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Radiation therapy (RT) technology and utilization has considerably evolved over the last 50 years in the management of pediatric
Hodgkin lymphoma (HL). In response to significant late effects from RT in survivors of HL, clinical trials in the United States and
Europe have evaluated ways to maintain high cure rates while reducing late toxicities from treatment. Numerous differences exist with
respect to the RT guidelines embedded within therapeutic protocols across cooperative groups, but greater agreement is observed in
the indications for RT, doses, volumes, and the incorporation of modern treatment modalities. This report provides an overview of RT
delivery in pediatric HL protocols in the United States and Europe and examines areas of consensus on the utilization and delivery of
RT in pediatric HL.
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Introduction

Radiation therapy (RT) has played a central role in the management of Hodgkin lymphoma
(HL) for more than 50 years. Palliative RT was replaced with large fields delivered with
curative treatment intent during the 1950s and 1960s.1 Over time, combined modality
therapy (CMT) with chemotherapy followed by consolidative RT has increased cure rates
while often using less intensive chemotherapy regimens and smaller RT fields at lower
doses. The 10-year overall survival now exceeds 85% with CMT for pediatric patients with
HL. Efforts continue to improve cure rates in the highest-risk patients, but the goal of
contemporary HL therapy is now largely focused on reducing the late adverse effects of
treatment using risk- and response-adapted therapies without compromising outcomes.2-3

Substantial heterogeneity exists between national and international clinical trial protocols
for pediatric and adult HL regarding optimal RT utilization. This contributes to disparate
recommendations regarding indications for RT, sites requiring RT, field design, dose,
permissible modalities, and motion management strategies. The Staging, Evaluation, and
Response Criteria Harmonization for Childhood, Adolescent, and Young Adult Hodgkin
Lymphoma initiative was formed in 2011 to promote collaboration among an international
group of pediatric HL investigators who actively participate in cooperative group clinical
trials. The aim of this team is to develop a unified framework to approach staging, response
assessment, and treatment efficacy across pediatric HL clinical trial groups to enhance the
design and execution of clinical trials. In this report, our purpose is to review and detail
critical aspects of RT delivery that should be considered by pediatric, medical, and radiation
oncologists interested in developing future HL trials.

Should Radiation Therapy Be Given to All Patients, Slow Early and Partial
Responders to Chemotherapy, Patients With Bulky Disease, or None at All?

Historically, RT utilization was not a research question because all children and adults
received RT either alone or combined with chemotherapy. Contemporary studies where

all patients received RT were generally limited to stage I/l patients for whom the
prechemotherapy extent of disease could be encompassed within reasonable RT fields.*>
Of note, some trials from earlier eras included higher-risk patients with stage 11/1V disease
who were treated with much larger fields.5-9 In these trials, the study questions generally
focused on treatment intensity, but all patients received combined modality therapy. For
example, Hudson et al compared the efficacy of lower doses of involved-field RT (IFRT) of
15.5 Gy for patients with a complete response (CR) after chemotherapy compared with 25.5
Gy after a partial response (PR).”

The optimization of treatment intensity in HL necessitates a standardized and reproducible
method of assessing treatment response. Definitions of response, however, vary according to
the timepoint(s) of evaluation and the anatomic and metabolic criteria employed, and they
diverge across individual clinical trials and national and international research consortia.10:11
Interim response has been used to identify rapid early responders who may potentially
receive less intensive therapy without compromising outcomes, whereas slow responders
may benefit from treatment intensification.8:12:13 Earlier studies employed computed
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tomography (CT) for response assessment, but over time, functional imaging has been
increasingly used (Gallium or fluorodeoxyglucose [FDG] positron emission tomography
[PET]).19 Some more recent studies have even relied solely on metabolic response by
functional imaging to assess response (NCT03907488, NCT03755804).

Over time, more intensive chemotherapy regimens were implemented to mitigate the

need for large RT fields, particularly in patients with advanced disease. Successive

trials demonstrated the increasing effectiveness of chemotherapy in improving relapse-free
survival. Despite these advances, however, selected patients still relapsed, and identification
of high-risk patients who may benefit from treatment intensification is an important need.
For example, patients with bulky disease and less than CR were identified to have a higher
risk of relapse with chemotherapy alone in multiple reports.12:14-16 Ongoing reevaluation
of the value of using RT in such high-risk patients, including those with bulky disease, is
warranted.

