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Atrial fibrillation (AF)/paroxysmal AF (PAF) is the main cause of cardiogenic embolism. In
recent years, the progression from paroxysmal AF to persistent AF has attracted more
and more attention. However, the molecular mechanism of the progression of AF is
unclear. In this study, we performed RNA sequencing for normal samples, paroxysmal
AF and persistent AF samples to identify differentially expressed gene (DEG) and explore
the roles of these DEGs in AF. Totally, 272 differently expressed mRNAs (DEmRNAs)
and 286 differentially expressed lncRNAs (DElncRNAs) were identified in paroxysmal
AF compared to normal samples; 324 DEmRNAs and 258 DElncRNAs were found
in persistent atrial fibrillation compared with normal samples; and 520 DEmRNAs
and 414 DElncRNAs were identified in persistent AF compared to paroxysmal AF
samples. Interestingly, among the DEGs, approximately 50% were coding genes and
around 50% were non-coding RNAs, suggesting that lncRNAs may also have a
crucial role in the progression of AF. Bioinformatics analysis demonstrated that these
DEGs were significantly related to regulating multiple AF associated pathways, such
as the regulation of vascular endothelial growth factor production and binding to
the CXCR chemokine receptor. Furthermore, weighted gene co-expression network
analysis (WGCNA) was conducted to identify key modules and hub RNAs and lncRNAs
to determine their potential associations with AF. Five hub modules were identified
in the progression of AF, including blue, brown, gray, turquoise and yellow modules.
Interestingly, blue module and turquoise module were significantly negatively and
positively correlated to the progression of AF respectively, indicating that they may
have a more important role in the AF. Moreover, the hub protein-protein interaction
(PPI) networks and lncRNA–mRNA regulatory network were constructed. Bioinformatics
analysis on the hub PPI network in turquoise was involved in regulating immune
response related signaling, such as leukocyte chemotaxis, macrophage activation, and
positive regulation of α-β T cell activation. Our findings could clarify the underlying
molecular changes associated fibrillation, and provide a useful resource for identifying
AF marker.
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INTRODUCTION

Atrial fibrillation (AF) is a common tachyarrhythmia, which had
been the main cause of cardiogenic embolic infarction (Abdul-
Rahim et al., 2015; Kelley, 2015). AF develop from paroxysmal AF
to persistent AF (Shukla and Curtis, 2014). Paroxysmal AF occurs
in about 50% of all AF cases (Skaarup et al., 2016). Persistent
AF occurs in about 20% of chronic heart failure and is related
to a poor prognosis (Cornelis et al., 2018). In the past 10 years,
AF ablation has been a common treatment of AF (Pelargonio
et al., 2021). Previous studies have shown that AF is a complex
disease caused by genetic and environmental factors (Lubitz et al.,
2010). In the past few decades, some regulators related to AF
have been discovered, such as NLRP3 (Yao et al., 2018), JPH2
(Beavers et al., 2013) and microRNA-26 (miR-26) (Luo et al.,
2013). Knockout of NLRP3 inhibits the development of AF (Yao
et al., 2018). MicroRNA-26 regulates AF and promotes changes
in the inward rectifier potassium current of AF (Luo et al., 2013).
However, the underlying mechanism of the progression of AF
remains unclear. Understanding the molecular mechanism of
AF will help to identify biomarkers for the early diagnosis and
treatment for AF.

LncRNA is a set of non-coding transcripts longer than 200
nucleotides (Shi et al., 2020a; Statello et al., 2021). In recent
years, lncRNA has been confirmed to have a crucial role in
a variety of cell functions, including epigenetic regulation,
transcription regulation, etc., and has been potential biomarkers
for disease diagnosis and treatment (Cao, 2014; Gu and
Chen, 2020). In human cells, it has been identified more
than 100,000 lncRNAs (Statello et al., 2021), which play an
important role in the cardiovascular system. However, only
a small number of lncRNA functions have been studied in
AF. For example, in AF, the lncRNA LICPAR modulates
atrial fibrosis through Smad signaling (Wang et al., 2020).
LncRNA NEAT1 regulates atrial fibrosis during AF through
the miR-320/Npas2 axis (Dai et al., 2021). LncRNA-MIAT
regulates AF-induced myocardial fibrosis through miR-
133a-3p (Yao et al., 2020). LncRNA-PVT1 modulates atrial
fibrosis during AF through miR-128 (Cao et al., 2019). To
understand the expression patterns and possible functions
of lncRNAs in AF could provide helpful information for the
treatment of AF.

