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a b s t r a c t 

We present simulated data on coordinated reset stimulation 

(CRS) of plastic neuronal networks. The neuronal network 

consists of excitatory leaky integrate-and-fire neurons 

and plasticity is implemented as spike-timing-dependent 

plasticity (STDP). A synchronized state with strong synap- 

tic connectivity and a desynchronized state with weak 

synaptic connectivity coexist. CRS may drive the network 

from the synchronized state into a desynchronized state 

inducing long-lasting desynchronization effects that persist 

after cessation of stimulation. This is used to model brain 

stimulation-induced transitions between a pathological 

state, with abnormally strong neuronal synchrony, and a 

physiological state, e.g., in Parkinson’s disease. During CRS, a 

sequence of stimuli is delivered to multiple stimulation sites 

– called CR sequence. We present simulated data for the 

analysis of long-lasting desynchronization effects of CRS with 

shuffled CR sequences versus non-shuffled CR sequences in 

which the order of stimulus deliveries to the sites remains 

unchanged throughout the entire stimulation period. Such 

data are presented for networks with homogeneous synaptic 
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connectivity and networks with inhomogeneous synaptic 

connectivity. Homogeneous synaptic connectivity refers to a 

network in which the probability of a synaptic connection 

does not depend on the pre- and postsynaptic neurons’ 

locations. In contrast, inhomogeneous synaptic connectivity 

refers to a network in which the probability of a synaptic 

connection depends on the neurons’ locations. The presented 

neuronal network model was used to analyse the impact 

of the CR sequences and their shuffling on the long-lasting 

effects of CRS [1] . 

© 2024 Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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pecifications Table 

Subject Statistical and Nonlinear Physics, Mathematical Modelling. 

Specific subject area Computational modelling of long-lasting aftereffects of stimulation of plastic neuronal 

networks 

Type of data Methods, Simulated Data, Code, Figures 

Data collection Numerical simulations of the described neuronal network model were performed on 

Stanford’s Sherlock Computing cluster. 

Data source location Data were collected at the Department of Neurosurgery, Stanford University, Stanford, 

California, United States of America 

Data accessibility Data are stored in a public repository on Mendeley Data . 

Repository name: Simulated dataset on coordinated reset stimulation of homogeneous 

and inhomogeneous networks of excitatory leaky integrate-and-fire neurons with 

spike-timing-dependent plasticity 

Data identification number: DOI: 10.17632/fmmr595pps.1 

Direct URL to data: https://data.mendeley.com/datasets/fmmr595pps/1 

Instructions for accessing these data: Data can be accessed using the provided URL. 

Related research article J.A. Kromer, P.A. Tass, Sequences and their shuffling may crucially impact coordinated 

reset stimulation – A theoretical study, Brain Stimul. 17 (2024) P194–P196. 

. Value of the Data 

• These data present valuable additional information to support the findings presented in

Ref. [1] . 

• The code provided in the repository https://data.mendeley.com/datasets/fmmr595pps/1

can be used to simulate long-term aftereffects of CRS in networks of excitatory leaky

integrate-and-fire neurons with STDP with different types of synaptic connectivity. Long-

lasting effects of CRS with different stimulation parameters can be simulated. 

• The provided data can be used and enable to reproduce the simulated data shown in Ref.

[1] . 

. Background 

Excessive neuronal synchrony accompanies several neurological disorders, including Parkin-

on’s disease [2] . CRS was computationally developed to counteract abnormal neuronal syn-

hrony [3] . CRS is a multisite stimulation technique in which phase-shifted stimuli are deliv-

red according to a CR sequence, which characterizes in what order stimuli are delivered to

he different stimulation contacts. Computational studies in plastic neuronal networks observed

hat CRS entailed long-lasting desynchronization after cessation of stimulation [4] . Correspond-

ng long-lasting therapeutic aftereffects were later observed in preclinical and clinical studies in

arkinson’s patients [ 5–9 ]. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17632/fmmr595pps.1
https://data.mendeley.com/datasets/fmmr595pps/1
https://data.mendeley.com/datasets/fmmr595pps/1
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Fig. 1. Coexistence of a strongly connected synchronized state (SCSS) and a weakly connected desynchronized state 

(WCDS). Trajectories of the Kuramoto order parameters, ρ, according to Eq. (9) (A,B) and corresponding mean synaptic 

weights, 〈 w 〉 , for four initial mean synaptic weights ( 〈 w (t = 0) 〉 = 0 , 0 . 2 , 0 . 4 , 0 . 6 (from dark to light gray)) (C,D). Results 

for an inhomogeneous network are shown on the left and result for a homogeneous network on the right. The same re- 

alization of synaptic connections was used in all simulations for each network type. The corresponding initial, individual 

synaptic weights were distributed according to a bimodal distribution, i.e. wi → j (t = 0) ∈ { 0 , 1 } , such that the respective 

mean synaptic weights were realized. Note the logarithmic time axes. 

 

 

 

 

 

 

 

 

 

In a recent letter, we presented results from computational studies that suggest that select-

ing certain favourable CR sequences may significantly improve the long-lasting desynchroniza-

tion effects of CRS in networks with spatially dependent synaptic connectivity [1] . Furthermore,

shuffling of the CR sequences after short shuffling periods provided robust long-lasting desyn-

chronization effects without the need to select favourable CR sequences [1] . This data article

provides a description of the neuronal network model, the code for running the simulations, and

additional analyses of the dependence of long-lasting desynchronization effects on the shuffling

period and network structure. 

3. Data Description 

The code to generate the simulated data is available in the public repository available at

https://data.mendeley.com/datasets/fmmr595pps/1 . 

The repository contains the following folders and files : 

• main.ipynb … Detailed description of the code and how to run simulations. 

• CRS … Contains code for simulations of CRS. 

◦ CRS_non_shuffled.py … Code for simulations of non-shuffled CRS. 

◦ CRS_Tshuffle.py … Code for simulations of shuffled CRS with different shuffle periods.