Several pediatric trials evaluated the benefit of RT in patients with a CR to chemotherapy
and included both randomized and nonrandomized evaluations of omitting RT in complete
responders with early stage unfavorable,212.17 early stage favorable,2:912.13.18 and advanced
disease.26:12.14.19 The definition of CR varied across protocols, and later trials incorporated
the use of functional imaging in addition to CT imaging. Although the investigational arm
of these trials omitted RT in complete responders, patients with an incomplete response

or PR still received RT. An example of this paradigm was the CCG 5942 study, in

which patients with early favorable, early unfavorable, and advanced stage HL received
risk-based chemotherapy followed by CT-based response assessment. Complete responders
were randomized between consolidative RT and no further therapy. The results from

this group of studies have been mixed, with some demonstrating that RT can be safely
omitted without compromising progression-free survival in selected patients,5:9.12-14.18,19
but others indicated a significant progression-free survival benefit in patients who received
consolidative RT.26:20 The interpretation and comparison of results from these trials are
complicated by the different risk groups included,®17:18 variable definitions of response, and
systemic therapies used.

Adaptive trials using interim response assessment have included the assignment of rapid
early responders (who continue to have a CR at the end of chemotherapy) to CMT

or chemotherapy-alone regimens.3.17 In the St. Jude—Stanford—Dana Farber trial, low-
risk patients received 2 cycles of vincristine, doxorubicin, methotrexate, and prednisone
(VAMP) chemotherapy. Patients with a CR by both PET and CT received 2 additional
cycles of VAMP and no RT, and partial responders received 2 more cycles of VAMP
followed by RT.13 In the AHOD 0031 trial, patients were treated with 2 cycles of
doxorubicin, bleomycin, vincristine, etoposide, prednisone, and cyclophosphamide (ABVE-
PC) chemotherapy followed by a CT-based response assessment, and responders then
received 2 more cycles of ABVE-PC chemotherapy. After 4 cycles, complete responders
by CT and functional imaging were randomized between consolidative RT and no further
therapy.1’
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Adaptive trials where the chemotherapy regimen was adjusted based on response to therapy
were also applied, wherein only sites with inadequate or incomplete response to systemic
therapy were irradiated.1214.16.17 For example, in the AHOD 0831 study, all patients were
evaluated by PET/CT for response after 2 cycles of ABVE-PC chemotherapy. Any sites

of disease that had not completely responded after 2 cycles were considered slow early
responding sites. After completion of chemotherapy, all sites with either bulky disease at
presentation or slow early response received consolidative RT.16

Which Sites Should Receive Radiation: All Involved Sites or Only High-Risk

Sites (Bulky, Slow, or Partial Responses)?

RT was historically administered to all sites of disease at diagnosis in pediatric and adult
patients with all stages of disease. Today, this approach is essentially limited to only patients
with stage 1/11 disease, as in the AHOD 0431 study, in which patients with stage IA/IIA
disease with <3 sites of initial involvement with a PR to 3 cycles of doxorubicin, vincristine,
prednisone, and cyclophosphamide received IFRT to initially involved sites. This approach
has been avoided in contemporary studies of high-risk patients with stage 111/IV disease to
limit the use of extensive RT fields and their subsequent late effects,2:6-9.1214.17.19.21 | the
POG 9425 study, patients received regional RT fields, such as the mantle and paraortic fields
with or without the pelvis if disease was within any of these nodal basins. These volumes
effectively translated into subtotal lymphoid irradiation (STLI) or total lymphoid irradiation
in patients with stage 111/1V disease.®

Alternatively, RT can be selectively administered only to sites presumed to be at a higher
risk of relapse. This may include sites of bulky disease and sites of either slow response or
PR. The rationale for this approach is that chemotherapy alone may eradicate nonbulky
disease or sites in rapid early and CR, whereas unfavorable sites may benefit from
treatment intensification, including consolidative RT. This tailored RT approach can lead

to a significant reduction in the volume of normal tissues irradiated, particularly in patients
with advanced stage disease. Irradiation of only high-risk sites may improve the therapeutic
ratio by minimizing late toxicities through the selective avoidance of RT in patients with
more favorable responses. Table 1 summarizes the inclusion criteria, treatment arms, RT
indications, and accrual status of past and current pediatric HL trials.

Bulky disease is frequently identified as a high-risk feature and has been irradiated in several
trials, 116 although no significant difference was observed in patterns of relapse between
bulky and nonbulky sites of disease in the AHOD 0031 study.22 In addition, patients with

a PR by CT or PET/CT after chemotherapy or slow early responders based on interim
PET/CT are also at increased risk of relapse.12.13.17:18 To improve outcomes, high-risk

sites have also been irradiated.1® For example, the AHOD 1331 study randomized patients
with advanced stage disease between ABVE-PC and the adcetris, doxorubicin, vincristine,
etoposide, prednisone, and cyclophosphamide regimen, where bleomycin was substituted
for the anti-CD30 monoclonal antibody brentuximab vedotin. All patients with bulky and
PET-positive disease (Deauville 4,5) after 2 cycles were to receive RT to these sites after
completion of systemic therapy. In the ongoing S1826 trial, the only sites irradiated are sites
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of residual disease after completion of systemic therapy by both PET and CT (>2.5 cm;
NCT03907488).

