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A commentary on

History of mild traumatic brain injury is associated with deficits in relational memory, reduced

hippocampal volume, and less neural activity later in life

by Monti, J. M., Voss, M. W., Pence, A., McAuley, E., Kramer, A. F., and Cohen, N. J. (2013). Front.
Aging Neurosci. 5:41. doi: 10.3389/fnagi.2013.00041

A brain traumatism may result from focal impact upon the head and/or sudden
acceleration/deceleration kinetic forces applied to the brain within the rigid skull, or by a
complex association of both. Approximately 500,000 to 3 million US cases occur per year. A
major problem is that traumatic brain injury (TBI) classified as “mild” may not be reflected by
lesions on conventional neuroimaging scans which appear “normal” albeit some mild TBI patients
with “normal scans” may express long-term cognitive deficits (Irimia et al., 2012b). This raises
overarching questions: would mild TBI result in cognitive deficits years later? How would memory
consolidation and long-term potentiation then be affected? Monti et al. attempt to answer some of
these questions in the article which appeared in Vol. 5 of Frontiers in Aging Neuroscience (Monti
et al., 2013) by studying the relational memory, i.e., the performance of acquiring and retaining
memory to construct association of elements of a scene or events in patients having experienced
TBI early in their lives. Relational memory impairment is one of the behavioral phenotypes of
mild TBI following the selective damage of specific intrinsic connectivity networks, ICNs (Barbey
et al., 2015). The interest of Monti’s study is the determination of post-TBI disrupted networks by
visualization of their connectivity which will ultimately serve as patient-personalized diagnostic
tools (Irimia et al., 2012a).

The salience (SN) and the default mode networks (DMN) underlie some mechanisms of
memory performance tested in their article using encoding trials via the presentation of visual
scenes to memorize (Monti et al., 2013) and entails the appropriate functioning of those networks.
An injury to a single white matter tract can lead to an alteration of the encoding and recognition
processes. A key player in memory processing is the hippocampus which is also the center of
white matter efferent or afferent projections. In humans, neurons in the hippocampus are more
sensitive to post-traumatic degeneration and prone to apoptotic decay (Beauchamp et al., 2011).
Even after a single TBI event, hippocampal atrophy may arise within months (Fotuhi et al., 2012).
The remarkable cross-sectional study by Monti et al. was designed to correlate the history of
mild TBI early in life to the relational memory networks dysfunction unveiled later in midlife.
Careful subjects’ inclusion/exclusion criteria enable separation of the cumulative effect of aging
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and mild TBI. They report a reduction of: (1) Bilateral
hippocampal volume; and (2) Neural activity for the retrieval
process of successful memory recognition. The fMRI data showed
a decreased BOLD response in several areas of the brain such
as the pre-frontal cortex (PFC), cingulate cortex and precuneus.
The dysfunction of large-scale neural networks connecting PFC
and atrophic hippocampus may indeed lead to memory deficits.
Furthermore, Monti et al. (2013) noted a reduction of BOLD
response in mild TBI patients compared with the control group
in specific areas of DMN. Noticeably, those DMN areas are
also the site of amyloid-β plaques depositions during normal
aging.

A reasonable conjecture is that DAI may prompt the
disconnection of specific ICNs (Barbey et al., 2015) as evidenced
by tensor diffusion imaging enabling mapping of the mild TBI-
induced disruption of long-distance white matter tracts and
structural damage (Mayer et al., 2010; Bartnik-Olson et al.,
2014; Zhu et al., 2014), and further neurological impairment
(Sharp et al., 2014). Intrinsic connectivity network anomalies
have also been observed in resting-state functional magnetic
resonance imaging (fMRI; Mayer et al., 2011). Clinical outcomes
may range from memory, attention, learning, and executive
deficits (Strangman et al., 2012). The intrinsic interconnections
between large-scale cerebral networks are essential for high-level
cognitive functions, e.g., memory or attention. Post-TBI memory
and attention impairments are correlated with abnormalities
of the DMN and SN (Sharp et al., 2014). Salience is a major
attentional mechanism which facilitates learning. Hypotheses
may be made about which network is affected post-TBI (Barbey
et al., 2015) and network diagnostics will certainly provide a
powerful tool to refine the diagnosis-prognosis of occult mild TBI
lesions.

Fractal dimensions, at the sub-level of intra-cellular scale via
micro-networks (Foster, 2015) or interactome-networks control
the physiological mechanisms of the selection process in
determining the preferential attachment of synapses and affect by
feedback the cartography of brainmacro-networks (Foster, 2015).
Hierarchical or fractal modularity of network topology exists
for reconfiguration of connections between nodes (Bullmore
and Sporns, 2012). This hierarchical modularity and macro-
networks homeostasis rely on the optimal functionality of an
intact genomic and proteomic intra-cellular systemwithinmicro-
networks. In contrast, the opposite is not true and optimal
operation ofmacro-networks does not seem necessary for proper
micro-networks functionality. However, a hierarchy underlying
the [macro-networks—micro-networks] relationship is claimed,
with a sovereignty of the macro-networks over micro-networks
(Foster, 2015). In the synaptic macro-network, the consolidation
by repetitions of propagation of action potential (e.g., training),
on the aging—fitness of nodes (synapses) seems instrumental to
increase the synaptic density. In contrast, a disruption of the
macro-network (e.g., ICNs) damages the structure of the network
and prevents the normal brain plasticity and the potential of
neurons to change their synaptic connections (Ashford and
Jarvik, 1985). The lengthening of axons, sprouting of collateral
ramifications, and remodeling allowing the dwelling of new
synapses, and new cognitive and behavioral operations may be

precluded by non-reversible pathological lesions as described in
the next paragraph.

