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Abstract: Hizikia fusiformis (Harvey) Okamura is an edible marine alga that has been widely
used in Korea, China, and Japan as a rich source of dietary fiber and essential minerals. In our
previous study, we observed that the methanol extract of H. fusiformis and its non-polar fractions
showed potent protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase inhibition. Therefore,
the aim of the present study was to identify the active ingredient in the methanol extract of H.
fusiformis. We isolated a new glycerol fatty acid (13) and 20 known compounds including 9 fatty
acids (1–3, 7–12), mixture of 24R and 24S-saringosterol (4), fucosterol (5), mixture of 24R,28R and
24S,28R-epoxy-24-ethylcholesterol (6), cedrusin (14), 1-(4-hydroxy-3-methoxyphenyl)-2-[2-hydroxy
-4-(3-hydroxypropyl)phenoxy]-1,3-propanediol (15), benzyl alcohol alloside (16), madhusic acid A
(17), glycyrrhizin (18), glycyrrhizin-6’-methyl ester (19), apo-9′-fucoxanthinone (20) and tyramine
(21) from the non-polar fraction of H. fusiformis. New glycerol fatty acid 13 was identified as 2-(7′-
(2”-hydroxy-3”-((5Z,8Z,11Z)-icosatrienoyloxy)propoxy)-7′-oxoheptanoyl)oxymethylpropenoic acid
by spectroscopic analysis using NMR, IR, and HR-ESI-MS. We investigated the effect of the 21 isolated
compounds and metabolites (22 and 23) of 18 against the inhibition of PTP1B and α-glucosidase
enzymes. All fatty acids showed potent PTP1B inhibition at low concentrations. In particular, new
compound 13 and fucosterol epoxide (6) showed noncompetitive inhibitory activity against PTP1B.
Metabolites of glycyrrhizin, 22 and 23, exhibited competitive inhibition against PTP1B. These findings
suggest that H. fusiformis, a widely consumed seafood, may be effective as a dietary supplement for
the management of diabetes through the inhibition of PTP1B.
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1. Introduction

Diabetes mellitus (DM) is a serious chronic disease and an important public health problem. DM
occurs when the pancreas does not produce enough insulin or when the body cannot effectively use
insulin. In 2014, 422 million adults worldwide had DM and the prevalence of DM has been rising
steadily for the past three decades [1]. Several underlying mechanisms contribute to the pathogenesis
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of Type 2 DM (T2DM), which include hereditary disease, gene mutation, and obesity, among others [2].
One of the therapeutic remedies to decrease post-prandial hyperglycemia in T2DM is by preventing
the absorption of carbohydrates from food during consumption [3]. This can be achieved by inhibiting
carbohydrate hydrolyzing-enzymes such as α-glucosidase and α-amylase in the digestive tract [4].
Inhibition of these enzymes causes delay in digestion of dietary polysaccharides, prolonging the
overall carbohydrate digestion time, which ultimately reduces the rate of glucose absorption [5,6].
Other attractive targets in treating T2D are protein tyrosine phosphatases (PTPs), and intracellular
PTP1B may be a target for drugs in T2D. PTP1B is mainly expressed in insulin-sensitive tissues and
negatively regulates insulin signaling by acting on insulin receptors [7]. Insulin is the key regulator
of glucose homeostasis, and insulin receptors are activated by auto-phosphorylation of the tyrosine
residues in the insulin receptor activation loop, which causes signaling via insulin receptor substrate
proteins, followed by downregulation of the insulin signaling pathway [8]. Interestingly, bioactive
compounds that simultaneously block the activity of α-glucosidase and PTP1B exhibit synergistic
effects to prevent hyperglycemia and hence effectively improve insulin sensitization [9]. Therefore,
active compounds with this dual enzyme inhibition profile, such as geranylated flavonoids [9],
Diels-Alder type adducts [10], and plastoquinones [11], may be promising scaffolds that could
effectually contribute to the cure of T2D and suppress accompanied risks. In this era of lead drug
development, the unique biochemical components of marine sources have gained much attention due
to their diverse range of biological activities. Recently, marine-derived active compounds including
bromophenols, phlorotannins, terpenes, and sterols were reported as potent PTP1B or α-glucosidase
inhibitors [12].

Hizikia fusiformis (Harvey) Okamura is an edible brown seaweed in the Sargassaceae family that is
widely distributed in the northwest coasts of the Pacific Ocean [13]. H. fusiformis has been reported to
exhibit antioxidant [14], anti-inflammatory [15], and anti-Alzheimer’s disease activities [16] along with
gastrointestinal protective effects [17]. In addition, H. fusiformis extract increased glucose uptake and
activated insulin signaling pathway in muscle cells [18]. Several compounds from H. fusiformis have been
isolated and shown to exhibit different bioactivities. Polysaccharide and glycoprotein from H. fusiformis
showed protective effects against ethanol-induced gastric injury and acetaminophen-induced liver injury,
respectively [17,19], and 4-hydroxyphenethyl alcohol from boiled H. fusiformis possessed whitening
effects [20]. In our previous study to find anti-T2D materials from marine sources, we found that the crude
methanol extract of H. fusiformis and its non-polar fractions showed potent PTP1B and α-glucosidase
inhibition [15]. However, the active ingredient in the H. fusiformis extract has been unknown.

In this study, we isolated 21 compounds including fatty acids (FAs), sterols, phenolic compounds,
homomonoterpene, and triterpenoid glycosides from the non-polar fraction of H. fusiformis and
evaluated the PTP1B and α-glucosidase inhibitory activity of the isolated compounds. We also assessed
the enzyme inhibitory activity of aglycone isomers of triterpenoid glycosides based on many references
that describe triterpenoid as a representative scaffold for PTP1B inhibition [21]. To characterize the
roles of the active compounds as a source of PTP1B and α-glucosidase inhibitors, detailed enzyme
kinetic analysis and automated docking simulation were conducted.

2. Results

2.1. Structure Elucidation of Isolated Compounds

Here we sought to identify the active ingredient in the H. fusiformis methanol extract responsible for
the potent PTP1B and α-glucosidase inhibitory activity [15]. We isolated 21 compounds from the non-polar
fraction, including a new glycerol FA 2-(7′-(2”-hydroxy-3”-((5Z,8Z,11Z)-icosatrienoyloxy)propoxy)-
7′-oxoheptanoyl)oxymethylpropenoic acid (13) and 20 known compounds (Figure 1).

