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Low-oxygenated and dormant islets with a capacity to become activated when needed may play a crucial role
in the complex machinery behind glucose homeostasis. We hypothesized that low-oxygenated islets, when
not functionally challenged, do not rapidly cycle between activation and inactivation but are a stable
population that remain low-oxygenated. As this was confirmed, we aimed to characterize these islets with
regard to cell composition, vascular density, and endocrine cell proliferation. The 2-nitroimidazole low-
oxygenation marker pimonidazole was administered as a single or repeated dose to Wistar Furth rats. The
stability of oxygen status of islets was evaluated by immunohistochemistry as the number of islets with
incorporated pimonidazole adducts after one or repeated pimonidazole injections. Adjacent sections were
evaluated for islet cell composition, vascular density, and endocrine cell proliferation. Single and repeated
pimonidazole injections over an 8-hour period yielded accumulation of pimonidazole adducts in the same
islets. An average of 30% of all islets was in all cases positively stained for pimonidazole adducts. These islets
showed a similar endocrine cell composition as other islets but had lower vascular density and B-cell
proliferation. In conclusion, low-oxygenated islets were found to be a stable subpopulation of islets for at least
8 hours. Although they have previously been observed to be less functionally active, their islet cell com-
position was similar to that of other islets. Consistent with their lower oxygenation, they had fewer blood
vessels than other islets. Notably, B-cell regeneration preferentially occurred in better-oxygenated islets.
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Islets receive ~10% of the pancreatic blood flow despite their small volume of 1% to 2% of the
total pancreatic mass [1]. Islet blood flow is affected by many factors, including activity in the
vagus nerve, sympathetic nerves, and endothelium-derived vasoactive substances, as well as
metabolic factors released from islets [2]. The major factor changing blood flow is plasma
glucose levels, which modulate blood flow according to the need of insulin release by
stimulating vagal nerve activity and by glucose metabolism in the islets [2, 3]. B cells and
vascular endothelial cells are closely connected, facilitating close intercellular communica-
tion wherein both cell types secrete various substances maintaining phenotype as well as
stimulating the function of the other [4—6]. Importantly, 8 cells secrete vascular endothelial
growth factor (VEGF) and insulin, which are important for the growth and maintenance of
the endothelial cells, whereas endothelial cells secrete hepatocyte growth factor and lam-
inins, which stimulate B-cell proliferation and function [7-10].

Abbreviations: BS-1, Bandeiraea simplicifolia agglutinin-1; HPI, pimonidazole hydrochloride; IGF1R, insulin-like growth factor-1
receptor; TBS, Tris-buffered saline; VEGF, vascular endothelial growth factor.
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There is increasing evidence of both B-cell and islet functional heterogeneity, with implied
importance for the ability of the endocrine tissue to fine-tune hormone release and thereby
obtain optimal glucose homeostasis [11]. We and others [12, 13] have identified high-
functioning subpopulations of islets with intrinsically (or after a high-fat diet challenge)
greater B-cell proliferation and insulin-release response to glucose. Interestingly, both the islet
blood flow and the islet vasculature are widely heterogeneous and coupled to such differences in
islet functionality [13, 14]. In addition to the high-functioning islets, low-functioning islets have
also been identified, and recently, an insulin-like growth factor 1-receptor IGF1R)—expressing
islet subpopulation has been described as a potentially old and dysfunctional population of
islets [15]. Moreover, dormant or resting islets, which may become activated when the met-
abolic demand is increased, have been described [16]. These islets constitute 25% to 30% of all
pancreatic islets and can be identified by the low-oxygen-tension marker pimonidazole, which
stains islet cells that have an oxygen tension <10 mm Hg [16]. Interestingly, when the
metabolic demand per B cell is decreased by a whole pancreas transplant, the number of low-
oxygenated islets is increased. On the other hand, when the metabolic demand per B cell
instead is increased by a partial pancreatectomy, almost no pimonidazole-positive islets
subsist. Pimonidazole-positive islets were also found to have a decreased blood flow and
leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis [16].

