), xylose consumption (C) and ethanol production (D) of the strains in YNB medium with 20 g L− 1 glucose and 20 g L− 1 xylose. Data represent means ±
standard deviation of biological triplicates. 

Table 2 
The fermentation characteristics of recombinant strains.  

Strains μmax
a 

(h− 1) 
rglucose

a 

(g L− 1 

h− 1) 

r1xylose
a 

(g L− 1 

h− 1) 

r2xylose
b 

(g L− 1 

h− 1) 

rethanol
c 

(g L− 1 

h− 1) 

Yethanol
d 

(g g− 1) 

BSGX001 0.193 
±

0.000 

0.84 ±
0.01 

0.15 ±
0.01 

0.15 ±
0.00 

0.16 ±
0.00 

0.379 ±
0.001 

BZ 0.026 
±

0.001 

0.14 ±
0.04 

0.09 ±
0.02 

– 0.05 ±
0.01 

0.169 ±
0.034 

BZH 0.062 
±

0.001 

0.20 ±
0.01 

0.08 ±
0.02 

– 0.09 ±
0.00 

0.292 ±
0.011 

BZB 0.142 
±

0.002 

0.38 ±
0.01 

0.10 ±
0.01 

0.22 ±
0.02 

0.19 ±
0.00 

0.419 ±
0.003 

BZP1 0.167 
±

0.002 

0.69 ±
0.01 

0.14 ±
0.02 

0.24 ±
0.01 

0.21 ±
0.00 

0.430 ±
0.002 

BP1R1 
(8 h) 

0.170 
±

0.004 

0.77 ±
0.01 

0.09 ±
0.01 

0.19 ±
0.00 

0.18 ±
0.00 

0.428 ±
0.004 

BP1R1 
(12 h) 

0.179 
±

0.000 

0.81 ±
0.01 

0.14 ±
0.01 

0.14 ±
0.00 

0.17 ±
0.00 

0.423 ±
0.007  

a The glucose-xylose co-utilization stage. 
b The glucose depletion and xylose utilization stage. 
c The stage of whole fermentation. 
d Ethanol yield of consumed sugars. 

Fig. 4. The [NADPH]/[NADP+] ratio of BSGX001, BZ and BZP1 strains. Sam-
ples were taken at 16 h (black columns) and 36 h (gray columns) in glucose- 
xylose co-fermentation. Experiments were performed in triplicate and the 
error bars denoted standard deviation from the means of independent 
experiments. 
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3.3. Controlling the expression timing of ZWF1 allowed for rapid growth 
in the early stage and low waste throughout fermentation 

To avoid a reduction in cell growth caused by the deletion of ZWF1 
and retain the benefit of NADP + -dependent GAPDH on xylose utiliza-
tion, we tried to express ZWF1 in the early stage of fermentation and 
turn it off in the following stage in the GDP1 expressing strain. The TDH3 
of BSGX001 was replaced with GDP1 resulting in strain BP1, then the 
promoter of ZWF1 in BP1 was replaced with PCTR1, inhibited by Cu2+

[28,35], resulting in strain BP1R1. The RT-qPCR results uncovered that 
the expression level of ZWF1 in BP1R1 was approximately 20% of that in 
BSGX001 under Cu2+ free condition, and the addition of CuSO4 nearly 
blocked the expression of ZWF1 (Fig. 5). The glucose-xylose co-fer-
mentation of BP1, BZP1, and BP1R1 was performed at Cu2+ free con-
dition. The xylose consumption rate of strains in the following order: 
BZP1>BP1R1>BP1, indicated that reducing the expression level of 
ZWF1 is beneficial for xylose metabolism (Fig. S2). 