Compound 13 was obtained as a yellow syrup, and the HR-ESI-MS showed a pseudo molecular ion
peak at m/z 607.3820 [M + H]+ (calculated for C34H55O9, 607.3846), confirming a molecular formula of
C34H54O9. The 1H- and 13C-NMR spectra for 13 indicated the presence of diacylglycerol, aliphatic chain
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with three double bonds, alkane dicarboxylic acid, and 2-methylpropenoic acid, strongly suggesting
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Figure 1. Structures of compounds isolated from Hizikia fusiformis and 18α and 18β-glycyrrhetinic acids.

The detailed 1H- and 13C-NMR spectra for 13 showed signals characteristic of an unsymmetrical
diacylglycerol [unit: δH 4.16 (m, H3”), 3.64 (d, J = 5.38, H3”), 5.24 (m, H2”), 4.36 (dd, J = 3.7 and
12 Hz, H1”), 4.14 (m, H1”); δC 69.3 (C3”), 70.1 (C2”), 62.7 (C1”)]. As shown in Figure 2, the H-2”
showed correlation to H-3” in the COSY spectrum, which was further connected to H-1”. The HMBC
correlations of diacylglycerol were also observed from H-2” to C-1” and C-3”. The H-1” and H-3”
of diacylglycerol were correlated with carbonyl carbon (δC 173.2, C-1′′′) of eicosatrienoic acid and
carbonyl carbon (δC 173.6, C-7′) of heptane-1,7-dioic acid by HMBC spectrum, respectively.

Similarly, typical absorptions for acylglycerol and FA with aliphatic chains were detected in the
FT-IR data: 3705.55-3680.48-3651.07 (O-H stretching), 3005.52-3022.39 (C-H olefins), 2957.79-2923.07-
2892.7-2852.69 (aliphatic C-H stretching), 1737.07 (C=O stretching), and 1055.35-1033.18-1011.96 (C-O
stretching) cm−1.

One methyl (δc 14.2, C-20′′′), 12 methylenes (δc 22.8, 25.1, 25.8 × 2, 27.3, 27.4, 29.3, 29.6, 29.8 × 2,
32.1, 34.4), six olefinic carbons (δC 128.2, 128.3, 129.8, 130.1 × 2, 130.4), and one carbonyl carbon at δC

173.2 in the 13C-NMR spectra and a methyl signal at δH 0.88, overlapping methylene protons between
δH 1.25 and 2.31, and six olefinic protons (δH 5.36) in the 1H-NMR spectra explain the presence of
eicosatrienoic acid. The 1H-NMR spectrum showed two methylene groups lying between three double
bonds of eicosatrienoic acid at δH 2.79 (2H), which could be assigned to H-7′′′ and H-10′′′. The HMBC
correlations of eicosatrienoic acid were also observed from H-5′′′ to C4′′′, from H6′′′ to C-7′′′, H-8′′′



Mar. Drugs 2019, 17, 302 4 of 16

to C-7′′′, H-9′′′ to C-10′′′, H-11′′′ to C-10′′′, H-12′′′ to C-13′′′, and from H-20′′′ to C-18′′′ and C-19′′′.
The geometry of the three double bonds in this FA moiety was presumed to be cis-form based on the
13C-NMR spectrum (δC 25.8, 27.3, 27.4). The signals of carbons next to a double bond usually appear at
δC 27 to 28 in a cis-configuration, whereas those of a trans-configuration appear at δC 32 to 33 [22,23].
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Five methylene characteristic signals including two low field values at δH 34.3 × 2, 25.0 × 2, and
29.2 and two carboxyl carbons at δC 173.6 × 2 indicated the presence of heptane-1,7-dioic acid [24].
The HMBC correlations were observed from C-3 (δC 69.3) of 2-methylpropenoic acid to carbonyl carbon
(δC 173.6, C-1′) of heptane-1,7-dioic acid. The HMBC correlations of 2-methylpropenoic acid were
detected from two olefin protons (δH 5.96, 6.42, H-4a and 4b) to C-1 (δC 170.2) and C-3 (δC 69.3) and
from H-3 (δH 4.20) to C-2 (δC 136.3).

Therefore, the chemical structure of compound 13 was identified as 2-(7′-(2”-hydroxy-3”-
((5Z,8Z,11Z)-icosatrienoyloxy)propoxy)-7′-oxoheptanoyl)oxymethylpropenoic acid. The chemical
structure of compound 13 is described in Figure 1; Figure 2.

On the other hand, the 1H- and 13C-NMR spectra for compounds 1, 3, 7, 8, 9, 10, 11, and 12 indicated
the presence of aliphatic chains with more than one double bond, carboxylic acid, and methyl group,
signifying unsaturated FAs (Figures S7, S11, S16, S18, S20, S22, S24, and S26). The molecular weight
of these compounds was confirmed by EI-MS analysis. The geometry of the double bonds in these
FAs was presumed to be cis-form based on the 13C-NMR spectrum, as described above [22]. Precise
chemical structures of these FAs were identified as (Z)-hexadec-12-enoic acid (1), (Z)-octaec-9-enoic
acid (3), (8Z,11Z,14Z)-heptadeca-8,11,14-trienoic acid (7), (7Z,10Z,13Z)-octadeca-7,10,13-trienoic acid (8),
(7Z,9Z,11Z13Z)-eicosa-7,9,11,13-tetraenoic acid (9), (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoic acid (10),
(5Z,8Z,11Z,14Z,17Z)-eicosa- 5,8,11,14,17- pentaenoic acid (11), and (8Z,11Z,14Z)-heptadeca-8,11,14-trienoic
acid (12), respectively, by comparison with previously published data [23].

The 1H-NMR spectra of compounds 4–6 exhibited olefin methine, one oxygenated methine, five
methyl signals, indicating a steroidal structure (Figures S13–S15). The 13C-NMR spectrum of 4–6
showed 29 carbon signals including olefin methine carbon (C-6), one oxygenated methine carbon
(C-3), two quaternary carbons (C-10 and 13), seven methine carbons (C-8, 9, 13, 14, 17, 20, and 25),
10 methylene carbons (C-1, 2, 4, 7, 11, 12, 15, 16, 22, and 23), and five methyl carbons (C-18, 19, 21, 26,
and 27). By comparison with the literature [25,26], structure of 5 was identified as fucosterol, very
common sterol in algae. The additional olefin methine and exo-methylene carbon signals between
C-24 and C-28 were observed in 13C-NMR spectra of sterol 4. In case of sterol 6, epoxy signals were
observed at δc 66.48 and 66.38 (C-24) and δc 56.88 and 56.92 (C-28). The duplicate signals (C-17: δC

56.07/55.87 ppm, C-24: 89.23/89.18, C-28: 137.38/137.27, and C-29: 116.44/116.38) in the 13C-NMR
spectrum of sterol 4 were in accordance with the occurrence of the two C-24 epimers (Figure S13).
Similarly, the duplicate signals (C-17: δC 56.88/56.66 ppm, C-24: 66.48/66.38, C-25: 32.06/31.81, C-28:
57.08/56.92) in the 13C-NMR spectrum of sterol 6 were in accordance with the occurrence of the two
C-24/C-28 epimers (Figure S15). The configuration at C-24/C-28 of compound 6 was determined by
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comparison with published data [26]. Finally, the chemical structures of sterols 4 and 6 were identified as
mixture of 24R and 24S-saringosterol (4) and mixture of 24R,28R and 24S,28R-epoxy-24-ethylcholesterol
(6), respectively, by interpretation of spectroscopic data and comparison with literature [25,26].