In this study, we aimed to further characterize the subpopulation of low-oxygenated islets
to investigate whether these islets are a rapidly changeable subpopulation or are more stable.
As the latter was confirmed, we aimed to describe these islets with regard to islet cell
composition, vascular density, and «- and B-cell proliferation.

1. Research Design and Methods
A. Experimental Animals

Adult male Wistar Furth rats (Harlan Laboratories, Indianapolis, IN) weighing 280 = 2 g
(mean = SEM) were used. The regional ethics committee of Uppsala University approved
all experiments.

B. Pimonidazole Administration

To identify low-oxygenated islets, pimonidazole hydrochloride (HPI; Hypoxyprobe, Bur-
lington, MA), 60 mg/kg body weight, was injected intravenously into the tail vein of each
animal. The animals had free access to standard chow and water throughout the study, and
the first injection was administered at 8 Am in all groups to avoid differences in metabolic
challenge. To evaluate whether islets cycle between a low-oxygenation state and conditions
with better oxygenation, HPI was injected twice in some animals. The second injection was
administered 2 or 6 hours after the first injection. Two hours after the last injection, the
animals were anesthetized with thiobutabarbital (120 mg/kg body weight; Sigma-Aldrich, St.
Louis, MO) and the pancreas was removed and sent for histological analysis. To certify that
pimonidazole adducts were stable throughout the experiment, the pancreas was removed 4 or
8 hours after a single injection of HPI in separate control animals. In two animals, stability for
24 hours was also investigated.

C. Induction of Hypoxia In Vivo in Pancreas

Wistar Furth rats were anesthetized with thiobutabarbital, 120 mg/kg body weight and
placed on a heating plate to maintain body core temperature at 38°C. A polyethylene catheter
was inserted into the trachea to secure free airways, and another was inserted into the
ascending aorta through the carotid artery to enable monitoring of blood pressure throughout
the experiment. A graded aortic vascular clamp was positioned superior to the celiac artery
and adjusted to allow an arterial blood pressure of 20 to 30 mm Hg, resulting in an intra-islet
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oxygen tension of 5 to 10 mm Hg [16]. When the blood pressure was stabilized, HPI, 60 mg/kg
body weight, was injected intravenously into the tail vein and the animal was monitored
for 2 hours. Afterward, the animals were euthanized and each pancreas was removed for
histological analysis. The tissue was used as positive control for low-oxygenated islets
in immunohistochemistry.

D. Tissue Preparation for Histology

Directly after removal, the pancreases were fixed in 4% (v/v) buffered formalin (VWR
BHD Prolabo, Fontenay-sous-Bois, France) and thereafter embedded in paraffin. The tissues
were consecutively divided into 5-pm-thick sections to enable multiple stainings on
adjacent sections.

E. Immunohistochemistry Staining for Pimonidazole

Pancreatic sections from animals treated with one or HPI injections, and positive control
sections from aortic vascular clamp animals, were stained for pimonidazole adducts. After
deparaffinization, sections were rehydrated and antigen retrieval was performed by in-
cubation in 0.01% (wt/v) pronase (Roche Diagnostics, Mannheim, Germany) for 40 minutes at
40°C. The sections were thereafter incubated with blocking solution (protein block, serum-
free; Dako, Glostrup, Denmark) for 30 minutes at room temperature. Primary antibody,
antipimonidazole mouse IgG1 monoclonal antibody (MAb1, HPI) [17], diluted 1:60 in Tris-
buffered saline (TBS) with 0.2% (wt/v) Brij-35 (ThermoFisher Scientific, Carlsbad, CA) was
incubated overnight at 40°C. Washing steps were performed in TBS plus 0.02% Brij-35. The
biotinylated secondary goat F(ab)s antimouse antibody [18] (Southern Biotech, Birmingham,
AL), diluted 1:500 in TBS + 0.02% Brij 35, was incubated for 30 minutes at room tem-
perature. Antibody detection was performed by incubation with Vectastain Elite ABC AP
500-Kit (Vector Laboratories, Inc., Burlingame, CA) for 30 minutes, followed by incubation
with Vulcane Fast Red Chromogen kit 2 (Biocare Medical, Concord, CA) for 10 to 15 minutes.
Before mounting, the sections were counterstained with hematoxylin for 30 seconds.