Consensus Statement #1.

With advances in systemic therapy, it is clear that not all patients require the same intensity
of therapy. Recent adaptive trial designs have treated patients at highest risk for relapse
with targeted RT fields. The selection of treatment modality and regimen should be based
on curative potential, balanced with the risk of late effects, to improve survival and quality
of life. Limiting the use of RT to sites with an inadequate response to chemotherapy may
contribute to a reduction in late effects without compromising relapse-free survival.

Target Volumes and Principles of Field Design

Recognizing the potential advantages and toxicity costs of CMT, RT fields decreased in
size over time, from total and STLI to extended-field RT to IFRT. Historically, IFRT used
2-dimensional planning techniques and bony anatomic landmarks to develop standardized
RT fields that would completely encompass involved nodal regions. A 2001 survey of
international lymphoma radiation oncology experts, however, reported large variations in
the field borders and dose prescriptions used between physicians. In response, Yahalom and
Mauch published standardized IFRT guidelines to be used in therapeutic trials and clinical
practice.23

Modern RT treatment planning now employs 3-dimensional target volumes and organs at
risk (OARs) delineated using CT simulation and based on International Commission on
Radiation Units and Measurements Reports 62 and 83.2425 The Euronet PHL-C1 study was
one of the first to define target volumes using gross tumor volume and clinical target volume
(CTV) nomenclature to create “modified IFRT” fields (NCT00433459). IFRT has now
given way to even more limited target delineation. Involved-node radiation therapy (INRT),
proposed by the European Organisation for Research and Treatment of Cancer (EORTC),
delineates the CTV to encompass only lymph nodes containing macroscopic lymphoma at
diagnosis based on anatomic and functional imaging (CT and PET/CT) while excluding
uninvolved nodes and normal tissues. INRT requires prechemotherapy CT and PET/CT to be
obtained in the RT treatment position and that coregistration of this imaging be performed
with the CT simulation for RT treatment planning.2® This is particularly challenging to
achieve in routine clinical practice.

Involved-site RT (ISRT) is conceptually similar to INRT but permits some uncertainty in
interpreting diagnostic imaging for CTV definition. The key difference between ISRT and
INRT lies in the quality and accuracy of prechemotherapy imaging and the concordance

of patient positioning and image registration to the treatment planning CT. First, ISRT
allows physicians to use their own clinical judgment when considering potential dose to

an adjacent OAR, such that the CTV can be tailored to spare nearby critical structures

such as the heart.26-28 Second, additional margins are permitted to allow for uncertainties
regarding the anatomic location of involved nodes in delineating the CTV. In cases where
pre-treatment imaging was not performed in the RT treatment position, the pretreatment PET
was not coregistered with CT, the CT was performed without intravenous contrast, or patient
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positioning, motion, or slice thickness were suboptimal, the ISRT CTV may include nodal
tissue adjacent to involved nodes to account for small spatial differences in the location

of initially involved nodes. Although INRT was originally conceived for treatment of early
stage disease, ISRT is potentially applicable to patients with all stages. ISRT was applied
in the recently completed AHOD 1331 trial, which included only patients with high-risk
disease. ISRT has effectively replaced IFRT in clinical practice, with most physicians using
modern target volume delineation.

Ongoing trials have further reduced target volumes compared with ISRT/INRT to treat only
gross residual disease with small margins based on CT or PET/CT. Historically, such smaller
volumes may have been used as a boost after treatment of a larger field to lower prescription
doses. In the current St. Jude studies, however, these reduced volumes are being used for

the entire course of RT. Figure 1 depicts an example of representative target volumes for
extended-field RT, IFRT, ISRT, and gross residual disease alone. Table 2 describes the target
volumes being used in the currently active or soon-to-be-accruing Children’s Oncology
Group (COG) studies.

Consensus Statement #2:

ISRT and INRT are considered standard of care for HL RT and have replaced extended
fields in contemporary clinical trials. Response-adapted paradigms are a useful clinical trial
construct to help identify patients who benefit from RT and intensify/de-intensify therapy
based on response. Contemporary trials have applied RT to all sites of initial disease, bulky
and slow responding sites, or only PET-positive disease after chemotherapy. Further study is
needed to determine whether ISRT volumes can be safely reduced to treat smaller volumes,
such as gross residual disease alone. Given that RT volumes may be significantly larger in
patients with stage HI/1V disease, different approaches may be needed in patients with early
and advanced stage disease.