Weighted gene co-expression network analysis (WGCNA) is
used to cluster highly related genes to further understand the
hub modules and disease types/clinical phenotypes (Langfelder
and Horvath, 2008). In recent years, WGCNA has been used to
identify key regulators in disease progression. For example, Ren
et al. (2021) performed WGCNA analysis to identify diagnostic
genes and important microRNAs associated with rheumatoid
arthritis. Here, we performed RNA sequencing to identify
differently expressed mRNAs (DEmRNAs) and lncRNAs in
normal samples, paroxysmal AF, and persistent AF. In addition,
we use bioinformatics methods, such as WGCNA, and PPI
network analysis, to identify the hub lncRNAs and mRNAs
in AF. Our findings aim to clarify the underlying molecular
changes associated fibrillation, and provide a useful resource for
identifying AF marker.

MATERIALS AND METHODS

RNA-Seq Analysis
In this study, 10 control samples, 10 paroxysmal AF, and 10
persistent AF samples were prepared for RNA sequencing. RNA
was extracted from Approximately 500 mg AF and normal
samples using the RNeasy mini kit (QIAGEN).

We next applied Corall Total RNA Seq library preparation kit
(Lexogen, Vienna, Austria) for RNA Seq library using 150 ng
of total RNA. The RiboCop rRNA Depletion Kit (Lexogen,
Vienna, Austria) was used to remove rRNA. The quality of the
sequencing library was evaluated by D1000 screen tape analysis
using the 4200 TapeStation system (Agilent, United States) and
quantified using QubitTM dsDNA HS analysis kit (Invitrogen,
United States). RNA processing was used by Illumina NextSeq
500 sequencing. The R software package Deseq2 was used for
mRNA differential expression analysis (Zhang et al., 2020). The
genes with |log2 fold change |≥ 1 and FDR≤ 0.1 were considered
to be differentially expressed (Gu et al., 2021a,b).

Weighted Gene Co-expression Network
Construction
A scale-free co-expression network was constructed by using
WGCNA package in R (Langfelder and Horvath, 2008). The
appropriate soft threshold power (β) is determined based on
a scale-free topology criterion. The result was clustered by
topological overlap matrix analysis. In addition, the correlations
between module eigengenes (MEs) were calculated via Pearson’s
correlation analysis.

Functional Annotations
In order to explore the functional annotation of DEGs, we
performed gene ontology (GO) (Gu et al., 2020a), kyoto
encyclopedia of genes and genomes (KEGG) (Gu et al., 2020b;
Liang et al., 2020) and UniProt analysis to predict gene functions
using DAVID system (Jiao et al., 2012; Shi et al., 2020b).

PPI Network Construction
We used the STRING to construct a PPI network (Shi et al., 2018).
The PPI network was visualized through Cytoscape, and further
filtered through plug-in molecular complex detection (MCODE)
to determine the candidate hub differentially expressed module
(DEM) (Feng et al., 2019). The biological significance of gene
modules was visualized with MCODE in Cytoscape to identify
the most significant module (Gu et al., 2020c).

The Co-expression Network Analysis of
Hub lncRNAs
Cytoscape displays the co-expression network of hub lncRNAs
through the topological analysis of lncRNAs, the central nodes
of these networks were explored. The significantly co-expression
network of hub lncRNA-mRNAs with an absolute Pearson
correlation coefficient >0.99 was chosen as the targets to
build the network.

The WGCNA package in R was used to generate a co-
expression network of DEGs (Langfelder and Horvath, 2008).
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Pearson’s correlation analysis was conducted as a similarity
measure. The soft threshold power (β) of the correlation matrix
was used to emphasize strong correlations between genes and
penalize weak correlations. Next, the adjacency was used to
calculate the topological overlap matrix (TOM).