• figures … Contains code for data analyses and generation of the figures presented below. 

◦ Fig1 … Code and data for Fig. 1 (see below). 

� data … Data files used to generate the figure. 

• KuramotoOrderParameter_NETWORK_TYPE_mw_MWINIT_seed_SEED.npy …

Trajectory of Kuramoto order parameter for NETWORK_TYPE = "in- 

homogeneous_network" or “homogeneous_network,” initial mean 

synaptic weights MWINIT = 0.0, 0.2, 0.4, 0.6, and SEED = 12. 

• NETWORK_TYPE_mwTrajectory_w_MWINIT_seed_SEED.npy … Corre- 

sponding trajectories of mean synaptic weight. 

https://data.mendeley.com/datasets/fmmr595pps/1
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• NETWORK_TYPE_seed_SEED_0_ sec … Backups containing output of

simulation at t = 0 s. 

◦ cMatrix.npz … Sparse matrix containing values of all synaptic

weights. 

◦ synConnections.npz … This corresponds to the adjacency matrix

containing 1 for excitatory connections and −1 for inhibitory

connections. 

◦ delayedSpikingNeurons.npy … List of spikes that are traveling to

postsynaptic neurons. 

◦ lastSpikeTimeStep.npy … Last spike times of neurons (imported to

accurately continue simulating synaptic weight dynamics from

backup file). 

◦ evenPriorLastSpikeTimeStep.npy … Second-to-last spike times of

neurons (imported to accurately continue simulating synaptic

weight dynamics from backup file). 

◦ STNCenter.npy … Center coordinates of simulated neurons. 

◦ GPeCenter.npy … Center coordinates of inhibitory (GPe) neurons.

No GPe neurons were used in the presented simulated data as

only excitatory neurons were used for the presented results. In

the code, a small number of inhibitory neurons was simulated

but all synaptic connections to the excitatory population were

removed. 

◦ npRandomState.pickle … State of pseudo random number genera-

tor at backup time. 

◦ systemState.npy … Contains state of state variables at backup

times. 

� generate_data_from_simulation_output.py … Python script to obtain data for

Fig. 1 from simulation output. 

� generate_Fig1.py … Python script to generate Fig. 1 from the data obtained us-

ing generate_data_from_simulation_output.py. 

� Figure_1.png … Png file of Fig. 1 generated using generate_Fig1.py . 

◦ Fig2 … Contains code and data for Fig. 2 . 

� data … Contains data files used to generate Fig. 2 . 

• dic_mean_Weights_STIM_T YPE_NETWORK_T YPE.pickle … Contains lists

of mean synaptic weights for simulated network and CR sequence

realizations for STIM_TYPE = init, nonShuffled, or Tshuffle_X and

NETWORK_TYPE = homogeneous or inhomogeneous. X indicates the

shuffle period and attains values 01 (100 ms), 10 (10 s), or 1800 (30 min).

• cMatrix_conMatrix … This is where weight matrices and adjacency ma-

trices from simulation data are saved when running “python gener-

ate_data_from_simulation_output.py 2_calculate_average_mean_weight.”

� generate_data_from_simulation_output.py … Python script to get data for Fig2

from simulation output. 

� generate_Fig2.py … Python script to generate data for Fig. 2 from simulation

output. 

� Figure_2.png … Png file of Fig. 2 generated using generate_Fig2.py. 

• f unctions … Contains Python scripts with functions used during simulations. 

◦ functions_genNetwork.py … Contains functions for the generation of the different

networks of synaptic connections. 

◦ functions_pars.py … Contains the function "gen_Parameter_set_Sequence_Paper(initia

lSeed),” which generates a dictionary with the system’s parameters used in all sim-

ulations. 

◦ functions_sim.py … Contains a variety of functions that are called when running

simulations. 
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Fig. 2. Statistical analysis of mean synaptic weight before, during, and after stimulation. Mean synaptic weight shortly 

before cessation of CRS (acute) and ≈ 3 hours after cessation of CRS (long-lasting) are compared to its values before 

stimulation (init.). Results are shown for inhomogeneous networks (A,B) and homogeneous networks (C,D), and prior to 

stimulation (init.); at the end of a 2 h session of CRS for non-shuffled CRS (non-shuffled) and for shuffled CRS (shuffled) 

with shuffle periods 0 . 1 s , 10s, and 1800 s (A and C), and ≈ 3 hours after cessation of stimulation for the same setups 

(B and D). Results are shown for five network realization (all) and for the CR sequences I-II-III-IV, I-II-IV-III, I-III-II-IV, 

I-III-IV-II, I-IV-II-III, I-IV-III-II for non-shuffled CRS and for 30 realizations of the CR sequence for each shuffle period and 

network realization. Horizontal bars mark averages over individual sequence and network realizations. Symbols show 

results for individual simulations. 

 

 

 

 

 

 

◦ functions_stim.py … Contains function specifying the CR sequence, stimulus wave 

form, and other aspects of CRS. 

◦ spatial_stimulus_profile.py … Contains the functions “getWarray(sites, positions, 

stim_par),” which calculates the relative strength by which neurons at “positions”

experience a stimulus delivered to “sites”. 

• run_sim … Python scripts in this folder generate shell commands to run simulations. 

◦ 1_run.py … Generates shell commands to run simulations for the synchronized

states. 

◦ 2_run.py … Generates shell commands to run long simulations for different initial

mean synaptic weights. Corresponding trajectories are plotted in Fig. 1 . 

◦ 3_run.py … Generates shell commands to run simulation on shuffled and non-

shuffled CRS for homogeneous and inhomogeneous networks of synaptic connec-

tions. 

◦ 4_run.py … Generates shell commands to run simulations on shuffled CRS for inter-

mediate networks. 

• synch_states … Python scripts for simulating networks in the synchronized state. 

◦ get_stationary_states_arange_x_inhomogeneous_network.py … Simulations of syn- 

chronized states for inhomogeneous networks. 