The 13C-NMR spectra of compounds 14 and 15 exhibited benzylic methylene carbon of n-propanol
chain. In the 1H- and 13C-NMR spectra of 14 (Figure S28), one aryl-substituted benzofuran methine
carbon (δC 88.68), one oxymethylene carbon (δC 65.12), and one methoxyl carbon (δC 56.33) were observed.
In the 1H- and 13C-NMR spectra of 15 (Figure S29), one phenoxy methine proton (δH 4.00), one benzyl
hydroxymethine proton (δc 4.87), one aromatic methoxyl carbon (δC 56.43), one oxymethylene carbon and
two protons (δC 62.2 and δH 3.67 and 3.46) were observed. These spectral data and published data [27,28]
establish the structures of 14 and 15 as cedrusin (14) and 1-(4-hydroxy-3-methoxyphenyl)-2-[2-hydroxy-4-
(3-hydroxypropyl)phenoxy]-1,3- propanediol (15), respectively.

In addition, the 13C-and 1H-NMR spectra of compounds 16–21 and previously published data [29–34]
establish the structures of 16–21 as benzyl alcohol alloside (16), madhusic acid A (17), glycyrrhizin
(18), 18β-glycyrrhetinic acid-3-O-β-d-glucuronopyranosyl-1(→2)-β-d-glucuronide -6’-methyl ester (19),
apo-9′-fucoxanthinone (20), and tyramine (21), respectively.

Notably, compounds 7–12, 14–17, 19, and 20 were isolated from H. fusiformis for the first time.

2.2. PTP1B and α-Glucosidase Inhibitory Activity of the Isolated Compounds from H. fusiformis

As a result, all FAs showed potent PTP1B inhibition with IC50 values in the range of 4.86–49.39 µM.
Among the FAs, compound 7 showed the highest inhibitory activity followed by compound 13 and
1 with IC50 values of 4.86 ± 1.36, 4.92 ± 0.01, and 6.59 ± 0.09 µM, respectively. Among the sterols,
compound 6, which is an epoxide of fucosterol (5), exhibited 3 times stronger PTP1B inhibitory activity
than 5 (IC50 = 16.70 ± 0.36 and 50.58 ± 1.86 µM for sterols 6 and 5, respectively). However, sterol 4
showed no activity under the tested concentration. Among the triterpenoid derivatives, compound 19,
which is a 6′-methyl ester of compound 18, showed 2.2 times stronger PTP1B inhibition than compound
18 (IC50 = 110.33 ± 0.39 and 49.39 ± 1.39 µM for compounds 18 and 19, respectively). Due to the
moderate effect of triterpenoid glycoside 18, we further evaluated the activity of the metabolites of 18
including 18α-glycyrrhetinic acid (22) and 18β-glycyrrhetinic acid (23). As shown in Table 1, 22 showed
potent inhibitory activity against PTP1B having an IC50 value of 10.40 ± 0.75 µM followed by 23 with
an IC50 of 26.07 ± 0.59 µM with ursolic acid as a positive control (IC50 = 7.31 ± 0.16 µM). In contrast,
other compounds (15–17, 20, and 21) exhibited weak or no inhibitory activity against PTP1B.
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Table 1. PTP1B and α-glucosidase inhibitory activity of compounds isolated from Hizikia fusiformis.

Compounds IC50 (µM) a Enzyme Kinetics

PTP1B α-Glucosidase Ki (µM) b Inhibition Type c

1 6.59 ± 0.09 48.05 ± 3.37 - -
2 49.39 ± 1.39 93.63 ± 3.68 - -
3 13.65 ± 0.49 113.44 ± 2.47 - -
4 > 150 > 150 - -
5 50.58 ± 1.86 > 150 - -
6 16.70 ± 0.36 > 150 24.43 Non-competitive
7 4.86 ± 1.36 > 200 - -
8 13.58 ± 0.10 111.51 ± 1.44 - -
9 10.68 ± 0.17 34.85 ± 2.39 - -
10 16.43 ± 0.07 > 200 - -
11 NT NT - -
12 11.51 ± 0.52 43.90 ± 0.77 - -
13 4.92 ± 0.01 > 150 4.13 Non-competitive
14 174.19 ± 5.44 133.84 ± 3.86 - -
15 >400 > 250 - -
16 >400 > 250 - -
17 >400 > 300 - -
18 110.33 ± 0.39 > 150 - -
19 49.39 ± 1.39 > 150 - -
20 323.21 ± 0.84 > 250 - -
21 188.06 ± 3.21 273.23 ± 5.65 - -
22 10.40 ± 0.75 113.30 ± 0.70 3.17 Competitive
23 26.07 ± 0.59 128.72 ± 3.88 16.23 Competitive

Ursolic acid d 7.31 ± 0.16 - - -
Acarbose d - 158.41 ± 1.05 - -

a The IC50 values (µM) were calculated from a log dose inhibition curve and are expressed as mean ± SD of triplicate
experiments. b PTP1B inhibition constants (µM) of tested compounds determined using secondary plot of the slopes
and y-intercept of each linear regression of Lineweaver-Burk plot c PTP1B inhibition types of tested compounds
determined using Lineweaver–Burk plots. d Positive controls. NT Not tested due to low solubility in 10% dimethyl
sulfoxide (DMSO). (-) Not tested.

In the case of α-glucosidase, compounds 22 and 23 exhibited effective inhibitory activity with
IC50 values of 113.30 ± 0.70 and 128.72 ± 3.88 µM, respectively, which are slightly less than the positive
control acarbose (IC50 = 158.41 ± 1.05 µM). However, compounds 18 and 19 showed no activity under
the tested concentration. Interestingly, unsaturated FAs C20:4 (∆7,9,11,13) (9) and C17:3 (∆8,11,14) (12)
showed potent inhibition against α-glucosidase with IC50 values of 34.85 ± 2.39 and 43.90 ± 0.77 µM,
respectively. In addition, neolignan 14 and trace amine 21 also showed moderate inhibition with IC50

values of 133.84 ± 3.86 and 273.23 ± 5.65 µM, respectively. In contrast, other compounds exhibited
weak or no activity against α-glucosidase inhibition.