Upon directly breaking down the [macro-network - micro-
network] system, mild TBI, by prompting focal damage or
diffuse axonal injury (DAI; Andriessen et al., 2010), intertwined
with neuroinflammation, further altering focal axolemma
permeability, axonal swelling/transport (Andriessen et al., 2010)
is disrupting axonal connections which follow the blockage of
axonal transport, later inducing Wallerian degeneration. At this
stage, the breakdown of the myelin sheath and axon cylinder are
present (Andriessen et al., 2010). In parallel, neuroinflammation
also promotes the spread of misfolded proteins (Heneka et al.,
2014) and neurodegeneration associated with amyloid-β plaques
and neurofibrillary tangles (Fotuhi et al., 2012; Sharp et al., 2014),
characteristic of Alzheimer’s disease. A terminal recovery may
or may not follow; the quality of synaptic reorganization may
be inconstant or ultimately abnormal. Disconnection of brain
networks (Sharp et al., 2014) may be irreversible and further
induce neurological or cognitive impairment such as relational
memory described in Monti’s paper.

Because irreversible post-TBI damage may occur and
determination of longitudinal changes in connectomics is
problematic (Goh et al., 2015), innovative diagnostic tools
such as connectomic imaging, specifically for inter-regional
connectivity (Irimia et al., 2014), are desired. Influenced by
graph theory, the mapping of connectivity or connectogram is
commonly pictured circularly by function-structural parceling
and connections using a color code which enable showing
missing or altered connections in patients (Irimia et al., 2012a).
Integrity of white matter tracts is observed by diffusion tensor
imaging (DTI) and further insights into ischemic penumbra
and edematous regions perfused by cerebrospinal fluid are

FIGURE 1 | Hypotheses about the decline in relational memory

processing. X-Axis: time (years), Y-Axis: memory performance. Curve 1

(green): progressive continuum of normal aging. Curve 2 (blue): Slight accrual

of the progressive continuum of normal aging. Curve 3 (orange): Acute

discontinuity or inflection apart from the progressive normal cognitive decline.

Figure derived from findings by various authors (Small et al., 2008; Foster

et al., 2011; Smith et al., 2013).
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provided by fluid-attenuated-inversion recovery (FLAIR; Irimia
et al., 2014). In a lower-scale fractal dimension, micro-networks,
exhibiting similar patterns as macro-networks (Foster, 2015),
may also be disrupted. Wrong assignments and characteristics
specific to the micro-scale such as biophysical, biochemical
and functional interactions of DNA (gene sequences), RNA
or metabolites may be completely dysregulated and, therefore,
biomarkers may be produced by this abnormal functioning
and further serve for diagnotics purposes. Large amounts of
biochemical-genetic and neuroimaging data may be submitted to
high-throughput analysis (Dinov et al., 2014); the multi-center
ENIGMA (“Enhancing Neuroimaging Genetics through Meta-
Analysis”) Consortium is conducting a genome-wide association
looking at single nucleotide polymorphisms (SNPs) and creating
a database of neuroimaging and genetic data (Bis et al., 2012;
Stein et al., 2012; Thompson et al., 2014; Hibar et al., 2015a,b).
Genes modifying the hippocampal phenotype (e.g., BDNF),
possibly upregulated by epigenetic factors such as skeletal muscle
exercise, are known for synaptic molding and hippocampal
plasticity and recent studies have shown that the Val66Met
BDNF polymorphism has been involved in greater resilience and
recovery potential of higher-order executive functions to TBI
than Val66Val BDNF carriers (Barbey et al., 2014).

Ultimately, cognitive performance in normal aging proceeds
along a continuum of slight and slow but progressive impairment
as illustrated in the figure (Foster et al., 2011) which may be
superimposed and augmented by the effects any TBI-induced
delayed alteration of cognitive functions. A threshold is attained
when the concurrent addition or succession of DAI, amyloid-β
plaques and dysfunction of large-scale neural networks lead to
clinical symptoms of mild cognitive impairment. Surprisingly,
the decline in memory performance may not be proportional
to the fraction of cells remaining in the hippocampus,
which would result in a fair performance although significant
neurodegeneration is already present (Foster et al., 2011). Indeed,
in patients with mild TBI early in life, Monti et al. clearly
observed a marked reduction of neural activity for relational
memory processing later in life. However, some questions
remain: to what extent do the observed lesions relate to decline
in memory performance? If the decline is not proportional to
the neural damage or network disconnection what would be the
singularity of this relation? Is it only slightly accruing (Figure 1,
Curve 2) the progressive continuum of normal aging (Figure 1,
Curve 1)? Or, is there an acute discontinuity or inflection
apart (Figure 1, Curve 3) from the progressive normal cognitive
decline?
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