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Spatial and temporal tools for building a human 
cell atlas

ABSTRACT  Improvements in the sensitivity, content, and throughput of microscopy, in the 
depth and throughput of single-cell sequencing approaches, and in computational and 
modeling tools for data integration have created a portfolio of methods for building spatio-
temporal cell atlases. Challenges in this fast-moving field include optimizing experimental 
conditions to allow a holistic view of tissues, extending molecular analysis across multiple 
timescales, and developing new tools for 1) managing large data sets, 2) extracting patterns 
and correlation from these data, and 3) integrating and visualizing data and derived results in 
an informative way. The utility of these tools and atlases for the broader scientific community 
will be accelerated through a commitment to findable, accessible, interoperable, and reusable 
data and tool sharing principles that can be facilitated through coordination and collabora-
tion between programs working in this space.

OPPORTUNITIES
Human development and reproduction create a fascinating biomo-
lecular symphony; a high-fidelity spatiotemporal system capable of 
going from a single cell to a vast ecosystem of tens of trillions of 
cells and back through the single-cell bottleneck repeatedly and 
faithfully. The lifecycle of all multicellular organisms involves dynamic 
processes that occur across many timescales and spatial contexts, 
from chromatin reorganization within the nucleus, to the formation 
of protein–protein interaction networks in the cytoplasm, to intercel-
lular interactions that drive extracellular matrix and tissue remodel-
ing and, finally, to aging of the organism. The suite of modern tools 
and technologies to study complex spatiotemporal patterns in 

development and aging is redefining the notion of a cell atlas, and 
the insights an atlas can provide regarding an organism’s ability to 
maintain homeostasis in the face of diverse perturbations and 
dysfunctions. Atlas building extends back centuries and historically 
was rooted in close anatomical observations based on morphology 
of tissue and localization of microscopic structures. The emergence 
of quantitative, high-resolution, high-content, high-throughput 
tools that can be used to observe cells in situ is pushing us toward a 
deeper understanding of the role of spatiotemporal patterns in tis-
sues and organisms. This is an exciting moment in cellular and mole-
cular biology. Here, we briefly discuss three sets of technologies that 
are poised to unify diverse atlas efforts and identify some challenges 
that give rise to the need for coordination and collaboration across 
the scientific community, including both scientists and funders.

Multiscale microscopy
Organism-wide cell atlas efforts began with the groundbreaking 
work of Sulston and Horvitz (1977), who methodically tracked the 
lineage relationship of Caenorhabditis elegans hermaphrodites and 
males to define the lineage and identify their 959 or 1031 somatic 
cells, respectively. Dramatic performance improvements offered by 
light-sheet microscopy have taken these observational studies to a 
new level, tracking the lineage of tens to hundreds of millions of 
cells over several days in the early development of zebrafish 
(Keller et al., 2008), Drosophila (Tomer et al., 2012), and mammals 
(Han et al., 2018; McDole et al., 2018). The ability to directly label 
single cells and track them over time has also significantly improved 
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(Frieda et al., 2017; Takei et al., 2017). In parallel, the toolbox for 
characterizing clonal and spatiotemporal relationships between 
cells has grown with genetic markers introduced through viral vec-
tors (Biddy et al., 2018), time-dependent modification of cellular 
components (Herzog et al., 2017), recombination-activated multi-
color fluorescent reporters (Kretzschmar and Watt, 2012), and per-
turbation techniques such as optogenetics (Johnson et al., 2017). 
New microscopy methods such as lattice light-sheet imaging (Chen 
et al., 2014) are not only increasing resolution but also expanding 
the volume and speed of imaging (Liu et al., 2018), and light-sheet 
imaging in combination with tissue clearing has opened up imaging 
to span from the subcellular to the organismal level (Belle et al., 
2017). These approaches are giving rise to many opportunities and 
challenges for linking together ongoing atlas-generating programs 
that exist at the nuclear (Cusanovich et al., 2018), cellular (Cai et al., 
2018), and organismal levels (Regev et al., 2017).