RESULTS

Identification of DEGs Among Normal,
Paroxysmal AF, and Persistent AF
Samples
In this study, 10 control samples, 10 paroxysmal AF, and 10
persistent AF samples were sequenced among their RNA. Then,
we identified DEGs in the progression of AF with the R package
Limma. 558 genes were identified to be differently expressed in
paroxysmal AF compared to control samples (Figures 1A,B); 582
genes were identified to be differently expressed in persistent AF
compared to control samples (Figures 1C,D); and 934 genes were
identified to be differently expressed in persistent AF compared to
paroxysmal AF tissues (Figures 1E,F). The heat map and volcano
map of the DEG are shown in Figure 1.

Interestingly, we found that the expression of various lncRNAs
in the progression of atrial fibrillation was differently changed.
Among the DEGs, about 50% were coding genes and around
50% were non-coding RNAs (Figure 2). Compared with normal
samples, 272 DEGs were found in patients with paroxysmal atrial
fibrillation, including 100 upregulated and 172 downregulated
mRNAs (Figure 2A). Overall, 324 DEmRNAs were found in
persistent atrial fibrillation compared with normal samples,
including 219 upregulated and 105 downregulated mRNAs
(Figure 2B). In addition, compared with paroxysmal atrial
fibrillation samples, 520 genes were identified in persistent atrial
fibrillation samples, including 281 upregulated genes and 239
downregulated genes (Figure 2C).

Therefore, we also focused on the expression changes and
potential functions in AF. As shown in Figure 1, compared
with normal samples, a total of 286 DElncRNAs were identified
in paroxysmal atrial fibrillation, and 116 lncRNAs were
upregulated and 170 lncRNAs were downregulated (Figure 2D).
Overall, compared with normal samples, 124 upregulated
and 134 downregulated lncRNAs were identified in persistent
atrial fibrillation (Figure 2E). In addition, compared with
paroxysmal atrial fibrillation samples, 414 DElncRNAs were
identified in persistent atrial fibrillation samples, including
153 upregulated lncRNAs and 261 downregulated lncRNAs
(Figure 2F). Of note, several lncRNAs were observed to
be differently expressed in multiple stages of AF, such as
MTND1P23, RP11-1081M5.2, and XIST.

GO Analysis of DEmRNAs Highlights
Specific Processes-Involvement
Then, we conducted an in silico analysis of the DEGs in the
progression of AF. Interestingly, we found that the differentially
expressed genes in patients with paroxysmal AF compared with
control samples are mainly related to the positive regulation of

VEGF production, CXCR chemokine receptor binding, VEGF
production, and the formation of renal tubules (Figure 3A).

In addition, we also found that the genes differentially
expressed between persistent AF and normal samples were
mainly involved in the regulation of myosin filaments,
myofilament sliding, actin-myosin filament sliding, scavenger
receptor activity, sodium ion homeostasis, negatively
regulating blood coagulation, muscle tissue morphogenesis,
negatively regulating coagulation, myocardial tissue
morphogenesis (Figure 3C).

Finally, we found that the differentially expressed genes
between persistent AF and paroxysmal AF were mainly related
to the production of interleukin-18 (IL-18), IgG binding,
clustering of skeletal muscle acetylcholine-gated channels,
positive regulation of renal sodium excretion, fever production,
positive regulation of fever production, positive regulation of
VEGFR signaling pathway, cell response to leptin stimulation,
response to leptin, the regulation of fever, and the positive
regulation of the chemotaxis of granulocytes (Figure 3E).

Pathway Analysis of DEmRNAs
Highlights Specific
Processes-Involvement
Use the KEGG database to analyze the pathway of DEmRNAs.
We found that the genes differentially expressed in paroxysmal
AF and normal samples mainly involve phagosomes, whooping
cough, pathogenic Escherichia coli infection, complement and
coagulation cascade, osteoclast differentiation, tryptophan
metabolism, taurine and subcutaneous Taurine metabolism, fatty
acid biosynthesis, leishmaniasis, ovarian steroid production and
cytokine-cytokine receptor interaction (Figure 3B).