Functional Imaging, Simulation, and Treatment Positioning

Functional imaging using PET in HL is essential for both accurate staging and high-quality
RT treatment planning.2? The addition of PET/CT in pretreatment staging results in different
staging in 10% to 30% of patients with HL compared with contrast-enhanced CT alone

by increasing the diagnostic sensitivity for questionable findings and identifying additional
sites of involvement that were not observed on CT.30:31 Failure to obtain a PET/CT scan
before starting chemotherapy was associated with a higher risk of relapse in patients with
early stage HL.32 In addition, areas of increased uptake assist in target volume delineation
and can be correlated with outcomes using midtreatment and postchemotherapy imaging.
The anatomic precision of PET, however, should not be over-stated. The precise delineation
of disease within an enlarged nodal volume should not necessarily be restricted only to

FDG avid regions. Abnormalities on CT compatible with disease involvement should be
included in the CTV, even in the absence of increased FDG avidity.2” Oncologists should

be cognizant of potential non-HL sources of FDG uptake in normal tissues, including brown
fat, tonsillar tissues, and normal thymic uptake, and should seek to distinguish these findings
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from disease. The assistance of colleagues in radiology and other specialties can be critical
in this effort.

High-quality prechemotherapy imaging is critical to delineate appropriate RT target
volumes. Given the propensity for neck and thorax involvement in HL, imaging studies

of these regions should always be performed. Contrast-enhanced CT and PET/CT imaging
are strongly advised in all cases33 unless clear contraindications exist. Pretreatment PET/CT
should ideally be performed in the treatment position with the participation of the radiation
oncologist. Inadequate pretreatment imaging may lead to incorrect over- or undertreatment
of the patient and can potentially lead to unnecessary irradiation of uninvolved tissues.
Because neck RT is typically performed with a neutrally positioned or extended neck, it

is recommended that lymphoma patients with PET/CT imaging have their neck similarly
positioned to improve image fusion. Similarly, if the axilla is not involved, it would be
beneficial to have the patient undergo PET/CT imaging with the arms at their sides to assist
in image fusion (Fig. 2).

In addition to pretreatment imaging, simulation also comprises an important and sometimes
underemphasized element in the delivery of high-conformal RT. Patient positioning should
be individualized to ensure reproducibility, enable accurate delineation of target volumes,
and provide clinicians with the best avenue to minimize dose to OARs. The use of
intravenous contrast is recommended when practical to aid in the delineation of target
volumes and certain OARs, such as the left anterior descending artery. For patients treated
to the cervical neck, comfortable chin extension and use of mask immobilization may

help to reduce oral cavity and salivary gland dose and minimize planning target volume
expansions. Patients with mediastinal disease and either no or limited neck disease who
will receive intensity modulated radiation therapy (IMRT) may benefit from positioning the
arms overhead to minimize collateral radiation to the arms. Comfortable and reproducible
positioning may be improved using customized VacLok devices over a wing board. Patients
with axillary disease may be treated with either arms up or akimbo positioning. Akimbo
positioning may be more comfortable, particularly in older patients, and may be more
reproducible for cases treated with proton therapy (PT). This position, however, may be
less favorable in patients treated with rotational gantries using IMRT or PT due to collision
concerns. Ultimately, simulation should emphasize patient comfort and setup reproducibility
and be individualized. The right answer in each clinical case may vary between centers.

Consensus Statement #3:

Functional imaging is a central pillar of contemporary HL therapy in developed countries,
and clinicians are strongly encouraged to obtain pretreatment, interim, and posttreatment
imaging to adequately assess response. Where there is no routine access to PET/CT, caution
should be taken when applying the results of PET-directed therapy trials in clinical practice.

Radiation Therapy Techniques and Modalities

The RT techniques and modalities allowed in recent HL clinical trials are reported in Table
2. Historical trials used 2-dimensional planning and anatomic-based fields to cover targeted
nodal volumes based on bony anatomy. CT-based 3-dimensional volumetric planning is
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now the standard of care, and more advanced techniques, including IMRT and PT, are
increasingly used. The use of IMRT is permitted in AHOD 0831 and EORTC H11, and both
PT and IMRT are allowed on AHOD 1331, HLHR13, and EuroNet-PHL-C2.

Three-dimensional conformal RT (CRT) enables greater dose deposition in the target and
reduces the dose to non-target normal tissues by improving the precision of target volume
delineation and enabling the evaluation of target coverage and OAR sparing with a dose-
volume histogram. In most cases, 3-dimensional CRT is typically administered with parallel
opposed anteroposterior/posteroanterior fields, leaving portions of OARs that are in field to
receive the prescription dose. IMRT and volumetric modulated arc therapy enable greater
sparing of OARs adjacent to the target volume from receiving higher doses at the expense
of increasing the normal tissue volumes receiving low-to-intermediate doses. This low-dose
bath is of concern because it may increase the risk of radiation-induced secondary malignant
neoplasms (SMNSs). The magnitude of risk posed by this low-dose exposure remains
uncertain until mature follow-up data become available.34:3% Table 3 is adapted from Tseng
et al and summarizes the RT dose-response relationships for different toxicities observed in
survivors of HL for SMNs, cardiovascular, pulmonary, and endocrine late effects.36