F. Immunohistochemistry Staining for Vascular Density

Sections, consecutively adjacent to HPI stained sections from animals given one injection of
HPI, were analyzed for vascular density. The sections were treated with peroxidase
blocking solution (Dako) for 5 minutes at room temperature. Thereafter, the sections were
incubated with blocking solution (Background Sniper, Biocare Medical, Concord, CA) before
being incubated with primary antibody anti-insulin [19] (1:400, polyclonal guinea pig anti-
insulin; Fitzgerald, Acton, MA) and biotinylated lectin from Bandeiraea simplicifolia
agglutinin-1 (BS-1, 1:100; Sigma-Aldrich) overnight at 4°C. BS-1 lectin was detected by
incubation with 4plus Streptavidin AP Label (Biocare Medical) for 10 minutes and in-
cubation with Vulcan Fast Red (Biocare Medical) for 10 minutes. Insulin was detected
by secondary peroxidase-conjugated anti—guinea pig antibody [20] (1:1000; Jackson
ImmunoResearch, West Grove, PA) incubation for 30 minutes at room temperature, fol-
lowed by incubation with 3,3'-diaminobenzidine for 60 seconds. All sections were coun-
terstained with hematoxylin for 30 seconds before mounting. The sections were scanned
and analyzed in a laser microdissection microscope (Leica LMD6000; Leica Microsystems,
Wetzlar, Germany) in a blinded manner. Islets with positive pimonidazole staining were
size-matched with islets negative for pimonidazole staining, and vascular density was
defined as the area positive for BS-1 per insulin-positive area.

G. Immunofluorescence Staining for Islet Cell Composition and Proliferation

Stainings of insulin, glucagon, and the proliferation marker Ki-67 were analyzed on sections
also adjacent to HPI stained sections from animals given one HPI injection. Heat-induced
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antigen retrieval was performed in Diva Decloaker solution (Biocare Medical) by a pressure
cooker (2100 Retriever; Prestige Medical, Blackburn, United Kingdom). Thereafter, the sec-
tions were incubated with blocking solution (protein block, serum-free, Dako) for 15 minutes
and incubated with primary goat anti-insulin antibodies [21] (Insulin A, dilution 1:100; Santa
Cruz Biotechnology, Dallas, TX), mouse antiglucagon [22] (dilution 1:1000; Abcam, Cambridge,
United Kingdom) and rabbit anti-Ki67 [23] (SP6, dilution 1:300; Abcam) at 4°C overnight.
Secondary anti-goat antibodies [24] (AF 555, dilution 1:1000; ThermoFisher Scientific, anti-
mouse antibodies [25] (AF 647, dilution 1:1000; ThermoFisher Scientific), and anti-rabbit
antibodies [26] (AF 488, dilution 1:1000; ThermoFisher Scientific) at room temperature for 1
hour. Images were acquired by a confocal laser scanner microscope (LSM780; Zeiss, Ober-
kochen, Germany) and analyzed by Pancreas Image Detection software (Stardots, Uppsala,
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Figure 1. Pimonidazole adduct staining was stable at least up to 8 h after injection. (a)

Pimonidazole adducts were found in ~30% of the pancreatic islets and identified in

pancreases at least up to 8 h after administration. (b—i) Representative images of
pimonidazole-stained (b) positive control pancreas; (c) pancreas with two adjacent islets with

positive and negative staining, respectively; negative islets (d) 2 h, (e) 4 h, and (f) 8 h after
pimonidazole administration; associated islets from the same pancreatic section positive for
pimonidazole adducts (g) 2 h, (h) 4 h, and (i) 8 h after administration. Pimonidazole adducts

in red; scale bar = 100 wm; dashed lines encircle islets. Values are given as mean = SEM;

n = 5 or 6 animals. Kruskal-Wallis test with Dunn multiple comparison post hoc test was

used to calculate P values.
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Sweden) in a blinded matter. Cell composition was evaluated as the fractions of @ and 8 cells of
all islet cells and the proliferation as the fraction of Ki-67—positive a and B cells.