◦ get_stationary_states_arange_x_homogeneous_network.py … Simulations for homoge- 

neous networks. 

◦ get_stationary_states_arange_x_intermediate_network.py … Simulations of intermedi- 

ate networks. 

• m ultistability … Contains Python scripts for simulations of the trajectories in Fig. 1 . 

◦ get_multistability_arange_x_inhomogeneous_network.py … Simulations of long trajec- 

tories for different initial mean synaptic weights for inhomogeneous networks for

Fig. 1 . 
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◦ get_multistability_arange_x_homogeneous_network.py …. Simulations of long trajec-

tories for different initial mean synaptic weights for homogeneous networks shown

in Fig. 1 . 

• images … Contains images used to explain parts of the code in main.ipynb . 

◦ typical_output.png 

• relaxation_after_stimulation …. Contains code for simulating the network after cessation

of stimulation. 

◦ less_relaxation.py … To perform simulations that start at a backup and simulate net-

work dynamics in the absence of stimulation. 

We present the figures contained in the dataset. A detailed description of the figures and

ow to obtain them using the code is given in section EXPERIMENTAL DESIGN, MATERIALS, AND

ETHODS. 

. Experimental Design, Materials and Methods 

The dataset contains code for simulations of a model of excitatory leaky integrate-and-fire

eurons with STDP. In this section, we first describe the neuronal network model and the dif-

erent networks of synaptic connections for which simulated data are presented in Figs. 1-2 as

ell as in Ref. [1] . These figures present additional analyses supporting the results of Ref. [1] .

fterwards, we give a detailed explanation of the different simulations performed and describe

ow they can be reproduced using the Python code contained in the dataset. 

.1. Neuronal network model 

Simulations were performed using the model network of excitatory leaky integrate-and-fire

LIF) neurons with STDP from Ref. [ 10 ]. A total of N = 10 0 0 neurons were simulated. Neuron

enter coordinates were randomly distributed in the interval [−L/ 2 , L/ 2 ] according to a uniform

istribution. L is the system’s length scale and set to 5mm in simulations. We considered differ-

nt topologies of synaptic connections, which are described in detail below. 

The dynamic equations for the membrane potential and synaptic interaction were taken from

ef. [ 10 ]. The dynamics of the i th neuron’s subthreshold membrane potential, Vi (t) , was given

y 

Ci 
dVi 

dt 
= gleak ( Vrest − Vi ) + gsyn,i ( t) 

(
Vsyn − Vi 

)
+ Istim,i ( t) + Inoise,i ( t) . (1)

Ci is the membrane capacitance. Terms on the right-hand side represent: the leak current,

ith leakage conductance gleak and resting potential Vrest ; the excitatory synaptic input current,

ith synaptic conductance gsyn,i ( t) and reversal potential Vsyn ; the stimulation current Istim 

( t) ;

nd the noisy input current Inoise,i ( t) , modelling input from other brain regions. Neuron I was

efined to fire a spike whenever its membrane potential crossed the dynamic threshold potential

th,i ( t) , 

τth 

dVth,i 

dt 
= −

(
Vth,i − Vth,rest 

)
. (2)

Rectangular spikes were implemented by setting Vi (t) to Vspike for a duration of τspike . After-

ards, we performed an instantaneous reset: Vth,i (t) → Vth,spike and Vi (t) → Vreset . 

Synaptic input was modelled by considering the following dynamics of the synaptic conduc-

ances gsyn,i (t) : 

τsyn 

dgsyn,i 

dt 
= −gsyn,i + κ

τsyn 

N 

∑ 

j∈Gi 

w j→ i ( t) 
∑ 

l j 

δ
(

t − t
j 

l j 
− ta 

)
. (3)
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Here, τsyn is the synaptic timescale, t
j 

l j 
the timing of the l j th spike of neuron j, and ta is

the synaptic transmission delay. The outer sum runs over the set of presynaptic neurons Gi of

neuron i . The strength of synaptic coupling was given by the maximum coupling strength κ . The

strengths of individual synapses were scaled by the time-dependent synaptic weights w j→ i (t) .

Here, j is the index of the presynaptic and i the index of the postsynaptic neuron. 

Independent Poisson input was delivered to the neurons modelling noisy input from other

brain areas. To this end, Poisson spike trains with mean firing rate fnoise were fed into the neu-

rons through excitatory synapses. The resulting input currents, Inoise,i (t) , were given by 

Inoise,i ( t) = gnoise,i ( t) 
(
Vsyn − Vi 

)
(4) 

with dynamic noise conductances gnoise,i (t) that obeyed 

τsyn 
dgnoise,i 

dt 
= −gnoise,i + κnoise τsyn 

∑ 

ki 

δ
(
tki 

− t 
)
. (5) 

The noise intensity was set by κnoise . tki 
is the timing of the ki th spike in the Poisson spike

train fed into neuron i . 

We consider low noise intensities to reproduce the situation where neurons spike in response

to synaptic input and stimuli as observed experimentally, e.g., in the STN and its projection tar-

gets in response to deep brain stimulation [ 11 , 12 ]. As shown computationally, in spatially ho-

mogeneous networks, intermediate noise and stimulation amplitude levels may increase the ro-

bustness of CR stimulation even more [ 13 ]. For inhomogeneous networks, this remains to be

studied. In contrast, for higher noise levels, the neuronal firing will, ultimately, be dominated

and primarily governed by noise, rendering multistable dynamical regimes unstable and coun-

teracting the dedicated stimulus effects studied in Ref. [1] . 

We chose parameters as in Ref. [ 10 ]: gleak = 0 . 02 mS / cm2 , Vrest = −38 mV, Vreset = −67 mV ,

th,spike = 0 mV , Vth,rest = −40 mV , τth = 5 ms , Vsyn = 0 mV , τsyn = 1 ms , td = 3 ms , κ = 8 mS/cm2 ,

κnoise = 0 . 026 mS/cm2 , and fnoise = 20 Hz. The membrane capacitances Ci were Gaussian dis-

tributed ( N(μC , σC ) , μC = 3 μF /cm2 and σC = 0 . 05 μC ). For these parameters, the frequency and

the range of resulting membrane potential oscillations matched recordings of periodically spik-

ing neurons in the rat subthalamic nucleus [ 14 ]. 