PT eliminates RT dose deposition beyond the target due to its unique dose distribution
pattern, known as the Bragg peak. As a result, PT can deliver highly conformal doses to
the CTV, as with IMRT, while providing greater sparing of normal tissues and reducing the
total integral dose delivered to the patient. In a review of 14 published studies comparing
3-dimensional CRT, IMRT/volumetric modulated arc therapy and PT dosimetry for patients
with lymphoma, IMRT was found to reduce the RT dose to the heart and esophagus at

the expense of higher thyroid and breast doses compared with 3-dimensional CRT. PT
significantly reduced the dose to the heart, thyroid, breast, lung, esophagus, and total body
compared with both 3-dimensional CRT and IMRT.36 The benefit from OAR sparing is
greatest in patients with long anticipated survival, because the risk of radiation-induced
cardiovascular disease, SMNs, and other effects increases over time. As a result, patients
with HL who are younger or have a significant reduction in dose to nearby OARs are
expected to have the greatest potential benefit from PT.

Patients with disease extending into the inferior mediastinum may also comprise a subgroup
that derives a greater potential benefit from PT due to a greater reduction in heart dose.37-40
PT may improve sparing of many OARs, but the delivery can be quite challenging due

to setup uncertainties and changes in external anatomy and tissues within the chest. Due

to the complexity of PT treatment, COG requires institutions to demonstrate accuracy and
proficiency of delivery using the Imaging and Radiation Oncology Core thoracic phantom
before patients are permitted to receive PT on clinical trials.

To date, outcomes and follow-up for patients treated with either IMRT or PT remain

too short to demonstrate a significant reduction in late toxicities compared with 2- and 3-
dimensional CRT. The absence of data demonstrating that these dosimetric benefits translate
into a clinical benefit is not unexpected because many serious adverse effects occur 10 years
or longer after completion of therapy.#! Favorable event-free survival, however, has been
reported in several retrospective studies in adult and pediatric patients with HL.42-46 To
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date, grade 3 pneumonitis was rare after IMRT and PT.424347:48 | ong-term follow-up of
toxicity is needed from these advanced photon and PT data sets. In addition, toxicity will
be significantly affected by target site, technique, and target volume delineation parameters,
which need to be accounted for in the interpretation of these data.

Motion Management

Four-dimensional CT is recommended for thoracic and abdominal primary tumor sites
where target volume and/or normal organs move with respiration. Respiratory motion
management is advised to ensure appropriate coverage when target volumes move with
breathing. Motion management strategies include the use of an internal target volume

to account for tumor excursion during all phases of the breathing cycle, abdominal
compression, or gated delivery. Regardless of the strategy used, we recommend including
the entire lungs in the treatment planning CT for all chest wall and thoracic tumors to enable
accurate pulmonary dose measurements.

Deep-inspiration breath hold (DIBH) is an important technique in modern RT planning
and delivery and has been reported in pediatric patients.#° In general, this technique

results in reduced lung dose compared with free-breathing delivery and may shift the heart
inferiorly, which can potentially reduce the heart dose in selected patients receiving RT to
the mediastinum. Reports from Petersen et al and Charpentier et al both demonstrated that
DIBH was associated with lower mean heart doses, heart V20, and lung V20 in patients
treated with both 3-dimensional CRT and IMRT.>%:51 DIBH also conferred lower estimated
lifetime excess risks of cardiovascular disease and secondary lung, breast, and thyroid
cancers.52 Although 4-dimensional CT and DIBH are increasingly incorporated into clinical
practice, few outcomes have been reported. DIBH may be particularly helpful in patients
with superior mediastinal disease by increasing the separation between the heart and the
inferior extent of disease. The magnitude of benefit may be less in patients with lower
mediastinal disease if the CTV moves in concert with the heart. In all clinical scenarios,
the volume of the irradiated lung is typically reduced with DIBH. Lymphoma radiation
oncologists are strongly encouraged to consider DIBH in appropriate patients where OAR
dosing may be improved with this technique.

Consensus Statement #4:

Pre- and posttreatment imaging (where appropriate) should be fused to the RT treatment
planning study to aid in target volume delineation. The selection of CT simulation
positioning, immobilization devices, motion management, and treatment modality are all
essential to optimizing the efficacy of RT, improving conformality, and minimizing dose
to OARs. Lymphoma radiation oncologists should leverage advanced RT technologies and
motion management strategies where appropriate, including DIBH.