H. Statistics

All values are given as means = SEM. Differences between two groups of nonparametric data
were analyzed by a paired Wilcoxon matched-pairs signed-rank test; differences between
more than two groups of nonparametric data were analyzed by a Kruskal-Wallis test with a
Dunn multiple comparison post hoc test. P values < 0.05 were considered to indicate sta-
tistically significant differences. Statistical analyses were performed using GraphPad Prism
7 software (GraphPad Software, San Diego, CA).

2. Results
A. No Evidence of Variability in Low-Oxygenated Pimonidazole-Positive Islet Subpopulation
Pimonidazole adducts were identified in ~30% of the islets 2 hours after injection of HPI (Fig.

1). These adducts were also identified in islets 4 and 8 hours after injection (Fig. 1) but were
faint or unidentifiable 24 hours after injection (data not shown). There was no difference in
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Figure 2. Similar percentage of pimonidazole-positive islets after single or repeated
injections. (a) A similar percentage of pimonidazole-positive islets was detected after single
or repeated (2 + 2 h, 6 + 2 h) injection of HPI. (b—e) Representative images of pimonidazole-
stained pancreases with (b and c) negative islet at 2 + 2 and 2 + 6 h after injection,
respectively. (d and e) Positive islet at 2 + 2 and 2 + 6 h after injection, respectively.
Pimonidazole adducts in red; scale bar = 100 pwm; dashed lines encircle islets. Values are
given as mean = SEM; n = 5 or 6 animals. Kruskal-Wallis test with Dunn multiple
comparison post hoc test was used to calculate P values.
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the percentage of islets that stained positive for pimonidazole adducts at 4 or 8 hours after
injection when compared with 2 hours after injection (n = 5 or 6 animals) (Fig. 1a). In
comparing the percentage of pimonidazole-positive islets after one and two injections of HPI,
no difference could be detected between the groups (Fig. 2).

B. Vascular Density Decreased in Pimonidazole-Positive Islets

The mean vascular density was 6.5% * 0.9% in the pancreatic islets of investigated animals
(n = 6 animals). Islets that stained positive for pimonidazole had ~30% lower mean
vascular density than size-matched islets negative for pimonidazole staining (n = 6 ani-
mals) (Fig. 3).

C. Similar Endocrine Cell Composition in Pimonidazole-Positive and -Negative Islets

The percentages of B cells and a cells were ~76% and ~17% of total islet cells, respectively, in
islets that stained positive and negative for pimonidazole adducts (n = 6 animals) (Fig. 4a
and 4b).

D. Lower B-Cell Proliferation in Pimonidazole-Positive Islets

Analysis of nuclear Ki-67 positivity in islets revealed that ~3.2% of the 8 cells and ~1.6% of
the « cells in pimonidazole-negative islets stained for the proliferation marker. In islets that
stained positive for pimonidazole adducts, there were ~44% fewer Ki-67—positive 8 cells (n =
6 animals) (Fig. 4c). However, no difference in the frequency of Ki-67—stained nuclei in « cells
between islets that stained positive or negative for pimonidazole adducts was observed (Fig.
4d). Representative images of stainings are shown in Fig. 4e and 4f.
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The vascular density was decreased by ~30% in pimonidazole-positive islets. (b and c)
Representative images of the vasculature in (b) pimonidazole-negative and (c) pimonidazole-
positive islets. Insulin in brown and endothelial cells (BS-1) in red; scale bar = 50 pm.
Values are given as mean +* SEM; n = 6 animals. *P < 0.05. Paired Wilcoxon matched-pairs
signed-rank test was used to calculate P values.
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3. Discussion

Previously, a population of low-oxygenated islets had been identified as a reserve pool of low-
blood-perfused islets that can be functionally activated when needed [16]. However, on the
basis of this study it was not clear whether the islets at rest are the same or whether all islets
cycle through activation and inactivation. Because the half-life of pimonidazole in plasma is
only 30 minutes [27], we designed an experiment in which the low-oxygenation marker
pimonidazole was injected singly or repeatedly during an 8-hour period. Control experiments
showed that pimonidazole adducts that accumulated in low-oxygenated cells were stable for
at least 8 hours.