2.3. Enzyme Kinetic Analysis of Active Compounds with PTP1B

Compounds 6, 13, 22 and 23 were subjected to enzyme kinetic study, since these compounds
demonstrated potent activity against PTP1B. According to the Lineweaver-Burk plot and secondary
plot of y-intercept (Table 1 and Figure 3), compounds 22 and 23 showed general competitive type
inhibition against PTP1B, whereas compounds 6 and 13 showed inhibition in a non-competitive
manner. The binding constant of inhibitor with enzyme-substrate complex (Kiu) and free enzyme (Kic)
was determined using the secondary plot of 1/Vmax,app (Y-intercept) and Km,app/Vmax,app (slope) of the
respective linear regression of Lineweaver-Burk plot, respectively. As shown in Figure 3, Kic values for
the inhibition of PTP1B were 3.17 and 10.17 µM for 22 and 23, respectively, and Kiu values for inhibition
of PTP1B by 6 and 13 were 24.43 and 4.13 µM, respectively.
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2.4. Molecular Docking Simulation in PTP1B Inhibition

Due to the potent inhibitory activity of 5, 6, 13, 22, and 23 against PTP1B, we conducted
computational docking analysis using these compounds to evaluate binding affinities and aspects.
Sterols 5 and 6 and compound 13 are well docked into the allosteric pocket of PTP1B (α3, α6, and
α7 helices), whereas triterpenoids 22 and 23 are docked into the catalytic site (Figure 4). Because
6 is mixture of 24R,28R and 24S,28R-epoxy-24-ethylcholesterol (6a and 6b), we also compared the
binding aspect between the two isomers. Compound A (catalytic inhibitor) and compound B (allosteric
inhibitor) were used as positive controls to verify the docking protocol.

As shown in Figure 4; Figure 5, best fitted models of 5, 6a, and 6b interacted with Glu200 in the α3
helix via H-bond and surrounded by hydrophobic residues in α3 (Phe196, Asn193, and Leu192) and
α6 (Glu276 and Phe280) helices of enzyme with negative B-scores of −8.10, −7.90, and −8.66 kcal/mol,
respectively. Interestingly, one difference was observed between the 5-PTP1B complex and the
6a/6b-PTP1B complex. Both 6a and 6b interacted with Pro188 residue via a hydrophobic bond
(Figure 5B,C), but the aliphatic side chain of 5 did not reach near Pro188 (Figure 5A). Docking
examination showed that 13 interacted with the allosteric site of the enzyme by positioning the long
aliphatic chain toward the center of α3 and α6 helices of the enzyme, whereas the methacrylic acid
moiety of 13 was located at the edge of the α3 helix and interacted with Asn193 and Lys197 via
H-bond interactions (Figure 5D). Although 13 showed strong potency against PTP1B inhibition in vitro,
its binding affinity was poor due to the long aliphatic chain. However, four tight H-bond interactions
between compound 13 and PTP1B residues including Tyr153, Lys150, Lys197, and Asn193 may play
key roles in PTP1B inactivation.
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Figure 4. Best docked models of compounds from H. fusiformis in the catalytic (A and C) and allosteric
(A and B) pocket of PTP1B (1T49) along with positive ligands, compounds A (red line) and B (black
line). Fucosterol (5), 24R,28R-epoxy-24-ethylcholesterol (6a), 24S,28R-epoxy-24-ethylcholesterol (6b),
compound 13, and 18α and 18β-glycyrrhetinic acids (22 and 23) are shown as pink, yellow, green, blue,
cyan, and purple stick, respectively. The residues forming inter H-bond with the ligands are shown as
blue dotted lines. Hydrophobic interactions between Pro188 residue and compounds are shown as
black lines.
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In contrast to sterols and compound 13, the best docked models of compounds 22 and 23 were
placed into the catalytic site of PTP1B. As shown in Figure 4C, binding orientations of 22 and 23 were
slightly different. The PTP1B-22 complex had a negative B-score (Table 2) of −9.09 kcal/mol with two
H-bonds with Lys116 and Lys 120 as well as a salt-bridge interaction with Lys120 residue. Hydrophobic
interactions between 22 and Phe182, Gly183, Arg221, Glu115, Thr263, Asp265, and Lys120 residues
were also observed (Figure 5E). However, the PTP1B-23 complex had a B-score of –8.90 kcal/mol with
two H-bonds with Gly183 and Asp48 residues and a salt-bridge interaction between carboxyl moiety
of 23 and Lys116. As shown in Figure 5F, 23 was surrounded by Tyr46, Val49, Ala217, Phe182, and
Gln262 residues via hydrophobic interaction.

Table 2. Molecular interaction residues and binding energy (B-Score) of compounds from Hizikia
fusiformis as well as reported inhibitors against PTP1B (PDB ID: 1T49).

Compounds B-Score (kcal/mol) H-Bonds Interacting Residues Hydrophobic Interacting Residues

5 −8.10 Glu200 Leu192, Asn193, Glu276, Gly277,
Lys279, Phe196, Phe280

6a (24R and 28R) −7.90 Glu200 Pro188, Ala189, Leu192, Asn193,
Glu276, Phe196, Phe280

6b (24S and 28R) −8.66 Glu200 Pro188, Ala189, Leu192, Asn193,
Phe196, Glu276, Gly277, Lys279, Phe280

13 −5.03 Lys150, Tyr153, Asn193, Lys197
Lys150, Ser151, Tyr152, Tyr153, Ala189,
Pro188, Leu272, Ser187, Glu276, Leu192,

Asn193, Lys197, Phe280

22 −9.09 Lys116, Lys120 (Salt bridge) Lys120, Phe182, Gly183, Asp265,
Thr263, Glu115, Arg221

23 −8.81 Asp48, Lys116 (Salt bridge),
Gly183 Tyr46, Val49, Ala217, Gln262, Phe182

Standard A a
−11.23 Arg24, Tyr46, Asp48, Ser216,

Ala217, Arg221, Arg254, Gln262
Ser28, Val49, Lys116, Lys120, Cys215,

Ile219, Gly220, Met258, Gly259

Standard B a
−10.98 Asn193, Glu276 Ala189, Leu192, Phe196, Gly277, Lys279,

Phe280, Ile281, Met282
a Standard A (3-({5-[(N-acetyl-3-{4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-1-naphthyl}-L-alanyl)amino]
pentyl}oxy)-2-naphthoic acid) and B (3-(3,5-dibromo-4-hydroxy-benzoyl)-2-ethyl-benzofuran-6-sulfonic acid
(4-sulfamoyl-phenyl)-amide) are positive catalytic and allosteric compounds for docking simulation, respectively.