Patterns of Failure and Radiation Therapy Dose

Based on the experience derived from decades of clinical trials, the standard consolidative
RT dose for patients with primary disease after induction chemotherapy is 20 to 30 Gy in
adults and 20 to 25.5 Gy in children.1753 These doses are based on clinical trials where most
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patients were irradiated and the predominant site of failure was within the RT field. On 2
prospective clinical trials in the St. Jude Children’s Research Hospital consortium from 1990
to 2000, of 195 pediatric patients treated with either VAMP or VAMP/cyclophosphamide,
vincristine, and prednisone (COP) followed by IFRT to 15 to 25.5 Gy, 27 patients relapsed
and 81% recurred in field.>* In AHOD 0031, 244 patients (14.3%) relapsed, and 94% of
recurrences had some component of in-field failure after 21 Gy.22 In contrast, in adult
patients with stage | to Il and bulky mediastinal disease who received 36 Gy (n = 264) on
the Intergroup E2496 trial, in-field relapses represented 61% of all relapses after doxorubicin
hydrochloride, bleomycin sulfate, vinblastine sulfate, and dacarbazine (ABVD) and 52%

of all relapses after mechlorethamine, doxorubicin hydrochloride, vinblastine, vincristine,
bleomycin, etoposide, and prednisone (Stanford V).2> Although relapse patterns are also
affected by systemic therapy intensity, these studies suggest that doses of 15 to 25.5 Gy lead
to higher rates of in-field relapse compared with doses akin to 36 Gy.

Although newer trials are identifying patients with favorable outcomes for whom RT may

be eliminated, these adaptive trials are also identifying patients at a higher risk of relapse.
Such patients may benefit from higher-than-standard RT doses. In AHOD 1331 and Euronet-
PHL-1 and 2, pediatric patients with residual FDG-avid disease receive doses of 30 Gy
rather than 20 to 21 Gy (Table 4). In EORTC H11, adult patients with FDG-avid disease
after chemotherapy receive 36 Gy rather than 30 Gy.

Consensus Statement #5:

The optimal RT dose intensity as part of CMT is dependent on disease stage/risk status,

the chemotherapy regimen, and response to therapy. Historically, pediatric and adult patients
received doses of approximately 20 and 30 to 36 Gy, respectively. Selection of RT dose
outside of clinical trials should be consistent with both the selected treatment paradigm and
response assessment. Future pediatric trials that focus on reducing the number of patients
receiving RT should consider the use of higher doses, such as 30 Gy in selected higher-risk
patients. Patients with incomplete response after chemotherapy may benefit from treatment
intensification, including but not limited to a higher dose RT of >30 Gy to selected sites.

Normal Tissue Toxicity

Although cure rates for HL generally exceed 85%, long-term survivors are at high risk of
developing late adverse effects due to their chemotherapy and RT.#! Castellino et al reported
that 5-year survivors of pediatric HL in the Childhood Cancer Survivors Study (CCSS)
diagnosed between 1970 and 1986 had a substantial excess absolute risk (EAR) of morbidity
and mortality compared with the general population, including an EAR of 23.9 for SMNs
and 13.1 for cardiovascular disease per 10,000 person-years. The SMNs with the greatest
EAR compared with the general population were for hematopoietic (6.8), sarcoma (5.6),
breast (4.4), and gastrointestinal (4.4) malignancies per 10,000 person-years. The 30-year
cumulative incidence of grade 3 + cardiovascular and pulmonary complications were 11.1%
(95% confidence interval, 8.5%-13.8%) and 5.1% (95% confidence interval, 3.3%-6.9%),
respectively.5®
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The CCSS is a great resource for identifying factors associated with late toxicity from

the treatment of pediatric patients. Most patients with HL in the CCSS were treated with
outdated treatment fields and doses (eg, STLI to doses of 40 Gy), which makes it difficult to
extrapolate their outcomes to modern radiation field designs, techniques, and doses. Zhou et
al compared the normal tissue dose received by 50 patients with HL in the CCSS who were
diagnosed between 1970 and 1986 with 191 patients treated on AHODO0031 and AHOD0831
who were diagnosed between 2002 and 2012. In the more contemporary patients with HL
treated on COG studies, mean heart dose decreased by 22.9 Gy (68.6%) and 17.6 Gy
(56.8%) in patients with early and advanced stage disease, respectively. Similarly, mean
breast dose also decreased by 15.5 Gy (83.5%) and 11.6 Gy (70%) in patients with early
and advanced stage disease, respectively. Significant reductions in lung and thyroid dose
were also observed in COG patients compared with CCSS participants. Reductions in the
total prescribed RT dose and changes in field volumes served as major contributors to the
observed differences.>’ This suggests that patients treated with RT in the present day receive
significantly lower doses to the heart, lungs, breast, and thyroid and are therefore unlikely to
develop the same degree of treatment-related late toxicities compared with CCSS patients.