Glucose-xylose co-fermentation was performed, and 300 μM CuSO4 
was added into the fermentation broth of BP1R1 at 8 h and 12 h. The 
results (Fig. 6, Table 2) demonstrated that the maximum specific growth 
rates (μmax) of BP1R1 with CuSO4 at 8 h and 12 h were 0.170 ± 0.004 
h− 1 and 0.179 ± 0.000 h− 1, respectively, both higher than BZP1 (0.167 
± 0.002 h− 1). The glucose consumption rate (rglucose) of BP1R1 with 
CuSO4 at 12 h was 0.81 ± 0.01 g L− 1 h− 1, which was superior to the 
addition of CuSO4 at 8 h (0.77 ± 0.01 g L− 1 h− 1) and BZP1 (0.69 ± 0.01 
g L− 1 h− 1) (Table 2). Furthermore, after glucose depletion, the xylose 
consumption rate (r2xylose) and ethanol production rate (rethanol) of 
BP1R1 with CuSO4 added at 8 h were higher than adding CuSO4 at 12 h 
but lower than BZP1 (Table 2). The final ethanol yield (Yethanol) of 
BP1R1 with CuSO4 at 8 h or 12 h was slightly less than BZP1 (Table 2). 
These findings indicated that knocking out ZWF1 is a simple and effec-
tive approach to promote xylose metabolism and ethanol production. In 
the phased control strategy, Zwf1p, which was already expressed before 
adding CuSO4, might have an ongoing effect, reducing the positive effect 
of this strategy on ethanol production. 

4. Discussion 

The xylose utilization efficiency of S. cerevisiae severely impacts the 
economic efficiency of lignocellulosic ethanol production. In glucose- 
xylose co-fermentation, recombinant S. cerevisiae strains typically use 
glucose more rapidly than xylose. As a result, the glucose is exhausted 
first, followed by a long-term xylose-utilizing phase. In this work, we 
blocked the oxidative PPP to prevent the glucose from entering the PPP. 
This therefore decreasing the competitive inhibition of glucose to xylose 
utilization. Additionally, we rebuilt an NADPH generation reaction by 

expressing the NADP+-dependent GAPDH gene in a recombinant 
S. cerevisiae strain with the XI pathway. These operations enhanced the 
xylose utilization and elevated the ethanol yield, while reducing the 
glucose metabolism rate. Although we attempted to use novel genes, the 
K. lactis GAPDH gene GDP1 remained the optimal choice, as previously 
reported [27]. To account for the decrease in glucose utilization, we 
further optimized the timing to turn off ZWF1 expression. The Cu2+

repressive promoter CTR1p was used to attenuate the expression of 
ZWF1. ZWF1 expression was turned off after 8 h or 12 h in fermentation 
by adding Cu2+ to the fermentation broth. The results indicated that 
adding CuSO4 at 8 h and 12 h could promote glucose metabolism. The 
xylose metabolism and ethanol yield after adding CuSO4 at 8 h were 
superior to that after adding CuSO4 at 12 h. However, deleting ZWF1 
remains the optimal strategy for high ethanol yield. 

It is generally believed that glucose inhibits xylose use. The common 
approach involves enhancing the xylose utilization capacity to boost its 
competitiveness in co-fermentation. This includes strategies like 
increasing XI (xylose isomerase) activity and optimizing xylose trans-
port. Recent research has suggested that there is a competition sur-
rounding the flux of PPP and EMP between glucose and xylose, in 
contrast to the unilateral inhibition of glucose on xylose utilization. 
Since glucose-xylose co-consumption in high-performance xylose- 
consuming strains causes the glycolytic flux to be saturated, the excess 
glucose is phosphorylated and enters the trehalose pathway [36]. 
Furthermore, an increasing body of evidence indicates that yeast cells 
enter a state of starvation upon glucose depletion [37]. The expression 
level of enzymes in the PPP and EMP significantly decreased upon 
glucose depletion [38]. This is at least in part due to the nutrient-sensing 
system of yeast not being able to respond to xylose as well as glucose 
[39,40]. Therefore, an improved strategy would be to moderately 
reduce glucose consumption in strains with high xylose-utilizing ca-
pacity instead of only improving the xylose metabolic capacity. Since 
reduced glucose metabolism leaves more flux for xylose and prolongs 
the glucose presence period, it allows cells to keep high PPP and EMP 
activity because of glucose signal, thus improving overall sugar 
utilization. 