3. Discussion

Growing evidence has linked PTP1B with insulin resistance, T2DM, and obesity. Numerous studies
have revealed that PTP1B negatively controls leptin and insulin signaling pathways [12]. Therefore,
a considerable effort has been expended on generating small molecule inhibitors of PTP1B to promote the
insulin signaling pathway in insulin resistant states. By following the conventional method of producing
inhibitors that target the catalytic site of an enzyme, many selective and reversible PTP1B inhibitors were
discovered [35]. However, these small molecule inhibitors, which often possessed phospho-Tyr mimetic
moieties, were highly charged and lacked oral bioavailability, showing limitations in their potential for
drug development. Therefore, the development of an allosteric inhibitor is urgently needed to develop
orally bioavailable inhibitors of PTP1B [36]. We previously demonstrated that non-polar fractions of
H. fusiformis methanol extract showed potent PTP1B and α-glucosidase inhibition [15]. Various non-polar
components such as 24-ketocholesterol, fucosterol, 24,28-epoxyfucosterol, fucoxanthin, and saringosterol
have been isolated from this seaweed [14,37]. However, the systematic extraction and isolation of
compounds from H. fusiformis as well as the mechanisms of PTP1B and α-glucosidase inhibition through
detailed enzyme kinetics and molecular docking simulation have not been reported. In this study,
we isolated one new and 20 known compounds from the non-polar fraction of H. fusiformis methanol
extract and evaluated the PTP1B and α-glucosidase inhibitory activity of the isolated compounds.
Enzyme assay results revealed that unsaturated and saturated FAs, sterols, and triterpenoid glycosides
showed good inhibitory activity against PTP1B. Shibata et al. reported that unsaturated FAs at 10 µM
drastically inhibited PTP1B, whereas saturated FAs showed moderate inhibition [38]. Interestingly,
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in rat adipocytes, long-time treatment of saturated free FAs inhibited insulin-stimulated glucose uptake,
but short-time treatment enhanced glucose transport [39]. Similarly, in our results, unsaturated FAs
showed significantly strong PTP1B inhibitory activity with IC50 values in the range of 4.86–16.43 µM.
In contrast, among saturated FAs, palmitic acid (2) showed moderate activity with an IC50 value of
49.39 ± 1.39 µM. In addition, C17:3 (∆8,11,14) (7) and the new compound 13 showed notable inhibition
among the isolated 22 compounds. Together, our results and the previously reported data suggest that
FAs could be an important factor responsible for T2DM.

A previous study showed that fucosterol (5) from Pelvetia siliquosa possessed anti-diabetic
activity in streptozotocin-induced Sprague-Dawley rats [40]. Another report demonstrated that 5 is
a non-competitive PTP1B inhibitor in vitro and improved insulin resistance by inhibition of PTP1B and
stimulation of insulin signaling pathway in insulin-resistant HepG2 cells [41]. However, information
on the biological activity of fucosterol epoxide (6) is limited. As shown in Table 1, 5 and its epoxide (6)
showed PTP1B inhibitory activities. Interestingly, 6 showed 3 times stronger activity than 5. Enzyme
kinetic analysis using Lineweaver-Burk plot and its secondary plot and computational docking analysis
demonstrated that 5, 6, and 13 are non-competitive inhibitors and well docked into the allosteric pocket
placed ~20 Å away from the catalytic site of PTP1B [42]. Best fitted models of 5 and 6 interacted with
Glu200 in the α3 helix via H-bond and surrounded by hydrophobic residues in α3 and α6 helices
of enzymes such as Phe280, Phe196, Leu192, and Ala189. However, the lack of interaction between
compound 5 and Pro188 explains its lower PTP1B inhibitory potency compared to 6.

PTP1B enzyme exists in two conformations: open and closed forms. In the open form, the WPD
loop, which contains Trp179-Asp181 residues, is beside the catalytic site to form an open-binding pocket,
which is accessible for the substrate. In the closed-form, the WPD loop covers the substrate-binding site
of the enzyme, forming a catalytically competent state. For the WPD loop to close, Pro188-Phe191-Leu192
residues must move to accommodate Trp179 [42]. However, this movement is blocked by compound
6 directly via hydrophobic interaction. Thus, the allosteric inhibitor 6 could prevent the movement of
the WPD loop and maintain the loop in an open (inactive) form. In the case of 13, this compound also
hydrophobically interacted with Pro188 residue with four H-bond interactions with Tyr153, Lys150,
Lys197 and the key allosteric site residue Asn193. These interactions may play critical roles in PTP1B
inactivation in the PTP1B-13 complex.

We also found that triterpenoid glycosides 19 and 18 are effective and moderate PTP1B inhibitors,
respectively. Compound 19, which is a 6′-methyl ester of 18, showed 2.2 times stronger PTP1B inhibition
than compound 18. In addition, 18α and 18β-glycyrrhetinic acids (22 and 23), metabolites of 18 and 19,
are stronger PTP1B inhibitors compared with 18 and 19. Although the PTP1B inhibitory activities of 22
and 23 were previously described by Na et al. [43], the inhibitory mechanisms and structure-activity
relationships have not been reported. In our enzyme kinetic and computational study, triterpenoids 22
and 23 showed competitive inhibition activity against the PTP1B enzyme and were strongly fitted into
the catalytic site of the enzyme. Due to the different configuration (α and β) of the hydrogen atom at
C-18 position, binding aspect was slightly changed. The carboxyl moiety of 22 and Lys120, Lys116,
Tyr46 and Ser216 residues interacted via hydrogen bonds including salt bridge and conventional
H-bonds, respectively. These interactions may contribute to the strong PTP1B inhibitory activity of 22.

Regarding α-glucosidase inhibitory activity, 9 showed notable inhibitory activity among the FAs.
However, we could not define the correlation among α-glucosidase inhibitory activity, unsaturation, and
number of carbon atoms. In addition, sterols and triterpenoid glycosides did not show any inhibition
against α-glucosidase under the tested concentrations, but triterpenoids 22 and 23 exhibited similar
effect with the positive control, acarbose.

This study has four important findings: (i) the isolation and structure identification of compounds from
H. fusiformis, (ii) the identification of FAs as PTP1B and α-glucosidase inhibitors, (iii) the demonstration
that sterols derived from H. fusiformis function as PTP1B inhibitors, and (iv) the demonstration that
glycyrrhizin and its metabolites function as PTP1B and α-glucosidase inhibitors. Notably, glycyrrhizin (18)
is metabolized by β-d-glucuronidase or intestinal flora to glycyrrhetinic acid [44,45]. Therefore, the in vivo
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anti-diabetic activity of 18 may be attributed to the PTP1B and α-glucosidase inhibitory activity of its
metabolite, glycyrrhetinic acid.