The dynamics of the synaptic weights, wi → j (t) , were determined by STDP. We considered

a nearest-neighbor STDP scheme in which weight updates were performed whenever either

a postsynaptic or a presynaptic spike arrived at a synapse [ 15 ]. The synaptic weight updates,

wi → j → wi → j + W ((t j + td ) − (ti + ta ) ) , were given by the STDP function 

W ( �t) = η

⎧ ⎪ ⎨ 

⎪ ⎩ 

e
− | �t| 

τ+ , �t > 0 

0 , �t = 0 

− β
τR 

e
− | �t| 

τ− , �t < 0 

. (6) 

If the update was triggered by the arrival of a backpropagating postsynaptic spike at the

synapse, �t = (t j + td ) − (ti + ta ) is the time lag between the arrival of the backpropagating

postsynaptic spike at the synapse, t j + td , and the latest presynaptic spike arrival time, ti + ta .

In contrast, if the update was triggered by the arrival of a presynaptic spike at the synapse,

�t is the time lag between the latest postsynaptic spike arrival time, t j + td , and the current 

presynaptic spike arrival time, ti + ta [ 16 ]. Here, td and ta are the dendritic and the axonal de-

lays, respectively. We considered only an axonal delay of ta = 3 ms and set the dendritic delay

to zero. 

STDP parameters were chosen according to Ref. [ 10 ] such that a stable strongly connected

synchronized state (SCSS) and a stable weakly connected desynchronized state (WCDS) coex-

isted for each network considered here and in Ref. [ 1 ] (illustrations of these states can be found

in Fig. 1 ). The impact of STDP parameters on the dynamics of the mean synaptic weight was

analyzed in Ref. [ 17 ]. The parameter η = 0 . 01 scales the weight update per spike. τR = 4 causes

an asymmetry in the STDP decay times for positive time lags, τ+ = 10 ms , and for negative time
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d  
ags, τ− = τ+ τR . β = 1 . 4 scales the ratio of overall long-term depression, given by the integral

ver the STDP function ( Eq. (6) ) over all time lags with negative W (�t ) , to overall long-term

otentiation, given by the integral over W (�t ) , over all time lags with negative W (�t ) . 

To change the model or STDP parameters, the file functions_pars.py in folder “ functions ” can

e modified. 

.2. Network topologies 

We considered three types of networks of synaptic connections: homogeneous networks (Fig.

A’ in Ref. [1] ), inhomogeneous networks (Fig. 1A in Ref. [1] ), and intermediate networks (Figs.

L-O in Ref. [ 1 ]). 

In the homogeneous networks , the probability for implementing a synaptic connection be-

ween any two different neurons was set to Phom 

= 7% . The realization of the resulting synaptic

onnections that was used in the simulations for Ref. [1] is shown in Fig. 1A’ in Ref. [1] . 

In the inhomogeneous networks , we first sorted the neurons according to their cen-

er coordinates, X . Then, the neurons were separated into four subpopulations such that

he first 250 neurons were part of subpopulation one, the second 250 neurons were part

f subpopulation two, and so on. Afterwards, synaptic connections were implemented with

 probability of Pinh = 14% between pairs of neurons in which the presynaptic neuron was

art of subpopulation k and the postsynaptic neuron was part of subpopulation l for

k, l) ∈ { (1 , 1) , (1 , 4) , (2 , 1) , (2 , 2) , (3 , 1) , (3 , 2) , (3 , 3) , (4 , 2) , (4 , 3) , (4 , 4) } . No self-connections

ere implemented. The realization of the resulting synaptic connections that was used in the

ef. [1] is shown in Fig. 1A in Ref. [1] . 

In the intermediate networks , we introduced a heterogeneity parameter H that scales be-

ween homogeneous and inhomogeneous networks. This was done by separating the neurons

nto subpopulations as in inhomogeneous networks and implementing synaptic connections

ith probability HPinh + (1- H) Phom 

for synaptic connections in which the presynaptic neu-

on was part of subpopulation k and the postsynaptic neuron was part of subpopulation l for

k, l) ∈ { (1 , 1) , (1 , 4) , (2 , 1) , (2 , 2) , (3 , 1) , (3 , 2) , (3 , 3) , (4 , 2) , (4 , 3) , (4 , 4) } and with probability

1- H) Phom 

for other synaptic connections. No self-connections were implemented. This way the

ase H = 0 corresponds to the homogeneous network and the case H = 1 to the inhomogeneous

etwork. 

.3. Coordinated reset stimulation 

We delivered CRS to the networks of LIF neurons using different CR sequences. CRS was

elivered to four stimulation sites [3] . The four stimulation sites were located at XI = −3 L/ 8 ,

II = −L/ 8 , XI I I = L/ 8 , and XIV = 3 L/ 8 . The mean frequency at which each site received stimuli

as set to fCR = 10 Hz. We considered the following stimulation patterns: 

- non-shuffled CRS. During non-shuffled CRS each stimulation site received stimuli peri-

odically with frequency fCR . We characterized the CR sequence at which individual sites

receive stimuli using roman letters, e.g., the sequence at which stimuli were administered

to site one first, site two second, site three third, and site four last was denoted as I-II-III-

IV (Fig. 1F in Ref. [1] ). 

- shuffled CRS. During shuffled CRS a new CR sequence was randomly selected every shuffle

period, Tshu f f le . We used a uniform distribution among all 4! possible CR sequences. An

exemplary realization of a corresponding CR pattern for Tshu f f le = 1 / fCR is shown in Fig.

1J in Ref. [1] . Note that the special case Tshu f f le = 1 / fCR , i.e., shuffling after each CR cycle,

is often referred to as CR with rapidly varying sequence (RVS CR) [ 4 , 6 ]. 