The differentially expressed genes in persistent atrial
fibrillation compared with normal atrial fibrillation mainly
involved neuroactive ligand-receptor interactions, tight
junctions, complement and coagulation cascades, mucin-
type O-glycan biosynthesis, calcium signaling pathways,
endocrine, and other factors regulating calcium reabsorption,
glycosaminoglycan biosynthesis-heparan/heparin sulfate,
amyotrophic lateral sclerosis (ALS), cGMP-PKG signaling
pathway, and retinol metabolism (Figure 3D).

Compared with paroxysmal AF, the differentially expressed
genes in persistent AF mainly involved phagosomes, complement
and coagulation cascade, osteoclast differentiation, leishmaniasis,
malaria, African trypanosomiasis, neuroactive ligand-receptor
interaction, PPAR signaling pathway, whooping cough, and
ovarian steroid hormone production (Figure 3F).

Weighted Gene Co-expression Network
Construction
Next, we used the WGCNA package in the R software to perform
a co-expression network analysis of the gene expression in the
progress of AF. In order to identify all co-expressed genes, we
chose β = 8 (fit value R2 = 0.85) as the cutoff to build a network
(Figures 4A,B).

Based on these analyses, we initially obtained five gene
modules and then used the dynamic tree cutting algorithm
in the WGCNA software package to process the hierarchical
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FIGURE 1 | Identification of DEGs among normal, paroxysmal AF and persistent AF samples. (A,B) The scatter plot and volcano plot show the DEGs in paroxysmal
AF compared to normal samples. (C,D) The scatter plot and volcano plot show the DEGs in persistent AF compared to normal samples. (E,F) The scatter plot and
volcano plot show the DEGs in persistent AF compared to paroxysmal AF samples.

clustering tree. In the progress of AF, a total of four gene
modules were obtained, including blue, brown, turquoise and
yellow modules (Figure 4C). In addition, the gray module
includes all genes that cannot be put into any other modules. The
clustering tree diagram of the module is shown in the Figure 4D,

while the intrinsic clustering of the modules is provided in
Figure 4E.

We performed the first principal component analysis
(PCA) on five gene modules. The PCA results reflected the
main trend of gene expression in each module. Our results
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FIGURE 2 | Identification of DEmRNAs and lncRNAs among normal, paroxysmal AF and persistent AF samples. (A–C) The heat map shows the DEmRNAs in
paroxysmal AF compared to normal samples (A), persistent AF compared to normal samples (B), and persistent AF compared to paroxysmal AF samples (C). (D–F)
The heat map shows the differently expressed lncRNAs in paroxysmal AF compared to normal samples (A), persistent AF compared to normal samples (B), and
persistent AF compared to paroxysmal AF samples (C).

indicated that blue module was negatively correlated to the AF
progression and downregulated in paroxysmal and persistent
AF compared to control samples, and downregulated in
persistent AF samples compared to paroxysmal AF samples
(Figure 5A). The brown module was downregulated in
persistent AF samples compared to control and paroxysmal
AF samples, and not differently expressed in paroxysmal
AF compared to control samples (Figure 5B). The gray
module was upregulated in paroxysmal AF compared to
control samples, but downregulated in persistent AF samples
compared to paroxysmal AF samples (Figure 5C). Of note,
our results indicated that turquoise module was significantly
positively correlated to the progression of AF, upregulated in
paroxysmal and persistent AF compared to control samples, and
upregulated in persistent AF samples compared to paroxysmal
AF samples (Figure 5D). Finally, our results showed that
yellow module was upregulated in persistent AF and paroxysmal

AF samples compared to control samples, and not differently
expressed in persistent AF compared to paroxysmal AF samples
(Figure 5E). These results suggest that blue module and
turquoise module may have a crucial role in the occurrence
and progression of AF, that the brown module may have
a more important role in the progression of AF, and that
the yellow module may have a more important role in the
occurrence of AF.

Identification of Hub Genes
In order to determine the hub-mRNAs associated with AF, we
built a PPI network and used the MCODE scoring system. A total
of 4 hub networks were identified in the AF related modules. As
presented in Figure 6, a hub network including 19 nodes and 57
edges were identified in gray module (Figure 6A); a hub network
including 6 nodes and 15 edges were identified in blue module
(Figure 6B); a hub network including 38 nodes and 464 edges
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FIGURE 3 | Bioinformatics analysis of DEGs among normal, paroxysmal AF and persistent AF samples. (A,B) GO and KEGG pathway analysis of DEmRNAs in
paroxysmal AF compared to normal samples. (C,D) GO and KEGG pathway analysis of DEmRNAs in persistent AF compared to normal samples. (E,F) GO and
KEGG pathway analysis of DEmRNAs in persistent AF compared to paroxysmal AF samples.

were identified in turquoise module (Figure 6C); a hub network
including eight nodes and 13 edges were identified in grown
module (Figure 6D).