Table 3 summarizes published manuscripts reporting on risk factors for SMNSs,
cardiovascular morbidity, and other late effects as a function of RT dose.38 Importantly,
many of the published outcomes were derived from the now antiquated extended-field RT
and STLI fields. Patients treated to these fields often received RT to the stomach and
pancreas to high doses, leading to significantly increased risk of diabetes and SMNs of

the pancreas and stomach. In addition, the RT doses delivered to the heart significantly
increased the risk of valvular disease, congestive heart failure, and early cardiac death.
Treatment with modern ISRT fields to 30 Gy using IMRT or PT is expected to substantially
reduce these risks,%8:9

Consensus Statement #6:

Athough there is insufficient long-term follow-up data to demonstrate reductions in late
effects from IMRT and PT in HL, robust outcomes data have demonstrated that dose
responses exist for cardiovascular disease/death, lung and thyroid dysfunction, SMNs, and
numerous other late effects across multiple disease sites. Late effects are the leading causes
of death in HL survivors, and lymphoma radiation oncologists should pursue all strategies
to reduce late morbidity and mortality through a reduction in RT use where appropriate,
minimizing radiation to high-risk tissues, and use of advanced RT modalities and novel
technologies. Strategies to prospectively collect patient outcomes, dosimetry, and late effects
and quantify the impact of modern RT on HL morbidity and survival should be pursued
within cooperative groups and compared across trials.

Conclusions

RT remains an integral component in the management of many patients with HL, and

the decision to use CMT should rest on appropriate patient selection and consideration of
clinical benefits relative to toxicities.®? Based on results from several trials published within
the last 7 years, better identification of patients who will benefit from RT has led to an
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increasing number of patients who may defer RT and its potential effects. Modern RT fields,
modalities, and delivery techniques have substantially reduced RT exposure to uninvolved
normal tissues, which is expected to further reduce late toxicities from RT. We encourage
HL investigators to continue to provide sophisticated guidance on RT delivery in future
clinical trials to ensure the most appropriate and effective use of RT.
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Mantle

Fig. 1.
Representative field borders/dose distribution for a representative patient with Hodgkin

lymphoma and mediastinal involvement (delineated in the center with pink contours)
receiving treatment with Mantle field, involved-field and involved-site radiation therapy
(yellow) and to residual disease (blue) alone after chemotherapy. The heart (red) and female
breast (pink) are also illustrated.
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Fig. 2.
Computed tomography (CT) simulation fusion with CT component from baseline positron

emission tomography/CT scan where patient simulation setup is different from staging scan
(arms up vs down), illustrating the difficulty with target volume delineation in the axilla,
supraclavicular, and cervical regions.
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Table 1

Contemporary pediatric Hodgkin lymphoma clinical trials
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Per centage
Cooperative Accrual treated
Trial group Inclusion criteria  status Treatment arms/indications for RT with RT
AHOD COG Stage I-11B; I- Completed Al received 4 cycles ABVE-PC 67.5%
0031 1HAE; HI-IVA; 111- * RER & CR: Randomized to + IFRT
IVAE with/without * RER and PR: IFRT
bulk; 1A/11A with » SER: Randomized to + DECA x 2 augmented therapy
bulk and all received IFRT.
RER: >60% reduction in PPD for all target lesions.
SER: <60% reduction in PPD for all target lesions.
CR: >80% reduction in PPD and negative gallium or
FDG-PET scan (less than mediastinal background blood
pool).
AHOD COG Stage IA/IIA (no Closed All received 3 cycles of doxorubicin, vincristine, 43.5%
0431 bulk) LPHD not prednisone, and cyclophosphamide.
allowed. « If < PR: Off-protocol therapy
e If PR: IFRT
« If CR: Observation (Off-protocol therapy for high-risk
relapse; IV, DECA, and IFRT for low-risk relapse).
CR: Anatomic reduction 280% in PPD and FDG-PET-
negative result.
PR: Anatomic reduction >50% in PPD of measurable
disease regardless of FDG-PET response.
HODO05 SJCRH Stage IB; Il1A; and  Closed All receive 12 weeks Stanford V — ERA (after 8 weeks ~100%
I-11A with any of of chemotherapy)-adapted RT:
the following: * If CR and nonbulky: 15 Gy in 1.5 Gy/fx
Bulky LMA, E « If PR and/or mediastinal bulk: 25.5 Gy in 1.5 Gy/fx
lesions, or 23 nodal ERA defined by PET negative and > (CR) anatomic
sites response or <75% (PR) anatomic response regardless of
PET.
HODO08 SICRH Stage 1A or lIA Closed All receive 8 weeks Stanford V, followed by ERA-adapted  NR
and nonbulky RT:
mediastinal (<33% 25.5 Gy in 1.5Gy/fx RT to a site with <75% anatomic
mediastinal to response or PET+, but omitted for >75% response and
thoracic ratio on PET-.
CXR) and <3 LN
regions and no E
lesion
HLHR13 SJCRH Stage I1B, 111B, Closed ERA driven by metabolic and anatomic response. NR
IVA, or IVB; * 2 cycles AEPA—ERA—4 cycles.
LPHD not allowed CAPDac—+ERA-adapted RT.
RT given if ERA is Deauville 4-5 or anatomic response
<75% from baseline.
AHOD COG Stage I11B-1VB Closed All receive 2 cycles ABVE-PC. 76.2%
0831 * If CR: 2 cycles ABVE-PC—Risk-adapted RT.
« If PR/SD: 2 cycles Ifos/Vino—2 cycles.
ABVE-PC—Risk-adapted RT.
« If PD: Off-protocol therapy.
CR: Deauville 1 or 2
PR: Deauville 3, 4, 5 with >50% decrease in PPD.
AHOD COG Stage 11B with Open Randomized to 5 cycles ABVE-PC versus Bv- NR
1331 Bulk; I11B; IVA; AVEPC—ERA-adapted ISRT.
VB RER: Deauville 1,2, or 3.
SER: Deauville 4, 5.
CR: Deauville 1,2.
PR: Deauville 3, 4, 5 at the end of treatment.
Euronet- EuroNet All stages/risk All receive 2 cycles OEPA—ERA. 33.3%
PHL-C1 categories; LPHD TG1: RT unless CMR on ERA.