Individual stimuli were charge-balanced and consisted of an excitatory rectangular pulse of

uration Tp = 0 . 4 ms that was followed by an inhibitory one of duration 2Tp . The amplitudes
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of the excitatory and inhibitory rectangular pulses were Astim 

μ/Tp and Astim 

μ/ 2Tp , respectively,

with μ = (Vth,spike − Vreset ) / 〈Ci 〉 . 
The stimulation currents each neuron experienced was given by 

Istim,i ( t) = A( t) 
∑ 

j 

S j ( Xi ) . (7) 

Here, A (t) is the amplitude of the stimulus as described in the previous paragraph. S j (Xi ) is

the spatial stimulus profile for stimulation site j. Specifically, a neuron with center coordinated

Xi was affected by a stimulus delivered to site j at a strength of 

S j ( Xi ) =
( 

1 +
(

Xi − Xj 

σ j 

)2 
) −1 

. (8) 

σ j scales the width of the stimulus profile. 

We set Astim 

= 1 for which stimuli are strong enough to elevate the membrane potential of

neurons that are close to the stimulation site from its reset value to the spiking threshold during

the excitatory rectangular pulse part of a stimulus. The width of the stimulus profile was set to

σ j = L/ 8 π (see Fig. 1K in Ref [1] ). 

Parameters related to CRS can be changed in functions_stim.py and spatial_stimulus_profile.py

in folder functions or by modifying the parameters past to the simulation scripts (see 3_run.py

and 4_run.py ). 

4.4. Simulation details 

Simulations were performed as follows: First, a random network of synaptic connec-

tions for the considered network type was generated according to the procedure described

above. Initial membrane potentials were distributed uniformly between Vreset and Vth,rest ,

and all synaptic conductances were set to zero (initial conditions can be modified in func-

tion “set_initial_conditions_for_nodes(system_parameters)” in file functions_sim.py in folder 

functions ). Then, the initial synaptic weights were randomly generated such that individual

weights either attained zero or one and a predefined mean synaptic weight was realized. For

simulations of the synchronized state, the predefined mean synaptic weight was 0 . 5 . Numerical

integration was performed using the Euler method with an integration time step of 0 . 1 ms . 

4.4.1. Simulations of synchronized states 

We simulated the network of LIF neurons in the synchronized state. Corresponding shell

commands for inhomogeneous and homogeneous networks, as well as intermediate networks

can be generated using the Python script 1_run.py in folder run_sim . Simulations were per-

formed for different seeds of NumPy’s pseudorandom number generator. 

To get the shell commands for running simulations run “python 1_run.py NETWORK_TYPE”,

where NETWORK_TYPE = inhomogeneous_network, homogeneous_network, or intermedi- 

ate_network. We submitted these commands to Stanford’s computing cluster. 

Simulation scripts generate output every 20 secs including an array of spike times for each

spiking neuron spikeTimes_T_sec.npy , a trajectory of the mean synaptic weight (averaged over all

possible connections, NOT all implemented connections) meanWeightTimeSeries_T_sec.npy , and 

a backup directory…/T_ sec from which other simulations can be started. Here, T is an integer

specifying the time in seconds. Spike times and mean weight trajectories contain data for the

20 s prior to T. In both files, time is measured in time steps (currently 0.1 ms). Typical output

looks as follows: 
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The file parameterSet.npy contains system parameters. Additionally, backup folder names and

imes will be saved in listOfBackupTimeSteps.txt . The final output will have the identifier “Final-

ackup’’ instead of “T_ sec ’’. 

.4.2. Simulations to get trajectories shown in Fig. 1 

We simulated the LIF neurons for different predefined mean synaptic weights at t = 0. Cor-

esponding commands for inhomogeneous and homogeneous networks can be generated using

he script 2_run.py in folder run_sim . Simulations were performed for different seeds used to

et NumPy’s pseudorandom number generator and different mean synaptic weights. The goal

as to see whether different initial conditions (realizations of mean synaptic weights at the be-

inning of the simulation) lead to different degrees of neuronal synchrony as quantified by the

uramoto order parameter (see below). 

To run simulations, we submitted the commands that were output of “python 2_run.py NET-

ORK_TYPE”, where multistability_NETWORK_TYPE = multistability_inhomogeneous or mul-

istability_homogeneous, to Stanford’s computing cluster. The output directory is specified as

ataDirectory + ’/homogeneous_network/multistability’ by default and can be changed by mod-

fying the file path “dataDirectory”. 

Simulations for homogenous and inhomogeneous networks and different initial mean synap-

ic weights are shown in Fig. 1 . For both inhomogeneous and homogeneous networks, a stable

CSS and a stable WCDS coexist (see Fig. 1 ). We measured the degree of neuronal synchrony

sing the Kuramoto order parameter [ 18 ] 

ρ( t) =
∣∣∣∣∣ 1 

N 

N−1 ∑ 

k =0 

e2 π I ψk ( t) 

∣∣∣∣∣. (9)

is the number of neurons, I the imaginary unit, and ψk (t) is a phase function associated with

he inter-spike intervals of neuron k . ψk (t) attains subsequent integer values at the subsequent

pike times of neuron k and increases linearly during inter-spike intervals [ 19 ]. ρ(t) ≈ 1 corre-

ponds to synchronized spiking and ρ(t) ≈ 0 indicates a lack of synchronized spiking. 

To load the trajectories shown in Fig. 1 from simulation output, we used the code

n the Python script generate_data_from_simulation_output.py in folder figures/Fig1 . First,

he trajectories of the mean synaptic weight and the spike trains were loaded (“python

enerate_data_from_simulation_output.py get_traj_meanWeight_spikeTrain_multistability NET-

ORK_TYPE”). This generates the files NETWORK_TYPE_mwTrajectory_w_MWINIT_seed_12.npy

nd NETWORK_TYPE_spikeTrain_w_MWINIT_seed_12.npy in the folder figures/Fig1/data . MWINIT

s the initial mean weight at t = 0 and can be specified in run_sim/2_run.py . 