Integrated and multiplexed assays
New technologies are opening additional possibilities for multi-
plexed measurements within a single sample. Light microscopy is 
nondestructive and has high spatial and temporal resolution, 
though it has historically been limited by throughput, lack of 
quantification, and dependency on the affinity labeling of targets 
of interest. Recent methods have pushed beyond these limits. UV 
(Fereidouni et al., 2015) and midinfrared (Yeh et al., 2015) label-
free imaging can monitor cellular and subcellular structures. 
Highly multiplexed methods can measure the transcriptome in tis-
sue sections, not just dissociated cells (Moffitt and Zhuang, 2016; 
Shah et al., 2018), and dense markers are being applied to the 
proteome as well (Goltsev et al., 2018; Gut et al., 2018). These 
advances have resulted in a convergence of imaging and “omics” 
techniques, where data can be anchored and compared across 
different assays (Stuart et al., 2019). Complementing these multi-
plexed approaches, the integration of methods such as tissue 
clearing (Cai et al., 2019) and expansion microscopy (Gao et al., 
2019) into both traditional and highly multiplexed approaches is 
pushing the current limits on volume, spatial resolution, and mole-
cular depth.

Analytical methods and data integration
Waddington was visionary in presenting spatiotemporal decisions as 
a manifold that a single cell, or collection of cells, must navigate, 
conceptualizing development as a quantitative dynamic system 
(Waddington, 1957). This vision continues to inspire new analytical 
and computational approaches that are a core component of mod-
ern atlas-building efforts. For instance, it is now possible to predict 
subcellular structures from label-free images (Chen et al., 2018) and 
the probabilistic fate of the cell can be estimated through analysis of 
nascent versus mature transcripts (La Manno et al., 2018). The clonal-
ity of differentiation can be inferred from genomic scarring (Raj et al., 
2018), diverse data types can be normalized and even integrated 
across conditions, modalities, and species (Butler et al., 2018), and 
single cells tracked through pseudotemporal molecular analysis 
(Bendall et al., 2014; Haghverdi et al., 2016; Qiu et al., 2017).

Increasingly, biologists can acquire more high-quality single-cell 
resolution data than they can analyze. The future holds great prom-
ise for sharing and mining rich imaging data filled with features of 
known, and unknown, significance. This creates a challenge in find-
ing, accessing, interpreting, and extracting knowledge across many 
data types and experimental protocols. Accordingly, computational 
biology, bioinformatics, and systems biology sit at the center of 
most modern atlas efforts, connecting various atlas efforts and en-

abling diverse communities to utilize the fruits of such efforts. Con-
tinued advances in modeling and understanding complex processes 
such as human development, malignancy, and human homeostasis 
will help us learn the state space and relationships among them. 
Additionally, advances in integrative visualization approaches can 
help make atlases accessible and beneficial to experimental 
biologists, computational scientists, and clinicians.

CHALLENGES
Each of the promising approaches described above has limits. For 
multiscale analysis, it remains extremely difficult, and sometimes im-
possible, to study multiple biomolecules in living human cells with 
high resolution. For multiplexed assays, there is a need to integrate 
sparse temporal data collected on live cells and tissue with more de-
tailed molecular snapshots available after fixation. Computational ap-
proaches need analytical methods that are scalable, prognostic, and 
generalizable, and better approaches for establishing ground-truth.

To address these bottlenecks in tracking spatiotemporal dynam-
ics in complex populations of cells, we need better tools. First, 
experimental conditions, tissue collection and preprocessing times, 
tissue preservation conditions, composition of matrix and media, 
and microscope and environmental stability can all significantly im-
pact the quality of data generated (Ferreira et al., 2018). Increasingly 
sophisticated and automated tissue chip devices that allow for con-
trolled culture of multiple tissues in microscope-friendly multiwell 
platforms is one promising area that may address this bottleneck 
(Skardal et al., 2016).

Second, complementary and comprehensive reductionist ap-
proaches are needed to link biomolecular spatiotemporal dynamics 
in individual cells and bridge the spatial scales to cells in a multicel-
lular organism. From rapid cytokine signaling to the essential role of 
long-lived proteins in cellular structures such as nuclear pores 
(Toyama et al., 2013), analytical tools and models are nearly always 
limited to a reductionist approach in space, time, or molecular com-
plexity. Many single-cell analysis techniques do not take the cellular 
environment and signaling into account, either because they 
dissociate cells for analysis or because they examine only a few 
biomarkers in specific cell types. The development and integration 
of techniques that enable precise fluorescent labeling of individual 
molecules for readout of gene expression are an exciting advance 
enabling more comprehensive spatiotemporal analysis, though 
plenty of challenges and opportunities remain.