Two different outcomes were possible: (i) that the fraction of islets that accumulated
pimonidazole adducts increased after a second pimonidazole injection, which would indicate
cyclicity of islets being low oxygenated or (11) that the number of low-oxygenated islets did not
increase after repeated pimonidazole injection. The latter was the result in the current study.
This finding supports the argument that the low-oxygenated resting islets normally are a
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Figure 4. Islet cell composition and a-cell and B-cell proliferation in islets positive and
negative for pimonidazole adducts. (a) Pimonidazole-positive and -negative islets were
composed of similar amounts of 8 cells and (b) « cells. (c) The proliferation of Bcells was
decreased by 40% in pimonidazole-positive islets whereas no difference in proliferation

was detected in (d) a cells. (e and f) Representative images of islet cell composition and
proliferation in (e) pimonidazole-positive and (f) pimonidazole-negative islets. Insulin in red,
glucagon in yellow, Ki-67 in green, and nuclei in blue. Arrows indicate proliferative islet
cells; scale bar = 100 pm. Values are given as mean * SEM; n = 6 animals. *P < 0.05.
Paired Wilcoxon matched-pairs signed-rank test was used to calculate P values.
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stable population, although the stability of pimonidazole adducts in islet cells restricted the
study to an 8-hour period.

This finding of stability of the low-oxygenated pool of islets opened the possibility to
further characterize these islets. The islets had similar fractions of @ and 8 cells as other
islets, but a lower vascular density of the insulin-producing endocrine tissue was iden-
tified. This shows that their low blood perfusion was reflecting not merely different
regulation of blood perfusion at the arteriolar level (islet blood flow may be increased 10-
fold [2]) but also fewer vascular structures. No technique is available to isolate tissue from
the pimonidazole-positive islets, which limits the possibilities to study the cause of their
reduced vascular density. However, we have previously observed that the most functional
of islets in the pancreas are highly blood perfused and also have a higher vascular density
and VEGF gene expression than other islets [13]. Because the vascularization of islets has
also previously been shown to critically depend on VEGF secretion of 8 cells [9, 28], de-
creased VEGF expression in pimonidazole-positive islets could possible explain their
decreased vascular density.

Islet endothelial cells support the function, differentiation, and proliferation of pan-
creatic B cells by paracrine factors, such as laminins and hepatocyte growth factor [7, 8, 10,
13]. The lower B-cell proliferation in the low-vascularized, low-oxygenated islets may
reflect a decrease in such signals or merely reflect less metabolic activity. In fact, because
the population of low-oxygenated islets has been observed to have 50% lower leucin-
dependent protein biosynthesis [16], it can be expected that their glucose metabolism is
also lowered (i.e., the main positive regulator of basal B-cell proliferation) [29]. Islet
hypoxia induced by VEGF ablation resulting in hypovascularization, on the other hand,
does not affect the proliferation of B8 cells during mouse pregnancy [30]. No difference in
a-cell proliferation could be detected in this study; however, it is difficult to determine
whether this results from similar rates of proliferation between the groups of islets or
whether a decrease could not be detected because of the low baseline Ki-67 expression in
this cell type.

In summary, our data show that the pool of low-oxygenated islets is not interchangeable
but consists of the same islets over at least 8 hours. This is also supported by the fact that they
are distinguished by anatomical differences to other islets with lower vascular density. An
interesting observation was their lower B-cell proliferation, which would over time favor the
expansion of better-oxygenated functional 8 cells.
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