Once these files are generated, the trajectory of the Kuramoto parameter

an be generated using “python generate_data_from_simulation_output.py calcu-

ate_time_trace_of_Kuramoto_parameter_multistability_mw”. This will generate the files Ku-

amotoOrderParameter_NETWORK_TYPE_mw_MWINIT_seed_12.npy in figures/Fig1/data . Then,

ig. 1 can be generated using the python script generate_Fig1.py . 

In Fig. 1 , trajectories starting with high initial mean synaptic weight (light gray) approach a

tate with synchronized spiking ( ρ ≈ 1 ) and a mean synaptic weight between ≈ 0 . 3 and ≈ 0 . 4 ,
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depending on the type of network, corresponding to an SCSS. In contrast, trajectories with low

initial mean synaptic weight approach a state with low degree of neuronal synchrony ( ρ ≈ 0 ),

corresponding to a WCSS. This shows the coexistence of a stable SCSS, used to model pathologi-

cal neuronal synchrony, e.g., in Parkinson’s disease, in Ref. [1] , and a stable WCSS, used to model

physiological neuronal activity in Ref. [1] . 

4.4.3. Simulations of CRS 

To study, the effect of CRS on networks in the SCSS, we chose a large initial mean synap-

tic weight (half of the synaptic weights were set to one and the other half to zero) and sim-

ulated the network for 30 0 0s, such that the network approached the SCSS. In the SCSS, the

mean synaptic weight was between 0.3 and 0.4 for the inhomogeneous networks (Fig. 1B-E in

Ref. [1] and Figs. 2A and B , init.) and ≈ 0 . 4 for the homogeneous networks (Fig. 1B’−1E’ in Ref.

[1] and Figs. 2C and 2D , init.). After 30 0 0 s, CRS was delivered for 2 h. After cessation of stimu-

lation, we simulated the network until the mean synaptic weight approached a stationary value.

Resulting trajectories of the mean synaptic weights for various CR patterns and inhomogeneous

and homogeneous networks are shown in Fig. 1 in Ref. [1] . A more detailed statistical analysis of

the mean synaptic weight before, during, and after stimulation is presented in the next section. 

The corresponding simulations start from the backup files for networks in the synchronized

state from section 4.4.1 ) “Simulations of synchronized states” at 30 0 0 s. We delivered CRS to

four stimulation sites. 

Simulations on CRS for homogeneous and inhomogeneous networks can be started using the

shell commands generated by 3_run.py in folder run_sim . To this end, run “python 3_run.py

STIM_MODE”. STIM_MODE describes what kind of scenario is simulated. 

• Use STIM_MODE = CRS_Tshuffle to simulate shuffled CR with shuffling periods 0.1 s,

10.0 s, and 1800.0 s. These simulations start from the backups generated in section 4.4.1 )

“Simulations of synchronized states”. Make sure that the latter simulations have finished

and adjust the file paths in 3_run.py if necessary. Backups are only generated after 1 hour

and after 2hours of stimulation. 

• Use STIM_MODE = CRS_non_shuffled to simulation non-shuffled CR with sequences:

’I_II_III_IV’,’I_II_IV_III’,’I_III_II_IV’,’I_III_IV_II’,’I_IV_II_III’,’I_IV_III_II’. These simulations also 

start from the backups as described for STIM_MODE = CRS_Tshuffle. 

• Use STIM_MODE = relaxation_after_shuffled_CRS to simulate the relaxation after 

shuffled CR. These simulations start from the backup generated by the case of

STIM_MODE = CRS_Tshuffle after 10,200 s. Adjust the paths in 3_run.py if necessary. Back-

ups are generated less often to save memory (see “TBackupSteps” in less_relaxation.py in

folder relaxation_after_stimulation ). 

• Use STIM_MODE = relaxation_after_non_shuffled_CR to simulation the relaxation after 

non-shuffled CR. These simulations start from the backup generated by the case of

STIM_MODE = CRS_non_shuffled after 10,200 s. Adjust the paths in 3_run.py if necessary.

Backups are generated less often to save memory (see “TBackupSteps” in less_relaxation.py

in folder relaxation_after_stimulation ). 

Simulations for intermediate networks can be started using the shell commands generated

by 4_run.py . To this end, type “python 4_run.py STIM_MODE”. 

• Use “STIM_MODE = CRS_Tshuffle_intermediate_networks” to simulate shuffled CR with shuf- 

fling periods 0.1 s, 10.0 s, and 1800.0 s for heterogeneity parameters H = 0, 0.2, 0.4, 0.6,

0.8, 1.0. These simulations start at the backups generated in section 4.4.1 ) “Simulations of

synchronized states”. Make sure that the latter simulations have finished and adjust the file

paths in 4_run.py if necessary. 

• Use “STIM_MODE = relaxation_after_shuffled_CRS_intermediate_networks” to simulate the 

relaxation after shuffled CR. These simulations start from the backup generated in the case

of “STIM_MODE = CRS_Tshuffle_intermediate_networks” after 10,200 s. Adjust the paths in

4_run.py if necessary. 
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.5. Mean synaptic weight before, during, and after CRS 

We analyzed the mean synaptic weight of inhomogeneous and homogeneous networks be-

ore, during, and after CRS ( Fig. 2 ). Corresponding exemplary trajectories of the mean synaptic

eight are shown in Fig. 1 in Ref. [1] . Additionally, for both inhomogeneous and homogeneous

etworks, we performed simulations for five network realizations and recorded the mean synap-

ic weights after 30 0 0 s of simulation. Results are labeled "init." in Fig. 2 . Then, we simulated

 2 h session of either non-shuffled CRS or shuffled CRS with different shuffle periods ( Fig. 2 ).

t the end of the CRS session, we recorded snapshots of the mean synaptic weight (acute) for

ifferent realizations of the CR sequences. 