Third, the computational field should generate predictive mod-
els for complex dynamics and emergent behavior that are not over-
constrained by either experiment or theory. This field needs ground-
truth data sets for comparing methods, approaches for comparing 
models such as pseudotemporal analysis with direct experimental 
results, and more biological input; for example, a deep understand-
ing of receptor–ligand interactions and their dynamics in tissues 
(Nandagopal et al., 2018).

Finally, like any new science, cell atlas approaches must balance 
the inclusion of new technologies with a focus on ensuring rigor and 
reproducibility. Good data stewardship calls for thoughtful curation, 
annotation, maintenance, and release of data and metadata.

PERSPECTIVE
We, the authors, as part of a larger international community, are 
working together to synergistically support the development of new 
tools to systematically build and analyze human cell atlases of nor-
mal and diseased tissue. Tables 1 and 2 list some of the technolo-
gies and programs currently part of this ecosystem. We believe 
there exists opportunity for organizations that support similar 
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research activities to actively coordinate and collaborate between 
programs, share techniques, cross-validate results, and develop 
standards where ones do not exist. For example, the Human Cell 
Atlas (HCA) initiative, with key support by the Chan Zuckerberg Ini-
tiative, is working closely with several National Institutes of Health 
(NIH)-funded programs, including the BRAIN Initiative Cell Census 
Network (BICCN), the Human Tumor Atlas Network (HTAN), and the 
Human Biomolecular Atlas Program (HuBMAP) to develop a com-
mon coordinate framework for the human body that will enable in-
tegration of data across these programs. Furthermore, the NIH and 
the HCA will hold a joint meeting in the spring of 2020 to bring 
many different stakeholder groups together to catalyze discussion 
among the different communities on reaching a consensus on data 
formats, metadata standards, and how to realize data and soft-
ware FAIRness (FAIR: findable, accessible, interoperable, and reus-
able). In addition, many funders are promoting the use of preprint 
servers and services for sharing experimental and computational 
protocols.

This cell atlas ecosystem is also learning from successful inter-
national consortia such as the International Human Epigenetics 
Consortium (IHEC), the International Mouse Phenotyping Consor-
tium (IMPC), and the International Human Microbiome Consortium 
(IHMC) that coordinate activities in their respective fields. For 
example, representatives of all funders with a shared interest in 
building human cell atlases are invited to regular phone calls 
hosted by the Chan Zuckerberg Initiative and attended by an 
international mix of private and public funders, including represen-
tatives from related NIH programs. Through this forum, we can 
coordinate funding opportunities and minimize duplication of 
efforts without sacrificing the autonomy of each funder. We also 
work toward coordination and collaboration on validating tools, 
sharing protocols and reagents, developing standards where none 
currently exist, and making data open and FAIR (Wilkinson et al., 
2016). Working together, we believe there are exciting opportuni-

ties to support the community as it integrates spatiotemporal 
data sets of molecular information, cellular states, and tissues in 
normal and disease contexts.

Generating cohesive multidimensional maps of normal and 
diseased tissues and providing them in a user-friendly environment 
for the research and clinical communities will be a key outcome for 
atlas-generating programs. As these atlas building programs 
progress, we will reach out to the broader research community to 
help identify and define use-cases that can drive the generation of 
approaches for presenting the integrated data sets as unified 
and interactive atlases. Building the integrated atlases that are 
accessible, interactive, and include the necessary data will be key 
for allowing researchers from basic to clinical sciences to ask and 
answer new questions.

As Dyson (2012) noted, new tools let us discover new “monsters” 
that we must study with new and more precise tools before we can 
understand them. Dyson also noted that ideas must go hand-in-
hand with tools to drive science forward. For atlas-building 
programs to reach their potential, they need to inspire the wider 
scientific research community to generate new concepts and 
integrated models, which in turn will require new tools to elucidate 
cellular intricacies.
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