In conclusion, the in vitro experimental and in silico computational results from this study
confirmed that compounds isolated from H. fusiformis exhibit potent PTP1B and α-glucosidase
inhibitory activity. Among the isolated compounds, FAs and triterpenoid derivatives showed potent
inhibitory activity against both enzymes. However, sterols did not show any inhibition activity against
α-glucosidase. Taken together, these results suggest that constituents of H. fusiformis could be used as
promising anti-diabetic materials to delay the absorption of glucose via inhibition of α-glucosidase
enzyme in the digestive organs and to enhance the insulin signaling pathway via inhibition of the
PTP1B enzyme in insulin-sensitive organs.

4. Materials and Methods

4.1. General Experimental Procedures

The specific rotations were operated on a JASCO DIP-370 digital polarimeter. The 1H- and 13C-NMR
spectra were recorded in methanol-d4 and chloroform-d on a JEOL JNM ECP-400 spectrometer (Tokyo,
Japan) at 400 MHz and 100 MHz, respectively. The infrared (IR) spectra were measured on a Mattson
Polaris FT/IR-300E spectrophotometer. Mass spectra were recorded using a Quattro II mass spectrometer.
Column chromatography was conducted using Diaion HP-20, Sephadex LH-20 (20–100 µM, Sigma,
St. Louis, MO, USA), silica (Si) gel 60 (70–230 mesh, Merck, Darmstadt, Germany), and LiChroprep RP-18
(40–63 µM, Merck). All TLC was performed on precoated Merck Kiesel gel 60 F254 plates (20 × 20 cm,
0.25 mm) and RP-18 F254S plates (5 × 10 cm, Merck). The spray reagent was 25% H2SO4.

4.2. Chemicals and Reagents

Yeast α-glucosidase, p-nitrophenyl α-d-glucopyranoside (pNPG), acarbose, p-nitrophenyl
phosphate (pNPP), ursolic acid, ethylenediaminetetraacetic acid (EDTA), 18α-glycyrrhetinic acid, and
18β-glycyrrhetinic acid were purchased from Sigma Aldrich. A truncated form of human recombinant
PTP1B (amino acid 1-322) was purchased from Enzo Life Sciences (Farmingdale, NY, USA) and
dithiothreitol (DTT) was purchased from Bio-Rad Laboratories (Hercules, CA, USA). All other chemicals
and solvents were purchased from E. Merck, Fluka, and Sigma-Aldrich, unless otherwise stated.

4.3. Plant Material

Seaweed H. fusiformis was purchased from Wando, Republic of Korea. A whole plant voucher
specimen was registered and deposited at the Department of Food and Life Science, Pukyong National
University, Busan, South Korea (Professor Jae Sue Choi).

4.4. Extraction, Fractionation, and Isolation

The H. Fusiformis plant (25 kg) was extracted with 95% MeOH (10 L × 3 times) for 3 h at 70 ◦C.
Then, the total filtrate was concentrated to dryness in vacuo at 70 ◦C to give a MeOH extract. The MeOH
extract (4.8 kg) was suspended in water (5 L) and subjected to Diaion HP-20 column chromatography
(CC) eluted with solvent systems of MeOH:H2O (0:1, 1:3, 1:1, 3:1, 1:0) and acetone (100%) to give
seven fractions (HF-A–F). Fraction HF-F (40 g) was subjected to SiO2 CC eluted with the solvent
system of n-hexane-acetone gradient (1:0 to 0:1) to afford 16 sub-fractions (HF-1–16). Sub-fraction HF-1
(3.6 g) was chromatographed on SiO2 CC with a mobile phase gradient of n-hexane:CH2Cl2:EtOAc
(H:C:E, 6:2:1–5:5:5) to give (Z)-hexadec-12-enoic acid (1) (6.4 mg) and palmitic acid (2) (31 mg) [46].
The last fraction of HF-1 (980 mg) was chromatographed over a RP C18 column eluted with MeOH:H2O
(8:1) to give compound 2 (61 mg) and (Z)-octaec-9-enoic acid (3) (20 mg) [23]. Fraction HF-2 (3.1 g)
was subjected to SiO2 open CC eluted with H:C:E gradient (10:1:1 to 1:1:1) to give six sub-fractions
(HF-2A–2F). Sub-fractions HF-2B (420 mg) and HF-2C (735 mg) were chromatographed over open
column SiO2 with a solvent system of H:C:E (4:4:1) to yield a mixture of 24R and 24S-saringosterol
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(4) (70 mg) and fucosterol (5) (200 mg), respectively [25,26]. Sub-fraction HF-2E (345 mg) was
chromatographed over a RP C18 open column eluted with MeOH:H2O (6:1) to yield mixture of
24R,28R and 24S,28R-epoxy-24-ethylcholesterol (6) (6.2 mg) and (8Z,11Z,14Z)-heptadeca-8,11,14-trienoic
acid (7) (90 mg) [23]. Sub-fraction HF-2F (980 mg) was subjected to RP C18 open CC to give
(7Z,10Z,13Z)-octadeca-7,10,13-trienoic acid (8) (19 mg) and (7Z,9Z,11Z,13Z)-icosa-7,9,11,13-tetraenoic
acid (9) (61 mg). Fraction HF-3 (1.2 g) was chromatographed to open column SiO2 using a solvent system
of H:C:E (1:4:0.5–1:4:5) to afford six fractions (HF-3A–3F). Sub-fraction HF-3C (512 mg) was further
chromatographed over a RP C18 open column eluted with a solvent system acetonitrile:MeOH:H2O
(A:M:H, 4:4:1) to yield compounds (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoic acid (10) (14 mg) and
(5Z,8Z,11Z,14Z,17Z)-eicosa-5,8,11,14,17-pentaenoic acid (11) (50 mg) [23]. Sub-fraction HF-8 (307 mg)
was subjected to SiO2 CC eluted with solvent systems of H:C:E (4:4:0.5 to 4:4:4) to give four sub-fractions
(HF-8A–8D). Sub-fraction HF-8C (41 mg) was purified by RP C18 open column using a solvent
system A:M:H (5:4:1) to afford (8Z,11Z,14Z)-heptadeca-8,11,14-trienoic acid (12) (10 mg). Sub-fraction
HF-8B (89 mg) was chromatographed over RP C18 open column eluted with A:M:H (4:4:2) to yield
2-(7′-(2”-hydroxy-3”-((5Z,8Z,11Z)-icosatrienoyloxy)propoxy)-7′-oxoheptanoyl) oxymethylpropenoic acid
(13) (25 mg). Fraction HF-15 (1.32 g) was subjected to RP C18 open CC eluted with a solvent system of
acetone:H2O (1:2) to give four fractions (HF-15A–15D). Sub-fractions HF-15A (48 mg) and HF-15B (56 mg)
were purified by a RP C18 open column using mobile phase acetone:H2O (1:3) to yield cedrusin (14) (3.0 mg)
and 1-(4-hydroxy-3-methoxyphenyl)-2 -[2-hydroxy-4-(3-hydroxypropyl)phenoxy]-1,3-propanediol (15)
(5.5 mg), respectively [27,28]. Sub-fraction HF-15C (206 mg) was chromatographed over a RP C18
open CC eluted with acetone:H2O (1:3) to give benzyl alcohol alloside (16) (7.8 mg) and madhusic
acid A (17) (5.0 mg) [29,30]. Fraction HF-16 (623 mg) was chromatographed over a RP C18 open
column using solvent systems of MeOH:H2O (1:5–1:1) to give four fractions (HF-16A–16D). Sub-fraction
HF-16A (41 mg) was purified over a RP C18 open column using a solvent system MeOH:H2O (1:6)
to yield 18β-glycyrrhetinic acid-3-O-β-d-glucuronopyranosyl-1(→2)-β-d-glucuronide (18, glycyrrhizin)
(5.1 mg) [31]. Sub-fractions HF-16B (73 mg) and HF-16C (38 mg) were chromatographed by RP C18 open
CC using mobile phase A:M:H (1:1:10) to give 18β-glycyrrhetinic acid-3-O-β-d-glucuronopyranosyl-
1(→2)-β-d-glucuronide-6’-methyl ester (19) (2.5 mg) and (3R)-4-[(2R,4S)-4-acetoxy-2-hydroxy-
2,6,6-trimethylcyclohexylidene]but-3-en -2-one (20, apo-9′-fucoxanthinone) (1.6 mg), respectively [32,33].
Sub-fraction HF-16D (463 mg) was chromatographed by RP C18 open CC to give tyramine (21) (2.9 mg) [34].
By comparison with previously published data, the isolated compounds 1–21 were identified by GC-MS
and 1H- and 13C-NMR analysis. The chemical structures of the isolated compounds are shown in Figure 1.
In the Table S1, molecular weight and molecular formulas of all the isolated compounds were mentioned.