Once simulations of CRS are done, the simulated data shown in Fig. 2 can be

eproduced using the python script generate_data_from_simulation_output.py in folder

gures/Fig2 . This will copy weight and adjacency matrices from simulations to folder

gures/Fig2/data/ cMatrix_conMatrix (“python generate_data_from_simulation_output.py

_copy_weight_and_adjacency_matrix”). Then, dictionaries containing averages over dif-

erent network and CR sequence realizations were generated by running “python gener-

te_data_from_simulation_output.py 2_calculate_average_mean_weight”. The dictionaries can

e found in folder figures/Fig2/data . Fig. 2 can be generated using these data with the script

enerate_Fig2.py in folder figures/Fig2 . 

In the inhomogeneous networks the recorded mean synaptic weights spread out over a wide

ange with an average of approximately ≈ 0 . 25 for non-shuffled CR and of ≈ 0 . 2 for shuffled

R with a shuffle period of 1800 s ( Fig. 2A ). In contrast, for short shuffle periods ( 0 . 1 s and

0 s ) the mean synaptic weights were close to zero and similar across network realizations and

ealizations of the CR sequences ( Fig. 2A ). In the homogeneous networks, the mean synaptic

eights were close to zero after 2 h of CRS for short shuffle periods; however, shuffled CRS with

ong shuffle periods or non-shuffled CR led to non-zero mean synaptic weights ( Fig. 2C ). 

After the stimulation session, we simulated the system for another 3 h (see previous section

or corresponding code). During this time the mean synaptic weights approached either their

alue in an SCSS or their value in a WCDS. Values of the mean synaptic weights recorded 3

 after different types of CRS are shown in Fig. 2B for the inhomogeneous and in Fig. 2D for

he homogeneous networks. In the inhomogeneous network, after non-shuffled CR and shuffled

R with a shuffle period of 1800 s the mean synaptic weight approached either large values

r small values depending on the network realization and the realization of the CR sequence

 Fig. 2B ). In contrast, after shuffled CR with short shuffle periods the system remained in the

CDS after cessation of stimulation, corresponding to long-lasting desynchronization effects of

RS. However, in the homogeneous network all network and sequence realizations led to sim-

lar mean synaptic weights at the end of the CRS session ( Fig. 2C ) and 3 h after cessation of

timulation ( Fig. 2D ). Here, the results did neither depend on the network realization nor on the

ealization of the CR sequence. 

The Python scripts in the dataset can also be used to generate the simulated data shown

n Fig. 1 in Ref. [1] . To this end, we performed simulations for a homogeneous network and an

nhomogeneous network using seed = 12 in 1_run.py and simulations of non-shuffled and shuffled

RS and relaxation after cessation of simulation for these networks. 

The results shown in the panels of Fig. 1 in Ref. [1] for intermediate networks with different

egrees of heterogeneity, can be obtained from simulation data (see previous section). 

. Limitations 

The presented network model allows for performing long stimulations for many different pa-

ameter combinations, i.e., CR sequences and networks of synaptic connections. Long simulation

imes are needed to simulate relaxation after stimulation as relaxation, especially, towards the

esynchronized state with weak synaptic connections is rather slow. 
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We considered data for five different realizations of synaptic connections for homogeneous

and inhomogeneous networks. The corresponding simulated mean synaptic weights prior to

stimulation were close to each other (see Fig. 2 , init.), suggesting that the major part of the

variability in the mean synaptic weights after stimulation resulted from different CR sequence

realizations. Given the large number of possible CR sequence realizations, the considered 30 CR

sequence realizations may not fully capture the possible outcomes. 

The LIF model only models subthreshold dynamics and the effects of stimulation on the spike

shape are neglected. 

Knowledge of synaptic connectivity in target brain regions of deep brain stimulation, e.g.,

in PD, is limited. The presented dataset provides valuable inside into the potential effects of

inhomogeneous network structure on the long-lasting outcome of stimulation. 

The model considered long-term plasticity in the form of STDP. Short-term plasticity, as well

as structural plasticity is not considered. 

Ethics Statement 

The authors have read and followed the ethical requirements for publication in Data in Brief

and confirm that the current work does not involve human subjects, animal experiments, or any

data collected from social media platforms. 

Data Availability 

Simulated dataset on coordinated reset stimulation of homogeneous and inhomogeneous

networks of excitatory leaky integrate- and- fire neurons with spike- timing- dependent plasticity

(Original data) (Mendeley Data) 

CRediT Author Statement 

Justus A. Kromer: Conceptualization, Methodology, Software, Validation, Formal analysis, In- 

vestigation, Data curation, Writing – original draft, Writing – review & editing, Visualization;

Peter A. Tass: Conceptualization, Methodology, Validation, Investigation, Resources, Writing – re- 

view & editing, Visualization, Supervision, Project administration, Funding acquisition. 

Acknowledgements 

PAT gratefully acknowledges support by the John A. Blum Foundation, the Alda Parkinson’s

Research Fund, and the Vaughn Bryson Research Fund. We are grateful to Stanford University and

Stanford’s Sherlock Computing cluster for computational resources and support that contributed

to these research results. 

Declaration of Competing Interest 

JAK and PAT filed a Stanford-owned provisional patent related to the presented results. 

References 

[1] J.A . Kromer , P.A . Tass , Sequences and their shuffling may crucially impact coordinated reset stimulation – A theo-

retical study, Brain Stimul. 17 (2024) P194–P196 . 
[2] C. Hammond , H. Bergman , P. Brown , Pathological synchronization in Parkinson’s disease: networks, models and

treatments, Trends Neurosci. 30 (2007) P357–P364 . 

https://data.mendeley.com/datasets/fmmr595pps/1
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0001
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0001
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0001
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0002
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0002
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0002
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0002


14 J.A. Kromer and P.A. Tass / Data in Brief 54 (2024) 110345 

 

 

 

 

 

 

 

 

 

[  

 

[  

[  

[  

[  

[  

 

[

[  
[3] P.A. Tass , A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural

subpopulations, Biol. Cybern 89 (2003) 81–88 . 
[4] P.A. Tass , M. Majtanik , Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study,

Biol. Cybern. 94 (2006) 58–66 . 