not allowed

TG2: 2 cycles COPDAC versus COPP—RT unless CMR
on ERA.

TG3: 4 cycles COPDAC versus COPP—RT unless CMR
on ERA.

ERA is defined by PET only (+) where adequate response
=no initially involved PET+ areas remain positive.
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Per centage
Cooperative Accrual treated
Trial group Inclusion criteria  status Treatment arms/indications for RT with RT

Euronet- EuroNet All stages/risk Open All receive 2 cycles OEPA—ERATL-1: PET-—1 cycle NR
PHL-C2 categories LPHD COPDac-28 or PET +—19.8 Gy RT to initial sites
not allowed TL-2 and TL-3: Randomized to 2 (TL2)-4 (TL3) cycles

COPDac-28 versus DECOPDac-21— LRA (if IR at
ERA).
* ERA PET-: No RT.
* ERA PET+, COPDac-28: 19.8 Gy RT to initial sites £10
Gy boost to LRA PET+ sites.
* ERA PET+, DECOPDac-21, LRA PET-: Observation.
* ERA PET+, DECOPDac-21, LRA PET +:28.8 Gy to
LRA PET+ sites.

cHOD17 SICRH All stages/risk Open Low and intermediate risk receive 2 cycles NR
categories; LPHD BEABOVP—ERA.
not allowed  Low Risk: tERA-adapted RT.—Observation.
* Intermediate Risk: 1 cycle BEABOV + P—>+ERA-
adapted RT.
« High-risk: AEPA—ERA—4 cycles CADac +
P—+ERA-adapted RT.
ERA driven by metabolic response only RT given when
ERA is Deauville 4 or 5.

Abbreviations: ABVE-PC = doxorubicin, bleomycin, vincristine, etoposide, prednisone, and cyclophosphamide; AEPA = adcetris, etoposide,
prednisone, adriamycin; BEABOV+P = bendamustine substitution for mechlorethamine in the original Stanford V backbone with or

without prednisone; Bv-AVEPC = adcetris, doxorubicin, vincristine, etoposide, prednisone, cyclophosphamide; CAPDac, cyclophosphamide,
adcetris, dacarbazine; CMR = complete metabolic response; COG = Children’s Oncology Group; COPDAC = cyclophosphamide, oncovin,
prednisone, dacarbazine; COPP = cyclophosphamide, oncovin, prednisone, procarbazine; CR = complete response; CXR = chest x-ray; DECA

= dexamethasone, etoposide, cisplatin, and cytarabine; DECOPDac = dacarbazine, etoposide, doxorubicin, cyclophosphamide, vincristine,
prednisone/prednisolone; ERA = early response assessment; FDG = fluorodeoxyglucose; fx = fraction; Ifos/Vino = ifosfamide, vinorelbine;

IFRT = involved-field radiation therapy; IR = inadequate response; ISRT = involved-site radiation therapy; IV = intravenous; LMA = large
mediastinal adenopathy; LN = lymph node; LPHD = lymphocyte predominant Hodgkin lymphoma; LRA = late response assessment; NR = not yet
reported; OEPA = oncovin, etoposide, prednisone, adriamycin; PD = progressive disease; PET = positron emission tomography; PPD = product of
perpendicular diameter of target lesions; PR = partial response; RER = rapid early responding; RT = radiation therapy; SD = stable disease; SER
= slow early responding; SJCRH = St. Jude Children’s Research Hospital; Stanford V = chemotherapy regimen consisting of mechlorethamine,
doxorubicin hydrochloride, vinblastine, vincristine, bleomycin, etoposide and prednisone; TG = treatment group; TL = treatment level.
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