The Construction of lncRNA–mRNA
Regulatory Network
Through the correlation analysis of the DEG and differentially
expressed lncRNA (DEL) of the turquoise module, the brown

module and all the green and yellow modules, we constructed the
DEG-DEL co-expression network. As shown in Figure 7, the blue
module includes 35 lncRNAs and 51 mRNAs; the brown module
includes five lncRNAs and 19 mRNAs; the turquoise module
includes six lncRNAs and 34 mRNAs; and the yellow module
includes two lncRNAs and 21 mRNAs.

Therefore, we found that some DEGs and DElncRNAs
act as hub regulators (connection degree ≥ 5) in the
lncRNA-mRNA regulatory network. For example, HSPB6 in
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FIGURE 4 | Weighted gene co-expression network analysis of differently expressed genes. (A) The scale-free fit index (left). (B) Mean connectivity (right) for various
soft-thresholding powers. (C) Dendrogram of the DEGs clustered based on a dissimilarity measure (1-TOM). (D) Cluster analysis and heatmap of the genes in
different modules. (E) Heatmap showing the relationship between module eigengenes.

the blue module interacts with 11 LncRNAs while CTC-
251I16.1 in the blue module connects more than 10 mRNAs
and 20 lncRNAs; in the brown module PPP1R1a connects
17 mRNAs and 5 lncRNAs; EDN1, CALCR, COL13A1, and

ETV5 in the turquoise module act as the hub genes and
connect with more than 30 mRNAs and five lncRNAs;
C3 in the yellow module is connected to 20 mRNAs
and 2 lncRNAs.
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FIGURE 5 | The analysis of the correlation between AF progression and module expression. (A–E) The analysis of the correlation between AF progression and the
average expression of genes in blue module (A), brown module (B), grey module (C), turquoise module (D), and yellow module (E).

The Function Prediction of Hub Genes
and IncRNAs of Turquoise Module
In order to understand the biological effects of hub genes
and hub lncRNAs, we performed function prediction via the
plug-in CLUEGO in Cytoscape. Our results showed that hub
genes in turquoise module was significantly related to cell
extravasation, leukocyte chemotaxis, macrophage activation,
response to bacteria-derived molecules and positive regulation
of α-β T cell activation (Figure 8A). Next, we predicted the
potential function of hub lncRNA to in the turquoise module
using its co-expressing mRNA. The hub lncRNA in the turquoise
module was significantly related to the mineralocorticoid
response (Figure 8B).

DISCUSSION

Atrial fibrillation/paroxysmal AF (PAF) is the main cause
of cardiogenic embolism. In recent years, the progression
from paroxysmal AF to persistent AF has attracted more
and more attention (Proietti et al., 2015). Emerging data
indicated a significant association between the morbidity
and the transition. However, the molecular mechanism of
the progression of AF is unclear. Therefore, we performed
RNA sequencing for normal samples, paroxysmal AF and

persistent AF samples to identify DEG and explore the
roles of these DEGs in AF. In our current research, it
is very interesting that we found that the expression of
various lncRNAs in the progression of atrial fibrillation was
differently changed. Totally, 272 DEmRNAs and 286 DElncRNAs
were identified in paroxysmal atrial fibrillation compared to
normal samples; 324 DEmRNAs and 258 DElncRNAs found
in persistent atrial fibrillation compared with normal samples;
and 520 DEmRNAs and 414 DElncRNAs were identified to be
differently expressed in persistent AF compared to paroxysmal
AF samples (Figures 1E,F). Among the DEGs, about 50%
were coding genes and around 50% were non-coding RNAs,
suggesting that lncRNAs may also have a crucial role in the
progression of AF.