[5] P.A. Tass , L. Qin , C. Hauptmann , S. Dovero , E. Bezard , T. Boroud , W.G. Meissner , Coordinated reset has sustained
aftereffects in parkinsonian monkeys, Ann. Neurol. 72 (2012) 816–820 . 

[6] I. Adamchic , C. Hauptmann , U.B. Barnikol , N. Pawelczyk , O. Popovych , et al. , Coordinated reset neuromodulation for
Parkinson’s disease: proof-of-concept study, Mov. Disord. 29 (2014) 1679–1684 . 

[7] J. Wang , S. Nebeck , A. Muralidharan , M.D. Johnson , J.L. Vitek , K.B. Baker , Coordinated reset deep brain stimulation
of subthalamic nucleus produces long-lasting, dose-dependent motor improvements in the 1-methyl-4-phenyl-1, 2,

3, 6-tetrahydropyridine non-human primate model of parkinsonism, Brain Stimul. 9 (2016) P609–P617 . 

[8] J. Wang , S.P. Fergus , L.A. Johnson , S.D. Nebeck , J. Zhang , et al. , Shuffling improves the acute and carryover effect of
subthalamic coordinated reset deep brain stimulation, Front. Neurol. 13 (2022) 716046 . 

[9] J.C. Bore , B.A. Campbell , H. Cho , F. Pucci , R. Gopalakrishnan , et al., Long-lasting effects of subthalamic nucleus coor-
dinated reset deep brain stimulation in the non-human primate model of parkinsonism: a case report, Brain Stimul.

15 (2022) 598–600 . 
10] J.A . Kromer , A . Khaledi-Nasab , P.A . Tass , Impact of number of stimulation sites on long-lasting desynchronization

effects of coordinated reset stimulation, Chaos 30 (2020) 083134 . 
[11] L. Garcia , J. Audin , G. D’Alessandro , B. Bioulac , C. Hammond , Dual effect of high-frequency stimulation on subthala-

mic neuron activity, J. Neurosci. 23 (2003) 8743–8751 . 

12] F. Agnesi , A. Muralidharan , K.B. Baker , J.L. Vitek , M.D Johnson , Fidelity of frequency and phase entrainment of cir-
cuit-level spike activity during DBS, J. Neurophysiol. 114 (2015) 825–834 . 

13] A . Khaledi-Nasab , J.A . Kromer , P.A . Tass , Long-lasting desynchronization of plastic neuronal networks by double-ran-
dom coordinated reset stimulation, Front. Netw. Physiol. 2 (2022) 864859 . 

14] M.D. Bevan , C.J. Wilson , Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic
neurons, J. Neurosci. 19 (1999) 7617–7628 . 

15] A. Morrison , M. Diesmann , W. Gerstner , Phenomenological models of synaptic plasticity based on spike timing, Biol.

Cybern. 98 (2008) 459–478 . 
16] M. Madadi Asl , A. Valizadeh , P.A Tass , Dendritic and axonal propagation delays determine emergent structures of

neuronal networks with plastic synapses, Sci. Rep. 7 (2017) 39682 . 
[17] G.K. Ocker , A. Litwin-Kumar , B. Doiron , Self-organization of microcircuits in networks of spiking neurons with plas-

tic synapses, PLoS Comput. Biol. 11 (2015) e1004458 . 
18] Yoshiki Kuramoto , Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984 . 

19] M. Rosenblum , A. Pikovsky , J. Kurths , C. Schäfer , P.A. Tass , Phase synchronization: from theory to data analysis, in:

F. Moss, S. Gielen (Eds.), Handbook of Biological Physics, vol. 4, Elsevier, Amsterdam, 2001, pp. 279–321 . 

http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0003
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0003
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0004
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0004
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0004
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0005
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0005
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0005
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0005
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0005
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0005
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0005
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0005
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0006
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0006
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0006
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0006
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0006
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0006
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0006
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0007
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0007
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0007
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0007
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0007
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0007
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0007
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0008
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0008
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0008
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0008
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0008
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0008
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0008
http://refhub.elsevier.com/S2352-3409(24)00314-7/optgYbuwgtke7
http://refhub.elsevier.com/S2352-3409(24)00314-7/optgYbuwgtke7
http://refhub.elsevier.com/S2352-3409(24)00314-7/optgYbuwgtke7
http://refhub.elsevier.com/S2352-3409(24)00314-7/optgYbuwgtke7
http://refhub.elsevier.com/S2352-3409(24)00314-7/optgYbuwgtke7
http://refhub.elsevier.com/S2352-3409(24)00314-7/optgYbuwgtke7
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0009
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0009
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0009
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0009
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0010
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0010
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0010
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0010
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0010
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0010
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0011
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0011
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0011
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0011
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0011
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0011
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0012
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0012
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0012
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0012
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0013
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0013
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0013
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0014
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0014
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0014
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0014
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0015
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0015
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0015
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0015
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0016
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0016
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0016
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0016
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0017
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0017
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0046s
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0046s
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0046s
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0046s
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0046s
http://refhub.elsevier.com/S2352-3409(24)00314-7/sbref0046s

	Simulated dataset on coordinated reset stimulation of homogeneous and inhomogeneous networks of excitatory leaky integrate-and-fire neurons with spike-timing-dependent plasticity
	1 Value of the Data
	2 Background
	3 Data Description
	4 Experimental Design, Materials and Methods
	4.1 Neuronal network model
	4.2 Network topologies
	4.3 Coordinated reset stimulation
	4.4 Simulation details
	4.4.1 Simulations of synchronized states
	4.4.2 Simulations to get trajectories shown in Fig. 1
	4.4.3 Simulations of CRS

	4.5 Mean synaptic weight before, during, and after CRS

	5 Limitations
	Ethics Statement
	Data Availability
	CRediT Author Statement
	Acknowledgements
	Declaration of Competing Interest

	References