Compound 13: Yellow syrup; [α]23
D −50.55◦ (c 0.1, MeOH); IR (KBr, νmax, cm−1): 3705.55, 3680.48,

3651.07 (O-H stretching), 3005.52-3022.39 (C-H olefins), 2957.79-2923.07-2892.7-2852.69 (aliphatic
C-H stretching), 1737.07 (C=O stretching), 1055.35-1033.18-1011.96 (C-O stretching); HR-ESI-MS: m/z
607.3820 [M + H]+ (calcd. for C34H55O9, 607.3846). 1H-NMR (400 MHz in CDCl3): 6.42 (1H, s, H4a),
5.96 (1H, s, H4b), 5.36 (6H, overlapped, H5′′′, H6′′′, H8′′′, H9′′′, H11′′′, H12′′′), 5.24 (1H, m, H2”),
4.36 (1H, dd, J = 3.7 and 12 Hz, H1”), 4.20 (2H, overlapped, H3), 4.16 (1H, overlapped, 3”), 4.14 (1H,
overlapped, H1”), 3.64 (1H, d, J = 5.38 Hz, H3”), 2.79 (4H, overlapped, H7′′′, H10′′′), 2.31 (6H, t, J = 7.84
Hz, H2′, H6′, H2′′′), 2.06 (4H, overlapped, H4′′′, H13′′′), 1.59 (2H, m, H3′′′), 1.25 (16H, overlapped,
H3′-5′, H14′′′-17′′′), 0.88 (3H, t, J = 6.74 Hz, H20′′′); 13C-NMR (100 MHz in CDCl3): 173.6 (C1′ and
C7′), 173.2 (C1′′′), 170.2 (C1), 136.3 (C2), 130.4, (C12′′′), 130.1 (C6′′′, C11′′′), 129.8 (C9′′′), 128.3 (C8′′′),
128.2 (C5′′′), 70.1 (C2”), 69.3 (C3”, C3), 62.7 (C1”), 34.4 (C2′′′), 34.3 (C2′, C6′), 32.1 (C18′′′), 29.8 (C14′′′,
C15′′′), 29.7 (C5′), 29.6 (C16′′′), 29.5 (C18′′′), 29.4 (C8′′′), 29.3 (C17′′′), 29.2 (C4′), 27.4 (C4′′′), 27.3
(C13′′′), 25.8 (C7′′′, C10′′′), 25.1 (C3′, C3′′′), 25.0 (C3′, C5′), 22.8 (C19′′′), 14.2 (C20′′′, CH3). See Figure 2
for COSY and HMBC correlation.

Compound 15: Yellowish powder; 1H-NMR (400 MHz in CD3OD): 7.00 (1H, d, J = 1.36 Hz, H2′),
6.88 (1H, d, J = 1.4 Hz, H5′), 6.87 (1H, s, H6”), 6.83 (1H, s, H5′), 6.75 (1H, s, H3′), 6.70 (1H, d, J = 8.23 Hz,
H5”), 4.85 (1H, s, H1), 4.00 (1H, m, H2), 3.87 (3H, s, O-CH3, H7”), 3.67 (1H, dd, J = 2.29 and 12.24 Hz,
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H3a), 3.55 (2H, t, J = 6.48 Hz, H9”), 3.46 (1H, dd, J = 4.57 and 12.31 Hz, H3b), 2.58 (2H, t, J = 8 Hz, 2H,
H7”), 1.79 (2H, dt, J = 6 and 14 Hz, H8”); 13C-NMR (100 MHz in CD3OD): 149.2 (C3′), 148.4 (C4′), 145.0
(C2”), 142.9 (C1”), 136.4 (C4”), 129.6 (C1′), 126.4 (C5′), 122.4 (C5”), 121.6 (C6′), 117.6 (C3” and C6”),
111.9 (C2′), 80.0 (C2), 77.8 (C1), 62.2 (C3 and C9”), 56.4 (C7′, O-CH3) 35.6 (C8”), 32.4 (C7”).

4.5. In Vitro α-Glucosidase Inhibitory Activity Assay

Enzyme inhibition studies were carried out spectrophotometrically in a 96-well micro-plate reader
using a procedure reported by Li et al. [47]. Acarbose was used as a positive control.