Considering that potential functions of these DEmRNAs
in AF remained to be unclear, we performed the enrichment
analysis of DEGS. we found that DEGs were involved in
the regulation of multiple biological processes and pathways
in the progression of AF. It is worth noting that the DEGs
between normal and paroxysmal atrial fibrillation was most
related to the regulation of VEGF production and the binding
to the CXCR chemokine receptor. The VEGF-VEGFR system
is essential in angiogenesis and lymphangiogenesis (Shibuya,
2015). Studies have shown that VEGFs play a crucial role in
the occurrence, and development of AF (Chung et al., 2002).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 October 2021 | Volume 9 | Article 722671

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-722671 September 28, 2021 Time: 14:47 # 9

Yang et al. mRNAs and lncRNAs in Atrial Fibrillation

FIGURE 6 | Construction of hub PPI networks in the hub modules. (A–D) The hub PPI network was constructed in gray module (A), blue module (B), turquoise
module (C), and brown module (D).

Multiple studies in patients with early atrial fibrillation reported
elevated levels of VEGFA. Vascular endothelial growth factor
promotes atrial arrhythmia by inducing acute intercalary disk
remodeling (Mezache et al., 2020). It is very interesting that
our research is consistent with previous reports that intracardiac
VEGF levels increased in patients with paroxysmal, but not
persistent AF (Scridon et al., 2012). CXCR family members
also play an important role in AF. For example, the chemokine
receptor CXCR-2 is a key regulator of monocyte mobilization in
hypertension and heart remodeling; and blocking the activation

of CXCR-2 can be used as a new treatment strategy for AF
(Zhang et al., 2020). We also revealed that DEG between
normal and sustained AF was most significantly correlated with
mucin-type O-glycan biosynthesis. So far, our research reveals
the relationship between this pathway and AF for the first
time. Finally, we found that DEG between paroxysmal and
persistent atrial fibrillation was most significantly associated
with the interleukin-18, coagulation, and complement cascade.
Interleukin-18 plays a central role in the regulation of both
innate and adaptive immunity (Dinarello, 2018). A previous
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FIGURE 7 | Construction of lncRNA-mRNA interaction network in the hub modules. (A–D) The lncRNA-mRNA interaction network was built in blue module (A),
brown module (B), turquoise module (C), and yellow module (D).

study showed that AF patients have higher levels of IL-18.
IL-18 is positively related to the inner diameter of the left
atrium (Luan et al., 2010). A recent genetic study showed that
genetic variation of interleukin-18 is related to a lower risk of
atrial fibrillation among people in the Northeast China (Wang
et al., 2017). In addition, Kornej et al. (2018) reported that
complement and coagulation cascades were also related to AF.

These reports, together with our findings, further prove the key
role of these signals in AF.

Weighted gene co-expression network analysis has been
applied to identify the core genes in AF. For example, Zou et al.
(2018) reported that LEP, FOS, EDN1, NMU, CALB2, TAC1
may be related to the occurrence and maintenance of AF using
WGCNA method and public dataset GSE41177. Li et al. (2020)
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FIGURE 8 | The function prediction of hub gene and lncRNA of turquoise module. (A,B) The function prediction of Hub mRNAs (A) and lncRNAs (B) of turquoise
module.

used GSE79768 to perform a WGCNA analysis to determine
the key modules related to atrial fibrillation. However, these
reports were based on online public databases and the clinical
information of the samples used in these reports remained
unclear. In this study, we collected 10 control samples, 10
paroxysmal AF and 10 persistent AF to perform RNA-sequencing
analysis. Moreover, we performed PPI network and WGCNA
analysis to reveal the biological mechanisms related to the
progression of atrial fibrillation. Five modules were identified
in the progress of AF, including blue, brown, gray, turquoise,
and yellow modules. By analyzing the correlation between these
modules and the progression of atrial fibrillation, we found
that the turquoise module was significantly positively correlated
with the progression of atrial fibrillation while the blue module
was significantly negatively correlated with the progression of
AF. Moreover, a PPI network was used to identify functional
gene connections through MCODE based on a scoring system.
Several hub genes were also found in different modules, such

as KIAA0101, UHRF1, CDCA2, HJURP, NCAPG, SGOL1, and
CENPA in grey module, GPR37L1 in blue module, CD163,
CD28 and CX3CR1 in turquoise module, and KNG1 and GRM1
in brown module. It is worth noting that several of these
hub genes are reported to be significantly associated with AF.
For example, interleukin 10 treatment improves inflammatory
atrial remodeling and fibrillation induced by a high-fat diet
(Kondo et al., 2018). The plasma concentration of IL-10
in the acute phase is associated with high risk sources of
cardiogenic stroke. The serum soluble CD163 level in AF was
significantly higher than that in patients with sinus rhythm
(Zhong et al., 2016).