A good example is that reducing glucose metabolism by deleting 
HXK2 improved glucose-xylose co-utilization [23]. In contrast, Hxk2p is 
a bifunctional protein, acting as a transcription factor involved in stress 
resistance and chronological lifespan, as well as a hexokinase. The 
expression of HXK2S14A that encodes a constitutively nucleus-localized 
Hxk2p, increased the xylose consumption and ethanol production 
rates [41]. Our findings verified that blocking the oxidative PPP is also a 
good strategy for decreasing glucose utilization rate. 

In this work, the deletion of ZWF1 significantly decreased both 
glucose and xylose utilization while rebuilding an NADPH generation 
reaction by expressing NADP + -dependent glyceraldehyde-3-phosphate 
dehydrogenase gene partially recovered cell growth (Fig. S1). These 
results supported the idea that NADPH is crucial for cellular growth and 
that the shortage of NADPH prevents cells from multiplying. The 
oxidative PPP is the primary source of NADPH not only in glucose 
fermentation but also in xylose fermentation in S. cerevisiae, as often 
hypothesized [42,43]. Similar work has been done previously in a re-
combinant S. cerevisiae with the XR-XDH pathway to prevent excess CO2 
releasing and relieve redox imbalance. The deletion of ZWF1 and 
expression of NADP + -dependent GAPDH promoted ethanol production 
and reduced xylitol production [27]. The cofactor problem in 
xylose-utilizing S. cerevisiae strains with the XI pathway is rarely 
addressed since the reaction catalyzed by XI does not relate to cofactors 
like the XR-XDH pathway. However, NADPH is the main reducing agent 
required for general biosynthesis [24], xylose-utilizing strains with XI 
also require it for growth. From known metabolic pathways, when 
glucose is the carbon source, G6P is produced directly by glucose 
phosphorylation, and approximately 10–15% of G6P enters oxidative 
PPP [21] to generate NADPH. However, when xylose is the carbon 
source, the situation becomes complicated. Xylose is phosphorylated to 

Fig. 5. The transcription level of ZWF1 in BSGX001, BP1 and BP1R1 (with or 
without CuSO4). 

Y. Qiu et al.                                                                                                                                                                                                                                      



Synthetic and Systems Biotechnology 9 (2024) 269–276

275

xylulose 5-phosphate and enters the non-oxidative PPP. Then, glycer-
aldehyde 3-phosphate (G3P) and fructose 6-phosphate (F6P) are 
generated through a series of transketone and transaldehyde reactions in 
the non-oxidative PPP. F6P is then transformed to G6P by phospho-
glucose isomerase (PGI), which prefers to catalyze the reaction in the 
opposite direction [44]. Finally, G6P is further metabolized via the PPP, 
and cells acquire NADPH (Fig. 1). This process is inefficient and involves 
a wasteful metabolic cycle. Moreover, the excess carbon dioxide 
released from the reaction is catalyzed by 6-phosphogluconate dehy-
drogenase. Our results confirmed that using NADP+-dependent GAPDH 
reactions instead of the oxidative PPP to generate NADPH significantly 
increased the xylose consumption rate during the stage at which only 
xylose remained. Furthermore, the ethanol yield for total consumed 
sugars increased by 13.5%. 

5. Conclusion 

Efficient glucose-xylose co-utilization is a critical strategy to fully 
consume lignocellulosic biomass feedstocks for bioethanol production. 
In this study, we confirmed that the oxidative PPP is the primary source 
of NADPH in xylose fermentation, and reconstructed the NADPH 
regeneration pathway in S. cerevisiae by removal of the glucose 6-phos-
phate dehydrogenase gene ZWF1 and the replacement of an NAD +

-dependent glyceraldehyde-3-phosphate dehydrogenase gene with an 
NADP+-dependent one. This operation not only limits the competition of 
glucose with xylose for pentose phosphate pathway metabolic flux and 
avoids carbon loss due to excess CO2 release but also prevents yeast from 
performing ineffective metabolic cycles to obtain NADPH during the 
xylose utilization phase. Our work increased the glucose-xylose co- 
fermentation capacity of yeast and provided new insights into the 
relationship between NADPH supplying and xylose metabolism in S. 
cerevisiae with the XI pathway. 
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