4.6. In Vitro PTP1B Inhibitory Activity Assay

The inhibitory activity of isolated compounds against truncated form of human recombinant
PTP1B was evaluated using pNPP as a substrate [48]. The amount of p-nitrophenyl produced after
enzymatic dephosphorylation of pNPP was estimated by measuring the absorbance at 405 nm using
a micro-plate spectrophotometer (Molecular Devices, Sunnyvale, CA, USA). Ursolic acid was used as
a positive control.

4.7. Kinetic Parameters of Active Compounds towards PTP1B Inhibition

The inhibition constant (Ki) and inhibition mode for the inhibition of PTP1B was calculated by the
Lineweaver-Burk plot and its secondary plot of the slope and the y-intercept of compounds [49,50].
The kinetic parameters were obtained over various concentrations of substrate (0 to 2 mM) and
inhibitors (0, 4.7, 23.3, and 116.6 µM for compound 6; 0, 2.5, 5, and 10 µM for compound 13; 0, 5, 10, 20,
and 40 µM for compounds 22 and 23). Graphs were generated using SigmaPlot 12.0 (Systat Software
Inc., San Jose, CA, USA).

4.8. PTP1B Molecular Docking Simulations

For docking studies, the crystal structure of the truncated form of PTP1B protein target (amino
acid 1-282) was obtained from the RCSB Protein Data Bank (PDB) with the accession code 1T49 [42].
The co-crystallized ligand, 3-(3,5-dibromo-4-hydroxy-benzoyl)-2-ethyl- benzofuran-6-sulfonic acid
(4-sulfamoyl-phenyl)-amide (compound B), was used to generate the grid box for allosteric inhibition mode,
whereas the reported catalytic ligand, 3-({5-[(N-acetyl-3-{4-[(carboxycarbonyl)(2-carboxyphenyl)amino]
-1-naphthyl}-L-alanyl)amino] pentyl}oxy)-2-naphthoic acid (compound A) (PDB ID: 1NNY), was used to
generate the grid box for catalytic inhibition mode. The 3D structures of 5, 22, and 23 were downloaded
from PubChem Compound (NCBI) with compound CIDs of 5281328, 12193680 and 10114, respectively.
The 3D structures of 24R,28R epoxy-24-ethylcholesterol (6a), 24S,28R-epoxy-24-ethylcholesterol (6b), and 13
were generated by Chem3D pro (v12.0, Cambridge Soft Corporation, Cambridge, MA, USA). The structures
of ligands were adjusted to neutral (pH 7.0) using MarvinSketch (ChemAxon, Budapest, Hungary) and
minimized using Chem3D pro. The results were visualized and analyzed using UCSF Chimera (v1.13.1,
http://www.cgl.ucsf.edu/chimera/), Discovery Studio (v16.1, Accelrys, San Diego, CA, USA), and Ligplot+

(v1.4.5, European Bioinformatics Institute, London, England).

4.9. Statistical Analysis

All experiments were carried out in triplicate and repeated on three separate days. All data are
expressed as the mean ± standard deviation (SD) (n = 3).

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/5/302/s1,
Figure S1: 13C (100MHz in CDCl3)- and 1H (400MHz in CDCl3)-NMR spectrum of compound 13, Figure S2:
HMBC-NMR spectrum of compound 13, Figure S3: COSY-NMR spectrum of compound 13, Figure S4: HSQC-NMR
spectrum of compound 13, Figure S5: HR-ESI-MS data of compound 13, Figure S6: FT-IR spectrum of compound
13. Figure S7: 13C (100MHz in CDCl3)- and 1H (400MHz in CDCl3)-NMR spectrum of compound 1. Figure S8:
EI-MS data of compound 1. Figure S9: 13C (100MHz in CDCl3)- and 1H (400MHz in CDCl3)-NMR spectrum of
compound 2. Figure S10: EI-MS data of compound 2. Figure S11: 13C (100MHz in CDCl3)- and 1H (400MHz
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in CDCl3)-NMR spectrum of compound 3. Figure S12: EI-MS data of compound 3. Figure S13: 13C (100MHz
in CDCl3)- and 1H (400MHz in CDCl3)-NMR spectrum of compound 4. Figure S14: 13C (100MHz in CDCl3)-
and 1H (400MHz in CDCl3)-NMR spectrum of compound 5. Figure S15: 13C (100MHz in CDCl3)- and 1H
(400MHz in CDCl3)-NMR spectrum of compound 6. Figure S16: 13C (100MHz in CDCl3)- and 1H (400MHz in
CDCl3)-NMR spectrum of compound 7. Figure S17: EI-MS data of compound 7. Figure S18: 13C (100MHz in
CDCl3)- and 1H (400MHz in CDCl3)-NMR spectrum of compound 8. Figure S19: EI-MS data of compound 8.
Figure S20: 13C (100MHz in CDCl3)- and 1H (400MHz in CDCl3)-NMR spectrum of compound 9. Figure S21:
EI-MS data of compound 9. Figure S22: 13C (100MHz in CDCl3)- and 1H (400MHz in CDCl3)-NMR spectrum
of compound 10. Figure S23: EI-MS data of compound 10. Figure S24: 13C (100MHz in CDCl3)- and 1H
(400MHz in CDCl3)-NMR spectrum of compound 11. Figure S25: EI-MS data of compound 11. Figure S26:
13C (100MHz in CDCl3)- and 1H (400MHz in CDCl3)-NMR spectrum of compound 12. Figure S27: EI-MS
data of compound 12. Figure S28: 13C (100MHz in CD3OD)- and 1H (400MHz in CD3OD)-NMR spectrum of
compound 14. Figure S19: 13C (100MHz in CD3OD)- and 1H (400MHz in CD3OD)-NMR spectrum of compound 15.
Figure S30: 13C (100MHz in CD3OD)- and 1H (400MHz in CD3OD)-NMR spectrum of compound 16. Figure S31:
13C (100MHz in CD3OD)- and 1H (400MHz in CD3OD)-NMR spectrum of compound 17. Figure S32: 13C
(100MHz in CD3OD)- and 1H (400MHz in CD3OD)-NMR spectrum of compound 18. Figure S33: 13C (100MHz in
CD3OD)- and 1H (400MHz in CD3OD)-NMR spectrum of compound 19. Figure S34: 13C (100MHz in CD3OD)-
and 1H (400MHz in CD3OD)-NMR spectrum of compound 20. Figure S35: 13C (100MHz in CD3OD)- and 1H
(400MHz in CD3OD)-NMR spectrum of compound 21. Table S1. Molecular weight and molecular formula of
isolated compounds.
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