Recently, accumulating evidence indicates a link between
immune response and AF (Liu et al., 2018). Previous studies
demonstrated that marcrophages lead to both structure and
electric atrial remodeling in AF (Liu et al., 2018). In addition,
a large number of studies have shown that T cells are closely
related to cardiovascular diseases, including AF (Liu et al., 2018).
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For instance, a significant high CD4 + CD28null T cells was
found in patient with AF (Sulzgruber et al., 2017). However, the
precise mechanism remains unclear. In this study, we conducted
a bioinformatics analysis on the turquoise module and reported
that the Hub PPI network in the turquoise module significantly
participates in regulating leukocyte chemotaxis and macrophage
activity and positively regulates α-β T cell activation, indicating
that immune pathways have a key role in AF.

LncRNA plays an important role in the regulation of
cardiovascular diseases. LncRNA HOTAIR, as a ceRNA, regulates
the remodeling of connexin 43 during AF by sponging
microRNA-613 (Dai et al., 2020). LncRNA TCONS-00106987
stimulates miR-26 to regulate KCNJ2 to promote atrial electrical
remodeling during AF (Du et al., 2020). LncRNA-LINC00472
reduces the expression of JP2 and RyR2 through miR-24, thereby
participating in the pathogenesis of AF (Wang et al., 2019). In
this study, we identified 286 DElncRNAs in paroxysmal AF and
258 DElncRNAs in persistent AF. Also 414 DElncRNA were
identified between persistent and paroxysmal AF samples. Of
note, several lncRNAs were observed to differently express in
multiple stages of AF, such as MTND1P23, RP11-1081M5.2, XIST
and BANCR. Interestingly, several of them had been reported
to have key roles in human disease, such as XIST and BANCR.
For example, BANCR was previously identified as a cancer-
promoting lncRNA and was also significantly related to the
pathogenesis of multiple cardiovascular diseases (Li et al., 2017;
Wilson et al., 2020). For example, Wilson et al. (2020) found
that BANCR promotes cardiomyocyte migration in humans.
BANCR promotes vascular smooth muscle cell proliferation
via JNK pathway (Li et al., 2017). XIST has a regulatory role
in cardiomyocyte function, modulates cardiomyocyte apoptosis
via miR-873 (Cai et al., 2020), promotes cardiac fibroblasts
proliferation by sponging miR-155-5p (Zhang et al., 2021), and
protects the hypoxia-induced cardiomyocyte injury via HK2
(Fan et al., 2020), indicating that XIST’s key roles in heart
development. Also, in this study we identified several central
lncRNA-mRNA co-expression networks during AF, such as CTC-
251I16.1 in the blue module, which connects to more than 10
mRNAs and more than 20 lncRNAs. Bioinformatics analysis
showed that the central lncRNA in the turquoise module is
significantly related to the mineralocorticoid response.

Our research has several limitations. First, the size of clinical
samples used in this study was limited. In the future study, we
plan to collect more AF samples and comprehensive clinical

information to confirm the correlation between hub genes and
AF progression. Secondly, we did not perform gain/loss of
function analysis to explore the potential role of hub gene
and lncRNA in AF.

In this study, the WGCNA algorithm was for the first time to
systematically explore the roles of DEGs in AF. Bioinformatics
analysis demonstrated that these DEGs were significantly related
to regulate multiple AF related pathways, such as the regulation of
VEGF production and binding to the CXCR chemokine receptor.
Furthermore, five hub modules were identified in the progression
of AF, including blue, brown, gray, turquoise and yellow modules.
These results provide new information for further understanding
of the pathogenesis and differential diagnosis of AF.
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